Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake...

20
Background Estimating Causal Eects Testing Causal Hypotheses Summary/Next Steps Design of Randomized Experiments on Networks When Treatment Propagates: An Exploration Bruce Desmarais University of Massachusetts Amherst Collaborators: Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014 Political Networks Conference, McGill University

Transcript of Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake...

Page 1: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Design of Randomized Experiments on NetworksWhen Treatment Propagates: An Exploration

Bruce Desmarais

University of Massachusetts Amherst

Collaborators:Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino

Prepared for the 2014 Political Networks Conference, McGill University

Page 2: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

How should experiments be designed to learn aboutinterference in networks?

Example: Ghana 2008 Voter Registration Fraud Experiment (Ichino)

868 Electoral RegistrationStations (vertices)connected by roads (edges)

Density of 2.2%

Graph Transitivity of70.3%

2 / 20

Page 3: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014
Page 4: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014
Page 5: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014
Page 6: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Notation for Causal Questions

Treatment assigned to i : Zi 2 {0, 1}

Vector of all treatment assignments: Z = {Z1, . . . ,Zn}

Sharp Null of No Treatment E↵ect: all potential outcomes are equal

Yi (Z) = Yi (Z0) = Yi (Zi = 1,Z�i ) = Yi (Zi = 0,Z0

�i ) 8Z 6= Z

0

Graph-conditioned exposure: Yit(Dit), Dit records exposure condition

6 / 20

Page 7: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Example of treatment propagation: The Ising Model

Initial treatment status drawn from Zi ⇠ Bernoulli(↵). “Infection”/“Exposure”

probability at each iteration is

pr(Ei = 1) =1

1 + exp( 2F (ki � 2mi ))

k is number of (directly adjacent) neighbors (0 ki � K )

m is number of already infected neighbors (0 mi � M)

F is “temperature” or “propensity to be infected”

This example: Only two time periods (t 2 {0, 1}). The Ising model controlsactual infection after an experimenter assigns Zi at t = 0. Record infection afterthe first period.

7 / 20

Page 8: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Example of exposure types on the Ghana nodesOne draw from the Ising propagations with pr(Zi = 1) ⇠ Bernoulli(.15) fort 2 {0, 1} and Temperature= 10.

d1 ⌘ Di (Zi = 1, 0 mit � M)

d(0,0) ⌘ Di (Zi = 0,mit = 0)

d(0,1) ⌘ Di (Zi = 0,mit � 1)

d01

d01

d01

d1

d1

d01

d01

d01d01

d01

d01d1

d01

d01d01d01

d01

d01

d01

d00

d00

d00

d00

d01

d00

d00

d01

d00

d00

d01d1

d01

d1

d00 d00

d01d01

d1

d00

d1

d01 d01

d1d01

d1

d01

d01

d01d00

d01d1

d1

d01 d01

d01

d01

d01

d01d01

d01d01

8 / 20

Page 9: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

ATE: Aronow and Samii Estimator

Definitions:

Di indexes the exposure condition of observation i

⇡i (dk) is the probability i ends up in condition dkWe consider

d(0,1), untreated with at least one treated neighbor

d(0,0), untreated with no treated neighbor

Estimand:

µ̂(dk) =1

n

nX

i=1

I(Di = dk)Yi (dk)

⇡i (dk)

⌧̂(d(0,1), d(0,0)) = µ̂(d(0,1))� µ̂(d(0,0))

Testing:

Following Horvitz and Thompson (1952) and CLT:Var(⌧̂(d(0,1), d(0,0))) 1/N2

�Var(µ̂(d(0,1))) + Var(µ̂(d(0,0)))

9 / 20

Page 10: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Simulations to assess power and guide design

Baseline (pre-treatment) response

Y (0, 0) ⇠ U(0, 1)

Treatment allowed to propagate for one period and true (constant,multiplicative) model of causal e↵ects computed:

Y (1, 0) = Y (0, 1) = �Y (0, 0)

Consider parametersTreatment assignment probability ↵ 2 {0.05, 0.10, . . . , 0.50}‘Temperature’ T 2 {0, 10, . . . , 100}� 2 {0.26, 0.63}

Simulate 1,000 propagations at each combination of T and ↵.

For each realized propagation, assess power to reject H0 : ⌧ = 0 atsignificance level .05.

10 / 20

Page 11: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Power as a Function of N Indirectly Treated

� = 0.26 � = 0.63

100 200 300 400

0.0

0.2

0.4

0.6

0.8

Prop

ortio

n p=

=0.0

5

0.05

0.05

0.05

0.05

0.050.050.050.050.050.05

0.1

0.1

0.10.1

0.10.10.10.10.10.1

0.15

0.15

0.150.150.150.150.15

0.150.150.15

0.2

0.2

0.20.20.20.20.20.20.20.2

0.25

0.250.250.250.250.250.250.250.250.25

0.3

0.30.30.30.30.30.30.30.30.3

0.350.350.350.350.350.350.350.350.350.35

0.40.40.40.40.40.40.40.40.40.40.450.450.450.450.450.450.450.450.450.450.50.50.50.50.50.50.50.50.50.5

