Chapter 1-4 - Intersection Design - VHB.com

73
Intersection Design 1.41 SECTION 1, CHAPTER 4 Intersection Design 4.1 Introduction An intersection is the area where two or more streets join or cross at‐grade. The intersection includes the areas needed for all modes of travel: pedestrian, bicycle, motor vehicle, and transit. Thus, the intersection includes not only the pavement area, but typically the adjacent sidewalks and pedestrian curb cut ramps. The intersection is defined as encompassing all alterations (for example, turning lanes) to the otherwise typical cross‐sections of the intersecting streets. Intersections are a key feature of street design in four respects: Focus of activity The land near intersections often contains a concentration of travel destinations. Conflicting movements Pedestrian crossings and motor vehicle and bicycle turning and crossing movements are typically concentrated at intersections. Traffic control At intersections, movement of users is assigned by traffic control devices such as yield signs, stop signs, and traffic signals. Traffic control often results in delay to users traveling along the intersecting roadways, but helps to organize traffic and decrease the potential for conflict. Capacity In many cases, traffic control at intersections limits the capacity of the intersecting roadways, defined as the number of users that can be accommodated within a given time period. This chapter describes the considerations and design parameters for intersections. The chapter begins by outlining definitions and key elements, and then describes the characteristics of intersection users, intersection types and configurations, capacity and quality of service considerations, geometric design elements, and other considerations.

Transcript of Chapter 1-4 - Intersection Design - VHB.com

  Intersection Design  1.4‐1 

SECTION 1, CHAPTER 4

Intersection Design 

4.1 Introduction 

Anintersectionistheareawheretwoormorestreetsjoinorcrossat‐grade.Theintersectionincludestheareasneededforallmodesoftravel:pedestrian,bicycle,motorvehicle,andtransit.Thus,theintersectionincludesnotonlythepavementarea,buttypicallytheadjacentsidewalksandpedestriancurbcutramps.Theintersectionisdefinedasencompassingallalterations(forexample,turninglanes)totheotherwisetypicalcross‐sectionsoftheintersectingstreets.Intersectionsareakeyfeatureofstreetdesigninfourrespects:

Focusofactivity‐Thelandnearintersectionsoftencontainsaconcentrationoftraveldestinations.

Conflictingmovements‐Pedestriancrossingsandmotorvehicleandbicycleturningandcrossingmovementsaretypicallyconcentratedatintersections.

Trafficcontrol‐Atintersections,movementofusersisassignedbytrafficcontroldevicessuchasyieldsigns,stopsigns,andtrafficsignals.Trafficcontroloftenresultsindelaytouserstravelingalongtheintersectingroadways,buthelpstoorganizetrafficanddecreasethepotentialforconflict.

Capacity‐Inmanycases,trafficcontrolatintersectionslimitsthecapacityoftheintersectingroadways,definedasthenumberofusersthatcanbeaccommodatedwithinagiventimeperiod.

Thischapterdescribestheconsiderationsanddesignparametersforintersections.Thechapterbeginsbyoutliningdefinitionsandkeyelements,andthendescribesthecharacteristicsofintersectionusers,intersectiontypesandconfigurations,capacityandqualityofserviceconsiderations,geometricdesignelements,andotherconsiderations.

1.4‐2  Intersection Design  DRAFT 

4.1.1 Intersection Users 

Allroadwayusersareaffectedbyintersectiondesignasdescribedbelow:

Pedestrians.Keyelementsaffectingintersectionperformanceforpedestriansare:(1)amountofright‐of‐wayprovidedforthepedestrianincludingbothsidewalkandcrosswalkwidth,accuracyofslopesandcrossslopesoncurbcutrampsandwalkways,audibleand/ortactilecuesforpeoplewithlimitedsight,andabsenceofobstaclesinaccessiblepath;(2)crossingdistanceandresultingdurationofexposuretoconflictswithmotorvehicleandbicycletraffic;(3)volumeofconflictingtraffic;and(4)speedandvisibilityofapproachingtraffic.

Bicyclists.Keyelementsaffectingintersectionperformanceforbicyclesare:(1)degreetowhichpavementissharedorusedexclusivelybybicycles;(2)relationshipbetweenturningandthroughmovementsformotorvehiclesandbicycles;(3)trafficcontrolforbicycles;(4)differentialinspeedbetweenmotorvehicleandbicycletraffic;and(5)visibilityofthebicyclist.

Motorvehicles.Keyelementsaffectingintersectionperformanceformotorvehiclesare:(1)typeoftrafficcontrol;(2)vehicularcapacityoftheintersection,determinedprimarilyfromthenumberoflanesandtrafficcontrol(althoughthereareotherfactors);(3)abilitytomaketurningmovements;(4)visibilityofapproachingandcrossingpedestriansandbicycles;and(5)speedandvisibilityofapproachingandcrossingmotorvehicles.

Transit.Whentransitoperationsinvolvebuses,theysharethesamekeycharacteristicsasvehicles.Inaddition,transitoperationsmayinvolveatransitstopatanintersectionarea,andinfluencepedestrian,bicycle,andmotorvehicleflowandsafety.

Ownersandusersofadjacentlandoftenhaveadirectinterestinintersectiondesign,particularlywheretheintersectionissurroundedbyretail,commercial,historicorinstitutionallanduses.Primaryconcernsincludemaintenanceofvehicularaccesstoprivateproperty,turnrestrictions,consumptionofprivatepropertyforright‐of‐way,andprovisionofsafe,convenientpedestrianaccess.

4.1.2 Intersection Design Process 

Theneedforintersectionimprovementisidentifiedandvariousoptionsforaddressingthisneedareconsideredandanalyzed.Thespecificdesignelementsofintersectionsmayimpactanyorallpotentialusers.Sections4.2through4.6definekeytermsanddiscussintersectionusers,configurations,trafficcontrol,capacity,andqualityofservice.Section4.7describestherangesofphysicaldimensionsandtheoperationalcharacteristicsofeachintersectiondesignelement.

