CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g...

12
1 R. Rao, 528: Lecture 8 CSE/NEUBEH 528 Modeling Synapses and Networks (Chapter 7) Image from Wikimedia Commons Lecture figures are from Dayan & Abbott’s book 2 R. Rao, 528: Lecture 8 Course Summary (thus far) F Neural Encoding What makes a neuron fire? (STA, covariance analysis) Poisson model of spiking F Neural Decoding Spike-train based decoding of stimulus Stimulus Discrimination based on firing rate Population decoding (Bayesian estimation) F Single Neuron Models RC circuit model of membrane Integrate-and-fire model Conductance-based Models

Transcript of CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g...

Page 1: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

1R. Rao, 528: Lecture 8

CSE/NEUBEH 528

Modeling Synapses and Networks(Chapter 7)

Image from Wikimedia Commons

Lecture figures are from Dayan & Abbott’s book

2R. Rao, 528: Lecture 8

Course Summary (thus far)

F Neural Encoding

What makes a neuron fire? (STA, covariance analysis)

Poisson model of spiking

F Neural Decoding

Spike-train based decoding of stimulus

Stimulus Discrimination based on firing rate

Population decoding (Bayesian estimation)

F Single Neuron Models

RC circuit model of membrane

Integrate-and-fire model

Conductance-based Models

Page 2: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

3R. Rao, 528: Lecture 8

Today’s Agenda

F Computation in Networks of Neurons

Modeling synaptic inputs

From spiking to firing-rate based networks

Feedforward Networks

Multilayer Networks

4R. Rao, 528: Lecture 8

How do neurons

connect to form

networks?

Image Source: Wikimedia Commons

Using

synapses!

Page 3: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

5R. Rao, 528: Lecture 8

Synapses on an actual neuron

Image Credit: Kennedy lab, Caltech. http://www.its.caltech.edu/~mbklab

6R. Rao, 528: Lecture 8

What do synapses do?

Increase or decrease postsynaptic membrane potential

Spike

Image Source: Wikimedia Commons

Page 4: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

7R. Rao, 528: Lecture 8

An Excitatory Synapse

Input spike Neurotransmitter

release (e.g., Glutamate)

Binds to ion channel receptors

Ion channels open Na+ influx

Depolarization due to EPSP (excitatory

postsynaptic potential)

Image Source: Wikimedia Commons

Spike

8R. Rao, 528: Lecture 8

An Inhibitory Synapse

Input spike Neurotransmitter

release (e.g., GABA) Binds to ion

channel receptors Ion channels open

Cl- influxHyperpolarization due

to IPSP (inhibitory postsynaptic potential)

Image Source: Wikimedia Commons

Spike

Page 5: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

9R. Rao, 528: Lecture 8

We want a computational model of the effects

of a synapse on the membrane potential V

Synapse

How do we do this?

V

10R. Rao, 528: Lecture 8

Flashback Membrane Model

,)(

A

I

r

EV

dt

dVc e

m

Lm

meLm RIEVdt

dV )(

m = rmcm= RmCm

is the membrane

time constant

V

or equivalently:

Image Source: Dayan & Abbott textbook

Page 6: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

11R. Rao, 528: Lecture 8

How do we model the effects of a synapse on

the membrane potential V ?

Synapse ?

12R. Rao, 528: Lecture 8

Hint! Hodgkin-Huxley Model

)()())(/1( 3

max,

4

max, NaNaKKLmm

memmm

EVhmgEVngEVri

RIridt

dV

EL = -54 mV, EK = -77 mV, ENa = +50 mV

K Na

Image Source: Dayan & Abbott textbook

Page 7: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

13R. Rao, 528: Lecture 8

V

srelss

messmLm

PPgg

RIEVgrEVdt

dV

max,

)()(

Probability of transmitter release given an input spike

Probability of postsynaptic channel opening

(= fraction of channels opened)

Synaptic

conductance

Modeling Synaptic Inputs

Synapse

14R. Rao, 528: Lecture 8

Basic Synapse Model

F Assume Prel = 1

F Model the effect of a single spike input on Ps

F Kinetic Model of postsynaptic channels:

sssss PP

dt

dP )1(

s

s

Opening rate Closing rate

Fraction of channels closed Fraction of channels open

Closed Open

fraction of

channels

opened

Page 8: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

15R. Rao, 528: Lecture 8

What does Ps look like over time given a spike?