N Exposed to Treatment by Propagation in 1 Period100 200 300 400

0.00

0.05

0.10

0.15

Prop

ortio

n p=

=0.0

5

0.05

0.05

0.05

0.050.05

0.05

0.05

0.050.05

0.05

0.1 0.10.1

0.10.10.10.1

0.10.10.1

0.15 0.15 0.150.150.150.150.150.150.150.150.2 0.2 0.20.20.20.20.20.20.20.20.25 0.250.250.250.250.250.250.250.250.250.3 0.30.30.30.30.30.30.30.30.30.350.350.350.350.350.350.350.350.350.350.40.40.40.40.40.40.40.40.40.40.450.450.450.450.450.450.450.450.450.450.50.50.50.50.50.50.50.50.50.5

N Exposed to Treatment by Propagation in 1 Period

11 / 20

Page 12: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Power With Additive E↵ects Model

Y (0, 0) = 1 + U(0, 1)

Y (0, 1) = �+ U(0, 1)

� = 0.26 � = 0.63

100 200 300 400

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Prop

ortio

n p=

=0.0

5

0.05

0.05

0.05

0.05

0.05

0.050.05

0.050.050.05

0.10.1

0.1

0.10.10.10.10.1

0.10.1

0.15 0.150.150.150.150.150.150.150.150.15

0.2 0.2 0.20.20.20.20.20.20.20.20.25 0.250.250.250.250.250.250.250.250.250.3 0.30.30.30.30.30.30.30.30.30.350.350.350.350.350.350.350.350.350.350.40.40.40.40.40.40.40.40.40.40.450.450.450.450.450.450.450.450.450.450.50.50.50.50.50.50.50.50.50.5

N Exposed to Treatment by Propagation in 1 Period100 200 300 400

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Prop

ortio

n p=

=0.0

50.05

0.05

0.05

0.050.050.05

0.05

0.050.05

0.05

0.1 0.10.1

0.10.10.10.1

0.10.10.1

0.15 0.15 0.150.150.150.150.150.150.150.150.2 0.2 0.20.20.20.20.20.20.20.20.25 0.250.250.250.250.250.250.250.250.250.3 0.30.30.30.30.30.30.30.30.30.350.350.350.350.350.350.350.350.350.350.40.40.40.40.40.40.40.40.40.40.450.450.450.450.450.450.450.450.450.450.50.50.50.50.50.50.50.50.50.5

N Exposed to Treatment by Propagation in 1 Period

12 / 20

Page 13: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Power With Certain Propagation

Y (d00) = 1 + U(0, 1)

Y (d01) = �+ U(0, 1)

� = 0.26 � = 0.63

100 200 300 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Prop

ortio

n p=

=0.0

5

0.05 0.050.05

0.050.05

0.050.050.050.050.05

0.1 0.10.1 0.10.1

0.10.10.1

0.1

0.1

0.15 0.15 0.150.150.150.150.150.150.150.15

0.2 0.2 0.20.20.20.20.20.20.20.20.25 0.250.250.250.250.250.250.250.250.250.3 0.30.30.30.30.30.30.30.30.30.350.350.350.350.350.350.350.350.350.350.40.40.40.40.40.40.40.40.40.40.450.450.450.450.450.450.450.450.450.450.50.50.50.50.50.50.50.50.50.5

N Exposed to Treatment by Propagation in 1 Period100 200 300 400

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Prop

ortio

n p=

=0.0

5

0.05

0.050.05 0.050.05

0.05

0.05

0.05

0.05

0.05

0.1

0.10.1

0.10.10.10.10.10.10.1

0.15 0.15 0.150.150.150.150.150.150.150.150.2 0.2 0.20.20.20.20.20.20.20.20.25 0.250.250.250.250.250.250.250.250.250.3 0.30.30.30.30.30.30.30.30.30.350.350.350.350.350.350.350.350.350.350.40.40.40.40.40.40.40.40.40.40.450.450.450.450.450.450.450.450.450.450.50.50.50.50.50.50.50.50.50.5

N Exposed to Treatment by Propagation in 1 Period

13 / 20

Page 14: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Correlating Treatment with Degree

●●●●●●

●●

●●●

●●●

●●●●●

● ●

−0.10 −0.05 0.00 0.05 0.10

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Prop

ortio

n Si

g. (p

=0.0

5)

Degree−Treatment Corr.

α = 0.05 ●

●●

●●●●●

●●

●●

● ●

−0.10 −0.05 0.00 0.05 0.10

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Prop

ortio

n Si

g. (p

=0.0

5)

Degree−Treatment Corr.

α = 0.1 ●

● ●●●

●●●●

●●●

●●●

●●●●

−0.10 −0.05 0.00 0.05 0.10

0.2

0.3

0.4

0.5

Prop

ortio

n Si

g. (p

=0.0

5)

Degree−Treatment Corr.

α = 0.15

●●

●●

●●

●●●●●

−0.10 −0.05 0.00 0.05 0.10

0.100.150.200.250.300.350.400.45

Prop

ortio

n Si

g. (p

=0.0

5)

Degree−Treatment Corr.