Section 1 – Chapter 4

  Intersection Design  1.4‐3 

4.2 Definitions and Key Elements 

Themajorstreetistypicallytheintersectingstreetwithgreatertrafficvolume,largercross‐section,andhigherfunctionalclass.Theminorstreetistheintersectingstreetlikelytohavelesstrafficvolume,smallercross‐sectionandlowerfunctionalclassificationthanthemajorstreet.Thetermintersectionencompassesnotonlytheareaofpavementjointlyusedbytheintersectingstreets,butalsothosesegmentsoftheintersectingstreetsaffectedbythedesign.Thus,thosesegmentsofstreetsadjacenttotheintersectionforwhichthecross‐sectionorgradehasbeenmodifiedfromitstypicaldesignareconsideredpartoftheintersection.Exhibit4‐1summarizestheextentandterminologyusedtodefineanintersection.

Exhibit 4‐1  Intersection Terminology 

Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2004.

1.4‐4  Intersection Design  DRAFT 

Twogeometricfeaturesarecommontoallintersections.Theangleofintersectionisformedbytheintersectingstreets’centerlines.Wheretheangleofintersectiondepartssignificantly(morethanapproximately20degrees)fromrightangles,theintersectionisreferredtoasaskewedintersection.Intersectionlegsarethosesegmentsofroadwayconnectingtotheintersection.Thelegusedbytrafficapproachingtheintersectionistheapproachleg,andthatusedbytrafficleavingisthedepartureleg.Sidewalks,crosswalksandpedestriancurbcutrampsareconsideredtobewithintheintersection.Thepavementedgecorneristhecurveconnectingtheedgesofpavementoftheintersectingstreets.Inadditiontothebasicgeometricdesignfeatures,optionsmaybeaddedtoimproveserviceforvarioususers.Auxiliarylanesarelanesaddedattheintersection,usuallytoaccommodateturningmotorvehicles.Theymayalsobeusedtoaddthroughlanesthroughanintersection.Channelizinganddivisionalislandsmaybeaddedtoanintersectiontohelpdelineatetheareainwhichvehiclescanoperate,andtoseparateconflictingmovements.Islandscanalsoprovideforpedestrianrefuge.Aturningroadwayisashortsegmentofroadwayforarightturn,delineatedbychannelizingislands.Turningroadwaysareusedwhereright‐turnvolumesareveryhigh,orwhereskewedintersectionswouldotherwisecreateaverylargepavementarea.Trafficcontroldevicesassignrightofway,tobothmotorizedandnon‐motorizedtrafficandincludetrafficsignals,pavementmarkings,STOPsigns,YIELDsigns,pedestriansignalheadsandotherdevices(suchasraisedpavementmarkings,flashingbeacons,andelectronicblank‐outsigns).

4.3 User Characteristics 

Thefollowingsectionsdescribecharacteristicsofintersectionusers.Pedestriansandbicyclistsarepresentedfirst,followedbymotorvehicleandpublictransitusers.Thisorderofpresentationreinforcestheneedtoconsiderthesemodesthroughouttheintersectiondesignprocess.

4.3.1 Pedestrians 

Pedestrianrequirementsmustbefullyconsideredinthedesignofintersections.Thereareseveralimportantfeaturestoconsiderincluding:

CrossingsandPedestrianCurbCutRampLocations—Locationsshouldcorrespondtotheplacementofsidewalksalongapproachingstreets,andlikely

Section 1 – Chapter 4

  Intersection Design  1.4‐5 

crossinglocations.Pedestriancurbcutrampsneedtoensureaccessibilitytocrossinglocations.

WalkingSpeed—Undernormalconditions,pedestrianwalkingspeedsonsidewalksandcrosswalksrangefrom2.5feetpersecondto6feetpersecond.Elderlypedestriansandyoungchildrenwillgenerallybeintheslowerportionofthisrange.Awalkingspeedof3.5to4feetpersecondforcrosswalksignaltimingiswidelyacceptedasaguidelineforwalkingspeedincrosswalks.Thedesignershouldnotethatthecurrentreviseddraftversion(2005)oftheADAAccessibilityGuidelinesforPublicRight‐of‐wayandthecurrent(2009)ManualonUniformTrafficControlDevices(MUTCD)(bothnotadoptedatthetimeofthisGuidebook)requireamaximumwalkspeedof3.5feetpersecondovertheentirelengthofcrosswalk.

PedestrianFlowCapacity—Thenumberofpedestriansperhourthatcanbeaccommodatedbythefacilityundernormalconditions.

TrafficControl,YieldingandDelay—Inadditiontopedestrianflowcapacity,pedestriansaresignificantlyaffectedbythetypeoftrafficcontrolinstalledatanintersection,thespecificparametersofthecontrol,andtheresultingmotorvehicleoperations.AtSTOPcontrolled,YIELDcontrolled,anduncontrolledintersections,pedestrians’abilitytocrossthestreetandthedelayexperiencedisinfluencedbytheyieldingbehaviorofmotorvehicles.Atsignalizedintersections,thelengthandfrequencyoftimeprovidedforpedestriancrossings,theclarityofinformationprovided,conflictingturningmovements,andmotorvehicleyieldingarekeyinfluencesonpedestrians’abilitytocrossthestreet,andondelay.

4.3.2 Bicyclists 

Bicyclists’needsmustbeintegratedintothedesignofintersections.Whentravelingwithmotorvehicles,bicyclistsaresubjecttomotorvehicletrafficlaws.Importantconsiderationsforbicycleaccommodationinclude:

Cross‐section—Bicyclistspositionthemselvesfortheirintendeddestinationregardlessofthepresenceofbikelanesorshoulders.Ifbicyclelanesarepresent,thedesignneedstoinsurethatbicyclistscanmergetotheproperlocationbasedonthebicyclist’sintendeddestination.

OperatingSpeed—Atunsignalizedintersections,anaveragebicyclespeedof15milesperhourcanbeassumedonthemajorstreet.Ontheminorstreet,bicyclistsusuallystoporslow,andtravelthroughtheintersectionatspeedswellbelow15milesperhour.Atsignalizedintersections,bicyclistsreceivingthegreensignalproceedthroughtheintersectionatanaveragespeedof15milesperhour.Bicyclistswhohavestoppedforasignalproceedthroughtheintersectionatspeedswellbelow15milesperhour.

1.4‐6  Intersection Design  DRAFT 

BicycleCapacity—Thenumberofbicyclesperhourthatcanbeaccommodatedbythefacilityundernormalconditions.