Exponential function K(t) gives reasonable fit for some synapses

Others can be fit using “Alpha” function:

s

t

etK

)(

peak

t

ettK

)( t0 peak

Pmax

16R. Rao, 528: Lecture 8

Linear Filter Model of a Synapse

dtKg

ttKgtg

t

bb

tt

ibb

i

)()(

)()(

max,

max,

Synaptic conductance at b:

b(t) = i δ(t-ti) (ti are the input spike times, δ = delta function)

Filter for

synapse b = )(tK

Input Spike

Train b(t)

Synapse

b

Page 9: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

17R. Rao, 528: Lecture 8

Example: Network of Integrate-and-Fire Neurons

mebbmLm RIEVtgrEVdt

dV ))(()(Each neuron:

Synapses : Alpha function model

Excitatory synapses (Eb = 0 mV) Inhibitory synapses (Eb = -80 mV)

Synchrony!

mV 54 mV 70 threshL VE

ms 01peak

18R. Rao, 528: Lecture 8

Modeling Networks of Neurons

F Option 1: Use spiking neurons Advantages: Model computation and learning based on:

Spike Timing

Spike Correlations/Synchrony between neurons

Disadvantages: Computationally expensive

F Option 2: Use neurons with firing-rate outputs (real

valued outputs)Advantages: Greater efficiency, scales well to large networks

Disadvantages: Ignores spike timing issues

F Question: How are these two approaches related?

Page 10: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

19R. Rao, 528: Lecture 8

Recall: Linear Filter Model of a Synapse

dtKg

ttKgtg

t

bb

tt

ibb

i

)()(

)()(

max,

max,

Synaptic conductance at b:

b(t) = i δ(t-ti) (ti are the input spike times, δ = delta function)

Filter for

synapse b = )(tK

Synapse b

Input Spike Train b(t)

20R. Rao, 528: Lecture 8

From a Single Synapse to Multiple Synapses

wN

Spike trains 1(t)

N

b

t

bbs dtKwtI1

)()()(

N

b

bs tItI1

)()(Total synaptic current

w1

N(t)

Synaptic weights

Page 11: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

21R. Rao, 528: Lecture 8

From Spiking to Firing Rate Model

Firing rate ub(t)

Spike train b(t)

N

b

t

bb

N

b

t

bbs

dutKw

dtKwtI

1

1

)()(

)()()(

Firing rate u1(t) uN(t)

wN

Spike trains 1(t)

w1

N(t)

Synaptic weights

Total

synaptic

current

22R. Rao, 528: Lecture 8

Simplifying the Input Current Equation

Suppose synaptic filter K is exponential:

Differentiating w.r.t. time t,

we get

b

t

bbs dutKwtI )()()(

uw

s

b

bbss

s

I

uwIdt

dI

s

t

s

etK

1

)(

Firing rate u1(t) uN(t)

wNw1Synaptic weights Weight vector w

Input vector u

Page 12: CSE/NEUBEH 528 Modeling Synapses and NetworksRecall: Linear Filter Model of a Synapse g K t d g t g K t t t b b t t b b i i ( ) ( ) ( ) ( ),max,max Synaptic conductance at b: b (t)

23R. Rao, 528: Lecture 8

General Firing-Rate-Based Network Model

))(( tIFvdt

dvsr

uw ss

s Idt

dI

Output firing rate

changes like this:

Input current

changes like this:

What happens when:

input? Static

?

?

sr

rs

F is the “activation function”

24R. Rao, 528: Lecture 8

Next Class: Networks

F To Do:

Homework 3

Finalize a final project topic and partner(s)

Email Raj, Adrienne and Rich your topic and

partners, or ask to be assigned to a team