α = 0.2 ●

●●

●●●

●●

−0.10 −0.05 0.00 0.05 0.10

0.05

0.10

0.15

0.20

0.25

Prop

ortio

n Si

g. (p

=0.0

5)

Degree−Treatment Corr.

α = 0.25 ●

●●●

●●

●●

●●

●●●●

●●

−0.10 −0.05 0.00 0.05 0.10

0.05

0.10

0.15

0.20

0.25

Prop

ortio

n Si

g. (p

=0.0

5)

Degree−Treatment Corr.

α = 0.3

●●

●●

●●

●●●

●●

●●

● ●

−0.10 −0.05 0.00 0.05 0.10

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Prop

ortio

n Si

g. (p

=0.0

5)

Degree−Treatment Corr.

α = 0.35 ●

● ●●●●●●

●●●

●●

−0.10 −0.05 0.00 0.05 0.10

0.00

0.02

0.04

0.06

0.08

Prop

ortio

n Si

g. (p

=0.0

5)

Degree−Treatment Corr.

α = 0.4 ●

●●

●●

●●

−0.10 −0.05 0.00 0.05 0.10

0.01

0.02

0.03

0.04

0.05

Prop

ortio

n Si

g. (p

=0.0

5)

Degree−Treatment Corr.

α = 0.45

Page 15: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Tests of a Sharp Null: Distributional Di↵erences

Bowers, Jake, Mark M. Fredrickson and Costas Panagopoulos. 2013.“Reasoning about Interference Between Units: A General Framework.” PoliticalAnalysis 21(1):97–124.

Details: Anderson-Darling k-sample test statistic (Scholz and Stephens, 1987);randomization distributions via RItools (Fredrickson, Bowers, Hansen 2014).

15 / 20

Page 16: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Power as a Function of N Indirectly Treated

100 200 300 400

0.5

0.6

0.7

0.8

0.9

1.0

Power to Reject the Sharp Null of No Effects

N Exposed to Treatment by Propagation in 1 Period

Prop

ortio

n p=

0.05

0.05

0.1

0.15

0.2

0.25 0.30.350.40.450.5

0.050.10.150.20.250.30.350.40.450.5

100 200 300 400

0.5

0.6

0.7

0.8

0.9

1.0

Power to Reject the Sharp Null of No Difference D01 vs D00

N Exposed to Treatment by Propagation in 1 Period

Prop

ortio

n p=

0.05

0.05

0.1

0.15

0.2 0.25 0.3 0.350.40.450.5

0.050.10.150.20.250.30.350.40.450.5

16 / 20

Page 17: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Power With Additive E↵ects Model

100 200 300 400

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Power to Reject the Sharp Null of No Effects

N Exposed to Treatment by Propagation in 1 Period

Prop

ortio

n p

<= 0

.05

0.05

0.1

0.15

0.2 0.25 0.30.350.40.450.5

0.050.10.150.20.250.30.350.40.450.5

100 200 300 400

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Power to Reject the Sharp Null of No Difference D01 vs D00

N Exposed to Treatment by Propagation in 1 Period

Prop

ortio

n p

<= 0

.05

0.05 0.1

0.150.2 0.25

0.30.350.40.45

0.5

17 / 20

Page 18: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Power With Certain Propagation

100 200 300 400

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Power to Reject the Sharp Null of No Effects

N Exposed to Treatment by Propagation in 1 Period

Prop

ortio

n p

<= 0

.05

0.05

0.1 0.15 0.2 0.25 0.30.350.40.450.5

0.050.10.150.20.250.30.350.40.450.5

100 200 300 400

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Power to Reject the Sharp Null of No Difference D01 vs D00

N Exposed to Treatment by Propagation in 1 Period

Prop

ortio

n p

<= 0

.05

0.05 0.1 0.15 0.2 0.25 0.30.350.40.450.5

18 / 20

Page 19: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Summary

Under propagation, power optimizing proportion assigned to treatment maybe much less than 0.5.

Higher order parameters of treatment assignment distribution candramatically a↵ect statistical power

Trade-o↵ between power to detect network-moderated andnon-network-moderated e↵ects (see also Bowers, Fredrickson,Panagopoulos 2013).

Test statistics matter: even if interest focuses on ATE, the ATE mayprovide little power when the true model is not a simple distributional shift.

Limitation on power driven by the need for strong (i.e., isolated) controls.

19 / 20

Page 20: Design of Randomized Experiments on Networks When Treatment …samsi... · 2014-08-13 · Jake Bowers, Wayne Lee, Simi Wang, Mark Frederickson, Nahomi Ichino Prepared for the 2014

Background Estimating Causal E↵ects Testing Causal Hypotheses Summary/Next Steps

Next Steps

More measures of design adequacy: RMSE, Type I error, Power.

Make pr(Zi = 1) depend on topology if not also covariates.degree-correlated assignment

community-wise assignment schemes

Consider higher-order spreading

Re-parameterize Ising for substantive interpretation.

Provide more general simulation system that accommodates di↵erent:models of propagation

models of e↵ects

statistical/causal inferential focus

20 / 20