TrafficControl—Bicyclistsarerequiredbylawtoobeycontroldevicesatintersections.Therefore,trafficcontroldevicesneedtoaccountforbicycleactivity.Trafficsignalswhichoperateusingdetectionsystems(suchasloopdetection,videocamera,andmicrowave)mustbedesignedandfieldtestedtobesensitivetobicycles.Manyoftheaspectsoftrafficcontroldescribedformotorvehicles(below)alsoapplytobicyclists.

4.3.3 Motor Vehicles 

Thefollowingimportantcharacteristicsofmotorvehiclesareconsideredinintersectiondesign:

DesignVehicle—Thelargesttypeofmotorvehiclethatisnormallyexpectedtobeaccommodatedthroughtheintersection.

DesignSpeed—Themotorvehiclespeedselectedonadjoiningsegmentsofroadway.

MotorVehicleCapacity—Thenumberofmotorvehiclesthatcanbemovedthroughanintersectionundernormalconditions.

TrafficControl‐Muchlikeotherusers,motorvehiclesareinfluencedbythetypeandtimingoftrafficcontrolinstalledatanintersection,andnumberofotherusers.Atroundabouts,STOPcontrolled,YIELDcontrolled,anduncontrolledintersections,motorvehiclecapacityanddelayareinfluencedbyconflictingtrafficstreams.Atsignalizedintersections,thetimeprovidedforeachmovement,conflictingturningmovements,andthevolumeandmixofotherusersarekeyinfluencesonbothmotorvehiclecapacityanddelay.

4.3.3.1 Design Vehicle 

Thedesignmotorvehicleisthelargesttypeofvehicletypicallyexpectedtobeaccommodatedonthestreet.Atintersections,themostimportantattributeofdesignvehiclesistheirturningradius,whichinturninfluencesthepavementcornerradiusandthereforethesizeoftheintersection.Lanewidth,anotherfeaturerelatedtothedesignvehicle,hassomeimpactonintersectiondesign,butlessthanturningradius.Thedesignvehiclemayalsoaffectthechoiceoftrafficcontroldeviceandtheneedforauxiliarylanes.Thedesignvehicleforintersectionsisthelargerofthedesignvehiclesselectedfortheintersectingstreets.Forexample,attheintersectionofaminorarterialandalocalstreet,theappropriatedesignvehiclefortheintersectionisthatrequiredbytheminorarterial(i.e.,“larger”street).Exhibit4‐2,TypicalDesignVehiclesatIntersections,providesgeneralguidanceforselectingdesignvehiclesappropriateforintersectiondesignunderconditionsofnormaltrafficcomposition.Atlocationswherecollectorsintersectwith

Section 1 – Chapter 4

  Intersection Design  1.4‐7 

arterialsexperiencinghightruckvolumes,theappropriatetruckdesignvehicleshouldbeselected.SampleturningtemplatesforthesemotorvehiclesareprovidedinExhibit4‐3.

Exhibit 4‐2  Typical Design Motor Vehicles at Intersections 

Functional Class of Major Road Design Motor Vehicle (AASHTO Category)

Typical for Intersection

Major Arterial Tractor-trailer Truck (WB-65)

Minor Arterial Tractor-trailer Truck (WB-50)

Major Collector Single-unit Truck

Minor Collector Passenger Car (P)

Local Roads and Street Passenger Car (P)

Notes: Design vehicles from AASHTO A Policy on Geometric Design of Highways and Streets, 2011 Passenger Car (P) applies to Light Trucks and SUV’s SU category can also be used for school and transit buses

4.3.4 Transit 

Thedesignvehicleappropriateformosttypesoftransitserviceisthe“City‐Bus”asdefinedbyAASHTO.Thisvehicleis40feetlong,8feetwide,andhasouterandinnerturningwheelpathsof42.0feetand24.5feet,respectively.The“mid‐size”bus,typicallyaccommodating22to28passengers,isalsousedinscheduledtransitservice.Theturningpathforthemid‐sizebuscanbeaccommodatedwithinthesingle‐unit(SU)truckturningpathdiagram.Transitstopsareoftenlocatedatintersectionseitherasanear‐sidestopontheapproachtotheintersectionorasafar‐sidestoponthedeparturelegoftheintersection.Locationnearintersectionsisparticularlyadvantageouswheretransitroutescross,minimizingthewalkingdistanceneededforpassengerstransferringbetweenbuses.Abusstop,whethernear‐sideorfar‐side,requires50to70feetofcurbspaceunencumberedbyparking.Onstreetswithoutparkinglanesorbusbays,busesmuststopinamovingtrafficlanetoservicepassengers.Passengerstypicallyrequire4to6secondsperpersontoboardabus,and3to5secondstodisembark.Thetotalamountoftimeatransitvehiclewillblocktrafficmovementscanthenbeestimatedusingthenumberofboardingsandalightingsexpectedatastop.

1.4‐8  Intersection Design  DRAFT 

Exhibit 4‐3   Sample Vehicle Turning Template 

Passenger Car (P) Single Unit Truck (SU-12 [SU-40])

Intermediate Semi-Trailer (WB-12 [WB-40]) Transit Bus (CITY BUS)

Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011.

Note: Not to scale

Section 1 – Chapter 4

  Intersection Design  1.4‐9 

4.4 Intersection Types and Configurations 

Intersectionscanbecategorizedintofourmajortypes,asillustratedinExhibit4‐4,IntersectionTypes.

4.4.1 Simple Intersections 

Simpleintersectionsmaintainthestreet’stypicalcross‐sectionandnumberoflanesthroughouttheintersection,onboththemajorandminorstreets.Simpleintersectionsarebest‐suitedtolocationswhereauxiliary(turning)lanesarenotneededtoachievethedesiredlevel‐of‐service,orareinfeasibleduetonearbyconstraints.Generally,simpleintersectionsprovidetheminimumcrossingdistancesforpedestriansandarecommoninlow‐volumelocations.

4.4.2 Flared Intersections 

Flaredintersectionsexpandthecross‐sectionofthestreet(main,crossorboth).Theflaringisoftendonetoaccommodatealeft‐turnlane,sothatleft‐turningbicyclesandmotorvehiclesareremovedfromthethrough‐trafficstreamtoincreasecapacityathigh‐volumelocations,andsafetyonhigherspeedstreets.Right‐turnlanes,lessfrequentlyusedthanleft‐turnlanes,areusuallyaresponsetolargevolumesofrightturns.Intersectionsmaybeflaredtoaccommodateanadditionalthroughlaneaswell.Thisapproachiseffectiveinincreasingcapacityatisolatedruralorsuburbansettingsinwhichlengthywideningbeyondtheintersectionis:notneededtoachievethedesiredlevel‐of‐service;notfeasibleduetonearbyconstraints;or,notdesirablewithinthecontextoftheproject.Intersectionapproachescanbeflaredslightly,notenoughforadditionalapproachlanesbutsimplytoeasethevehicleturningmovementapproachingordepartingtheintersection.Thistypeofflaringhasbenefitstobicycleandmotorvehicularflowsincehigherspeedturningmovementsattheintersectionarepossibleandencroachmentbylargerturningvehiclesintoothervehiclepathsisreduced.However,addingflaretoanintersectionincreasesthepedestriancrossingdistanceandtime.

1.4‐10  Intersection Design  DRAFT 

Exhibit 4‐4  Intersection Types 

Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 3 Elements of Design

Section 1 – Chapter 4

  Intersection Design  1.4‐11 

4.4.3 Channelized Intersections 

Channelizedintersectionsusepavementmarkingsorraisedislandstodesignatetheintendedvehiclepaths.Themostfrequentuseisforrightturns,particularlywhenaccompaniedbyanauxiliaryright‐turnlane.Atskewedintersections,channelizationislandsareoftenusedtodelineaterightturns,evenintheabsenceofauxiliaryrightturnlanes.Atintersectionslocatedonacurve,divisionalislandscanhelpdirectdriverstoandthroughtheintersection.Atlargeintersections,shortmedianislandscanbeusedeffectivelyforpedestrianrefuge.Channelizationislandsarealsousedinsupportofleft‐turnlanes,formingtheendsofthetaperapproachingtheturnbay,andoftenthenarrowdivisionalislandextendingtotheintersection.At“T”‐typeintersections,achannelizationislandcanguideoncomingtraffictotherightoftheleft‐turnlane.Channelizedintersectionsareusuallylargeand,therefore,requirelongpedestriancrosswalks.However,thechannelizationislandscaneffectivelyreducethecrosswalkdistanceinwhichpedestriansareexposedtomovingmotorvehicles.Thedesignofchannelizedintersectionsneedstoensurethattheneedsofpedestriansareconsidered,includingpedestriancurbcutrampsor“cut‐throughs”thatallowwheelchairusersthesamesafeharborasotherpedestriansonchannelizationislands.

4.4.4 Roundabouts 

Theroundaboutisachannelizedintersectionwithone‐waytrafficflowcirculatingaroundacentralisland.Alltraffic—throughaswellasturning—entersthisone‐wayflow.Althoughusuallycircularinshape,thecentralislandofaroundaboutcanbeovalorirregularlyshaped.Roundaboutscanbeappropriatedesignalternativetobothstop‐controlledandsignal‐controlledintersections,astheyhavefewerconflictpointsthantraditionalintersections(eightversus32,respectively).Atintersectionsoftwo‐lanestreets,roundaboutscanusuallyfunctionwithasinglecirculatinglane,makingitpossibletofitthemintomostsettings.Roundaboutsdifferfrom“rotaries”inthefollowingrespects:

Size—Singlelaneroundaboutshaveanoutsidediameterbetween80and140feet,whereas,rotariesaretypicallymuchlargerwithdiametersaslargeas650feet.

Speed—Thesmalldiameterofroundaboutslimitscirculatingvehiclespeedsto10to25milesperhour,whereas,circulatingspeedsatrotariesistypically30to40milesperhour.

1.4‐12  Intersection Design  DRAFT 

Capacity—Theslowercirculatingspeedsatroundaboutsallowenteringvehiclestoacceptsmallergapsinthecirculatingtrafficflow,meaningmoregapsareavailable,increasingthevolumeoftrafficprocessed.Atrotaries,vehiclesneedlargergapsinthecirculatingtrafficflowreducingthevolumeoftrafficprocessed.

Safety—Theslowerspeedsatroundaboutsnotonlyreducetheseverityofcrashes,butminimizesthetotalnumberofallcrashes,whereas,rotariestypicallyseehighnumbersofcrasheswithagreaterseverity.

Roundaboutsarealsoconsideredastraffic‐calmingdevicesinsomelocationssincealltrafficisslowedtothedesignspeedoftheone‐waycirculatingroadway.Thisisincontrastwithapplicationoftwo‐waystopcontrol,wherethemajorstreetisnotslowedbytheintersection,orall‐waystopcontrolwherealltrafficisrequiredtostop.Roundaboutscanalsobeconsideredforretrofitofexistingrotaries;however,incaseswithveryhightrafficvolumes,trafficsignalcontrolmaybemoresuitable.

4.4.5 Typical Intersection Configurations 

Mostintersectionshavethreeorfourlegs,butmulti‐legintersections(five‐andevensix‐legintersections)arenotunusual.ExamplesofintersectionconfigurationsfrequentlyencounteredbythedesignerareshowninExhibit4‐5.Ideally,streetsinthree‐legandfour‐legintersectionscrossatrightanglesornearlyso.However,skewedapproachesarearegularfeatureofintersectiondesign.Whenskewanglesarelessthan60degrees,thedesignershouldevaluateintersectionmodificationstoreducetheskew.

Section 1 – Chapter 4

  Intersection Design  1.4‐13 

Exhibit 4‐5  Intersecting Street Configuration and Nomenclature 

Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011.

4.5 Traffic Control 

Trafficcontroldevices(signals,STOP,orYIELDsignsandpavementmarkings)oftencontroltheentryofvehiclesintotheintersection.Trafficcontroldevicesmayalsoberequiredatintersectionsofimportantprivatedrivewayswithpublicstreets.Examplesofimportantdrivewaysincludealleysservingmultiplehomes,commercialalleysaccessingparking,andcommercialdriveways.Thedesignershouldnotethatguidancefortheinstallationoftrafficcontroldevicesdiscussedinthissectionisbasedonthe2009MUTCD(notadoptedatthetimeofpublishingofthisGuidebook).

1.4‐14  Intersection Design  DRAFT 

4.5.1 Traffic Control Measures 

Potentiallyconflictingflows(vehicle‐to‐vehicleorvehicle‐to‐non‐vehicle)areaninherentfeatureofintersections.Atmostintersections,therefore,trafficcontrolmeasuresarenecessarytoassigntherightofway.Typesofintersectiontrafficcontrolinclude:

Wheresufficientvisibilityisprovidedinlowvolumesituations,someintersectionsoperateeffectivelywithoutformalizedtrafficcontrol.Inthesecases,normalrightofwayrulesapply.

Yieldcontrol,withtrafficcontrolledby“YIELD”signs(sometimesaccompaniedbypavementmarkings)ontheminorstreetapproaches.Majorstreettrafficisnotcontrolled.

All‐wayyieldcontrolonroundabouts.

Two‐waystopcontrol,withtrafficcontrolledby“STOP”signorbeaconsontheminorstreetapproaches.Majorstreettrafficisnotcontrolled.Theterm“two‐waystopcontrol”canalsobeappliedto“T”intersections,eventhoughtheremaybeonlyoneapproachunderstopcontrol.STOPcontrolshouldnotbeusedforspeedreduction.

All‐waystopcontrol,withtrafficonallapproachescontrolledbySTOPsignsorSTOPbeacons.All‐waystopcontrolcanalsobeatemporarycontrolatintersectionsforwhichtrafficsignalsarewarrantedbutnotyetinstalled.

Trafficsignals,controllingtrafficonallapproaches.

Flashingwarningbeaconsonsomeorallapproaches.

Generally,thepreferredtypeoftrafficcontrolcorrelatesmostcloselywithsafetyconcernsandvolumeofmotorvehicles,bicyclesandpedestrians.Forintersectionswithlowervolumes,STOPorYIELDcontrolonthecross(minor)streetisthemostfrequentlyusedformofvehiculartrafficcontrol.

4.5.1.1 Stop and Yield Control Warrants 

PartTwooftheMUTCDshouldbeconsultedforguidanceonappropriateSTOPandYIELDsignusageandplacement.Ingeneral,STOPorYIELDsignscouldbeusedifoneormoreofthefollowingexist:

Anintersectionofalessimportantroadwithamainroadwhereapplicationofthenormalrightofwayrulewouldnotbeexpectedtoprovidereasonablecompliancewiththelaw;

Astreetenteringadesignatedthroughhighwayorstreet;and/or

Anunsignalizedintersectioninasignalizedarea.

Section 1 – Chapter 4

  Intersection Design  1.4‐15 

Inaddition,theuseofSTOPorYIELDsignsshouldbeconsideredattheintersectionoftwominorstreetsorlocalroadswheretheintersectionhasmorethanthreeapproachesandwhereoneormoreofthefollowingconditionsexist:

Thecombinedvehicular,bicycle,andpedestrianvolumeenteringtheintersectionfromallapproachesaveragesmorethan2,000unitsperday;

Theabilitytoseeconflictingtrafficonanapproachisnotsufficienttoallowaroadusertostoporyieldincompliancewiththenormalright‐of‐wayruleifsuchstoppingoryieldingisnecessary;and/or

Crashrecordsindicatethatfiveormorecrashesthatinvolvethefailuretoyieldtheright‐of‐wayattheintersectionunderthenormalright‐of‐wayrulehavebeenreportedwithina3‐yearperiod,orthatthreeormoresuchcrasheshavebeenreportedwithina2‐yearperiod.

Atintersectionswhereafullstopisnotnecessaryatalltimes,considerationshouldbegiventousinglessrestrictivemeasures,suchasYIELDsigns.YIELDsignscouldbeinstalled:

Ontheapproachestoathroughstreetorhighwaywhereconditionsaresuchthatafullstopisnotalwaysrequired.

Atthesecondcrossroadofadividedhighway,wherethemedianwidthattheintersectionis30feetorgreater.Inthiscase,aSTOPorYIELDsignmaybeinstalledattheentrancetothefirstroadwayofadividedhighway,andaYIELDsignmaybeinstalledattheentrancetothesecondroadway.

Forachannelizedturnlanethatisseparatedfromtheadjacenttravellanesbyanisland,eveniftheadjacentlanesattheintersectionarecontrolledbyahighwaytrafficcontrolsignalorbyaSTOPsign.

AtanintersectionwhereaspecialproblemexistsandwhereengineeringjudgmentindicatestheproblemtobesusceptibletocorrectionbytheuseoftheYIELDsign.

Facingtheenteringroadwayforamerge‐typemovementifengineeringjudgmentindicatesthatcontrolisneededbecauseaccelerationgeometryand/orsightdistanceisnotadequateformergingtrafficoperation. 

4.5.1.2 Multiway STOP Control 

MultiwaySTOPcontrolcanbeusefulasasafetymeasureatintersectionsifcertaintrafficconditionsexist.Safetyconcernsassociatedwithmultiwaystopsincludepedestrians,bicyclists,andallroadusersexpectingotherroaduserstostop.MultiwaySTOPcontrolisusedwherethevolumeoftrafficontheintersectionroadsinapproximatelyequal.ThefollowingcriteriashouldbeconsideredformultiwaySTOPsigninstallation.

1.4‐16  Intersection Design  DRAFT 

Wheretrafficcontrolsignalsarejustified,themultiwaySTOPisaninterim

measurethatcanbeinstalledquicklytocontroltrafficwhilearrangementsarebeingmadefortheinstallationofthetrafficcontrolsignal;

Fiveormorereportedcrashesina12‐monthperiodthataresusceptibletocorrectionbyamultiwaySTOPinstallation.Suchcrashesincluderight‐turnandleft‐turncollisionsaswellasright‐anglecollisions;

Minimumvolumes:

Thevehicularvolumeenteringtheintersectionfromthemajorstreetapproaches(totalofbothapproaches)averagesatleast300vehiclesperhourforanyeighthoursofanaverageday,and

Thecombinedvehicular,pedestrian,andbicyclevolumeenteringtheintersectionfromtheminorstreetapproaches(totalofbothapproaches)averagesatleast200unitsperhourforthesameeighthours,withanaveragedelaytominorstreetvehiculartrafficofatleast30secondspervehicleduringthehighesthour,but

Ifthe85thpercentileapproachspeedofthemajorstreettrafficexceeds40mph,theminimumvehicularvolumewarrantsare70percentoftheabovevalues.

Wherenosinglecriterionissatisfied,butwherethesecondandthirdcriteriaareallsatisfiedto80percentoftheminimumvalues.The85thpercentilespeedcriterionisexcludedfromthiscondition.

Athighercombinationsofmajorstreetandminorstreetvolume,trafficsignalsbecomethecommontrafficcontrolmeasure.Roundaboutsshouldalsobeconsideredinthesesituations.Thedecisiontousetrafficsignalsshouldfollowthe“signalwarrants”specifiedintheMUTCD.Thesewarrantsaresummarizedinthefollowingsection.

4.5.1.3 Traffic Signal Warrants 

TrafficsignalsshouldonlybeconsideredwheretheintersectionmeetswarrantsintheManualonUniformTrafficControlDevices(MUTCD).Wherewarrantedandproperlyinstalled,trafficsignalscanprovideforanorderlymovementoftraffic.Comparedtostopcontrol,signalscanincreasethetrafficcapacityoftheintersection,reducefrequencyandseverityofcrashes,particularlyright‐anglecrashes,andinterruptheavytrafficflowtopermitothermotorvehicles,pedestriansandbicyclestocrossthestreet.Unwarrantedorpoorlytimedtrafficsignalscanhavenegativeimpacts,includingexcessivedelaytovehicularandpedestriantraffic,disrespectfortrafficcontroldevices

The satisfaction of a traffic signal 

warrant or warrants shall not, in 

itself, require the installation of a 

traffic control signal.  The traffic 

signal warrant analysis provides 

guidance as to locations where 

signals would not be appropriate 

and locations where they could 

be considered further. 

Section 1 – Chapter 4

  Intersection Design  1.4‐17 

ingeneral,increased“cutthrough”trafficoninappropriateroutes,andincreasedfrequencyofcrashes.KeyfeaturesoftheMUTCDwarrantsare:

Warrant1:8‐hourvehicularvolume,metby500to600vehiclesperhouronthemajorstreet(bothdirections,two‐fourlanesrespectively)and150to200vehiclesontheminorstreet(majordirection,one‐twolanesrespectively),foranycombinationof8hoursdaily.Avariation(“interruptionofcontinuoustraffic”)warrantismetwith750to900vehicleshourlyonmajorstreet(two‐fourlanes,bothdirections),and75to100vehicleshourly(majordirection,one‐twolanes),ontheminorstreet.Thesevolumescanbereducedundercertaincircumstances(seePart4oftheMUTCDfordetails).

Warrant2:four‐hourvehicularvolume,metwhentheplottedpointsforeachofanyfourhoursrepresentingthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingvehiclesperhouronthehigher‐volumeminor‐streetapproach(onedirectiononly)allfallabovetheapplicablecurveintheMUTCD.

Warrant3:peakhour,metwhentheplottedpointsforonehourrepresentingthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingvehiclesperhouronthehigher‐volumeminor‐streetapproach(onedirectiononly)fallabovetheapplicablecurveintheMUTCD.

Warrant4:pedestrianvolume,metwhentheplottedpointsforeachofanyfourhoursofthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingpedestriansperhourcrossingthemajorstreet(totalofallcrossings)allfallabovethecurveintheMUTCDforthePedestrianFourHourWarrant;orwhentheplottedpointsforonehourofthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingpedestriansperhourcrossingthemajorstreet(totalofallcrossings)allfallabovethecurveintheMUTCDforthePedestrianPeakHourWarrant.

Warrant5:schoolcrossing,metwithaminimumof20studentscrossinginthehighestcrossinghour,andlessthanoneacceptablegapinthetrafficstreamperminuteduringthehighestcrossinghour.Engineeringjudgmentandattentiontootherremedies(suchascrossingguards,improvedsignage,andcrossingislands)arestronglyrecommended.

Warrant6:coordinatedtrafficsignalsystem,whereexistingtrafficsignalspacingdoesnotprovidethenecessarydegreeofplatooning(grouping)oftraffic,asneededtoprovideaprogressiveoperation.

Warrant7:crashexperience,metwhencrashdataindicatesaproblemremediablebytrafficsignalinstallation.

Warrant8:roadwaynetwork,metwhenthestreethasimportanceasaprincipalroadwaynetworkorisdesignatedasamajorrouteonanofficialplan.

Warrant9:intersectionnearagradecrossing,metwhenagradecrossingexistsonanapproachcontrolledbyaSTOPorYIELDsignandthetrackis

1.4‐18  Intersection Design  DRAFT 

within140feetofthestoplineoryieldlineontheapproach;andwhenduringthehighesttrafficvolumehourduringwhichrailtrafficusesthecrossing,theplottedpointrepresentingthevehiclesperhouronthemajorstreet(totalofbothapproaches)andthecorrespondingvehiclesperhourontheminor‐streetapproachthatcrossesthetrack(onedirectiononly,approachingtheintersection)fallsabovetheapplicablecurveintheMUTCD.

Aspartoftheintersectiondesignprocess,thedetailedwarrants,aspresentedintheManualonUniformTrafficControlDevices,shouldbefollowed.Evenifwarrantsaremet,asignalshouldbeinstalledonlyifitisdeterminedtobethemostappropriatetrafficcontrolbasedonthecontextoftheintersection,assignalsdonotaddcapacitytoanintersection,theyareintendedtoprovideorder.Inmanyinstances,trafficsignalinstallationwillrequiresomewidening.

4.5.1.4 Pedestrian Travel at Traffic Signals 

Trafficsignaldesignshouldencompassthefollowingprinciplesforaccommodatingpedestrians:

Ingeneral,theWALKindicationshouldbeconcurrentwiththetrafficmovingontheparallelapproach.ItshouldbenotedthatConnDOTdoesnotutilizeconcurrentpedestriansignalphasingatStateownedandmaintainedsignalizedintersections.

TimingofpedestrianintervalsshouldbeinaccordancewithMUTCDandADArequirements.

Pedestriansshouldbegiventhelongestpossiblewalktime,whilemaintainingbalancebetweenmotorvehicleflowandpedestriandelay.Inmostcases,theWALKintervalshouldincludeallofthetimeinthevehiclegreenphase,exceptfortherequiredclearanceinterval.Althoughnotpreferred,theminimumlengthfortheWALKintervalonapedestriansignalindicationis7seconds,longenoughforapedestriantostepoffthecurbandbegincrossing.Insomelimitedcircumstances,wherepedestrianvolumeissmall,walkintervalsasshortas4secondsmaybeused.

Signalsshouldbetimedtoaccommodatetheaveragewalkingspeedsofthetypeofpedestrianthatpredominantlyusestheintersection.(Thelengthoftheclearanceintervaliscalculatedbasedoncrossingtheentirestreetfromcurbramptocurbrampwithanassumedcrossingspeedof3.5feetpersecond).Inareaswhereasignificantportionofexpectedpedestriansareolderorhavedisabilities,awalkingspeedoflessthan3.5feetpersecondshouldbeconsideredindeterminingthepedestrianclearancetime.

Signalcyclesshouldbeasshortaspossible.Shortsignalcyclesreducedelay,andthereforeimprovelevelofserviceforpedestrians,bicyclistsandmotorvehiclesalike.

Section 1 – Chapter 4

  Intersection Design  1.4‐19 

Simpletwo‐phasesignalsminimizepedestrianwaitingtimeandarethereforepreferableforpedestrianservice.Insomecases,simpletwo‐phasesignalsalsoprovidethebestserviceformotorvehicletraffic.

Leadingpedestrianintervals(LPI)givepedestriansanadvanceWALKsignalbeforethemotoristsgetaconcurrentgreensignal,givingthepedestrianseveralsecondstostartinthecrosswalk.Thismakespedestriansmorevisibletomotorvehiclesandallowspedestrianstoinitiatetheircrossingwithoutconflictwithothertraffic.

Goodprogressionformotorvehiclesthroughaseriesofsignalscanbeobtainedoverawiderangeofvehiclespeeds.Inareaswithhighvolumesofpedestrians,alowbutwell‐coordinatedvehicleprogressionspeed(20‐30mph)canbeusedwithlittleornonegativeimpactonvehicularflow.

Pedestrianphasesincorporatedintoeachsignalcycle,ratherthanon‐demandthroughacallbutton,maybepreferableforsomeconditions.

Callbuttonuseshouldbelimitedtoonlythoselocationswithtraffic‐actuatedsignals(i.e.,wherethesignaldoesnotcycleintheabsenceofminorstreettraffic).

Wherecallbuttonsareused,anotificationsignshouldbeprovided.

Pedestriancallbuttonactuationshouldprovideatimelyresponse,particularlyatisolatedsignals(i.e.,notinaprogressionsequence),atmid‐blockcrossings,andduringlow‐trafficperiods(night,forexample).

Atfour‐wayintersections,curbextensionscouldbeprovidedtodecreasethepedestriancrossinglength.

Pedestriancallbuttonsandthesignalstheyactivateshouldbemaintainedingoodrepair.Thisrequiresreliableandpredictablebuttonoperation,functionalsignaldisplays,andthecorrectorientationofpedestriansignalheads.

TheMUTCDrequiresthatallpedestriansignalheadsusedatcrosswalkswherethepedestrianchangeintervalismorethan7secondsshallincludeapedestrianchangeintervalcountdowndisplayinordertoinformpedestriansofthenumberofsecondsremaininginthepedestrianchangeinterval.Thecountdownishelpfultopedestriansbyprovidingtheexactamountofcrossingtimeremaining,therebyallowingthemtomaketheirowninformedjudgmentoninitiatingacrossing,ratherthansimplyfollowingtheWALK/DON’TWALKphases.GuidelinesforthedisplayandtimingofcountdownindicatorsareprovidedintheManualonUniformTrafficControlDevices.Accessiblepedestriansignalsanddetectorsprovideinformationinnon‐visualformatssuchasaudibletones,speechmessages,and/orvibratingsurfaces.GuidelinesfortheinstallationofsuchfeaturesareprovidedintheManualonUniformTrafficControlDevices.

1.4‐20  Intersection Design  DRAFT 

Locating Pedestrian Call Buttons 

Pedestriansignalcallbuttonsareusedtoinitiateapedestriancrossingphaseattrafficsignals.Whereneeded,pedestriancallbuttonsshouldbelocatedtomeetthefollowingcriteria:

Theclosestcallbuttontoacrosswalkshouldcallthepedestriansignalforthatcrosswalk.

Anarrowindicatorshouldshowwhichcrosswalkthebuttonwillaffect.

Thecallbuttonshouldalignwiththecrosswalkandbevisibletoapedestrianfacingthecrosswalk,unlessspaceconstraintsdictateanotherbuttonplacement.

Pedestrianactuatedcallbuttonsshouldbeplacedinlocationsthatareeasytoreach,atapproximately3.5feetbutnomorethanfourfeetabovethesidewalk.

Accessible Pedestrian Signal Systems 

Atsignalizedintersections,peoplewithvisionimpairmentstypicallyrelyonthenoiseoftrafficalongsidethemasacuetobegincrossing.Theeffectivenessofthistechniqueiscompromisedbyvariousfactors,includingincreasinglyquietcars,permittedrightturnsonred,pedestrianactuatedsignalsandwidestreets.Further,lowtrafficvolumesmaymakeitdifficulttodiscernsignalphasechanges.Technologiesareavailablethatenableaudibleandvibratingsignalstobeincorporatedintopedestrianwalksignalsystems.TheManualonUniformTrafficControlDevicesoffersguidelinesontheuseofaccessiblepedestriansignals.TheFederalAccessBoard’sreviseddraftversion(2005)oftheADAAccessibilityGuidelinesforPublicRight‐of‐Wayrequirestheuseofaudiblesignalswithallpedestriansignals.

4.6 Intersection Capacity and Quality of Service 

The“capacity”ofanintersectionforanyofitsusers(motorvehicles,pedestrians,bicyclists,transitvehicles)isthemaximumrateofflowofthatusertypethatcanbeaccommodatedthroughtheintersection.Typically,capacityisdefinedforaparticularusergroupwithoutotherusergroupspresent.Thus,forexample,motorvehicularcapacityisstatedintermsofvehiclesperhour,undertheassumptionthatnootherflows(pedestrians,bicycles)aredetractingfromsuchcapacity.Multimodalcapacityistheaggregatecapacityoftheintersectionforallusersoftheintersection.Insomecases,themaximummultimodalcapacitymaybeobtainedwhilesomeindividualuserflowsareatlessthantheirindividualoptimumcapacity.Qualityofservicecanbedefinedinacoupleofdifferentways.Onemeasureofeffectivenessthatcanbeusedtounderstandthequalityoftransportationatanintersectionforagivenmodeisthecontroldelayencounteredbytheuseratthe

Section 1 – Chapter 4

  Intersection Design  1.4‐21 

intersection.Controldelay,aresultoftrafficcontroldevicesneededtoallocatethepotentiallyconflictingflowsattheintersection,reflectsthedifferencebetweentraveltimethroughtheintersectionatfreeflowversustraveltimeundertheencounteredconditionsoftrafficcontrol.Fordrivers,controldelayconsistsoftime“lost”(fromfree‐flowtime)duetodeceleration,waitingatsignals,STOPorYIELDsigns,waitingandadvancingthroughaqueueoftraffic,andacceleratingbacktofree‐flowspeed.Forpedestriansandbicyclists,decelerationandaccelerationtimesareinsignificant,andcontroldelayislargelythetimespentwaitingatsignals,STOP,orYIELDsigns.Anotherwayistodefinethequalityofserviceistodeterminethe“Levelofservice”whichisdefinedbytheHighwayCapacityManual,foreachtypeofintersectionuser.Foreachuser,levelofserviceiscorrelatedtodifferentfactorsbecauseeachmodehasuniqueissuesthatimpactthequalityofitsusers.Forautomobileslevelofserviceisgovernedbycontroldelay.Forbicyclesandpedestriansthelevelofserviceisdeterminedbyseveralfactorsthatdescribetheconditionsofthebicycleandpedestriansfacilities,theimpactsofmotorvehicletrafficonthesemodes,andthecharacteristicsofbicycleandpedestriantraffic.Eachoftheseanalysesisdescribedfurtherinsection4.6.2anddetaileddiscussionsoftheanalysesmethodologyarepresentedintheHighwayCapacityManual.Levelsofserviceanddelayaresomewhatcorrelatedtocapacityinthatlevelsofservicedeclinedascapacityisapproached.

4.6.1 Capacity 

“Capacity”(themaximumpossibleflow)differsimportantlyfrom“servicevolumes”(flowsassociatedwiththequalityofflow,typicallystatedas“LevelofService”or“LOS”).Thesetwotermsarediscussed,forpedestrian,bicycle,andmotorvehicleflow,inthefollowingsections.

4.6.1.1 Pedestrian Flow Capacity 

Unlikemotorvehiclesandbicycles,pedestrianfacilities(sidewalksandcrosswalks)donothaveadefaultcapacityforanalysispurposes.Onemeasurethatcanprovideinsightintothequalityandconditionofpedestrianfacilitiesisthepedestrianspacemeasuredinsquarefeetperpedestrian(ft2/p).TheHighwayCapacityManualsuggeststhatoncepedestrianspacefallsbelow15ft2/p,pedestrianspeedsbegintofallandtheabilityforpedestrianstomoveontheirdesiredpathbecomesrestricted.MethodsforcalculatingpedestrianspaceforsidewalksandcrosswalksarepresentedintheHighwayCapacityManual.Atsignalizedintersections,eachapproachwillaccommodatepedestriancrossingsfor10to20percentofthetime,reflectingtheintervalsthatpedestrianscanbegintocrosswithassuranceofcompletingtheircrossingwhiletrafficisstoppedfortheirapproach.Atunsignalizedlocations,thetimeavailableforpedestrianflowisdictatedbymotorvehiclevolumeandlengthofthecrossing.Thesetwofactors,whichgovernthenumber

1.4‐22  Intersection Design  DRAFT 

of“gaps”inthemotorvehiclestreamavailableforsafepedestriancrossing,mustbemeasuredon‐sitetoestablishthepedestrianflowcapacityofanunsignalizedintersection.ThesignalwarrantsintheMUTCDofferguidanceoncombinationsofmotorvehicleandpedestrianvolumesthatmayjustifyasignal,andthereforereflectthepedestriancapacityofunsignalizedintersections.

4.6.1.2 Bicycle Flow Capacity 

Abicyclelane(4‐6feetinwidth)can,withuninterruptedflow,carryavolumeofaround2,000bicyclesperhourinonedirection.Atsignalizedintersections,bicyclelanesreceivethesamegreensignaltimeasmotorvehicles,typically20‐35percentofthetotaltime.Thehourlycapacityofabicyclelane,atasignalizedintersection,istherefore400to700bicyclesperhour.Atsignalizedintersectionswithoutbicyclelanes,bicyclesarepartoftheapproachingvehiculartrafficstream.Thecombinedvehicularcapacity(motorvehiclesaswellasbicycles)isestablishedasdefinedinSection4.6.1.3.Atunsignalizedintersectionswithbicyclelanesonthemajorstreet,thebicycleflowcapacityistheuninterruptedflowvolumeof2,000bicyclesperhour.FortheSTOP‐controlled(minorstreet)approach,theflowcapacityforbicycles,whetherinbicyclelanesornot,isgovernedbythespeed,motorvehiclevolume,andnumberoflanesofmajorstreettraffic.Thesefactorsrequiremeasurementon‐sitetoestablishthebicycleflowcapacityofSTOPcontrolledapproaches.

4.6.1.3 Motor Vehicle Capacity 

Atunsignalizedintersections,motorizedvehiclecapacityisgovernedbytheabilityofmotorvehicles(ontheminorstreet)underSTOPcontrolorYIELDcontroltoenterorcrossthestreamofmovingmotorvehiclesonthemajorstreet.Thiscapacityisreachedasthenumberofmotorvehiclesonbothmajorstreetapproaches,plusthenumberonthebusiestminorstreetapproachtotals1,200motorvehiclesinasinglepeakhour,ortotals900motorvehicleshourlyoveracontinuous4‐hourperiod.Atthesepoints,enteringorcrossingthemajorstreetfromtheSTOPcontrolledorYIELDcontrolledminorstreetbecomesdifficultorimpossible.FurtherincreasesinintersectioncapacityatSTOPcontrolledorYIELDcontrolledintersectionscanbegainedbyreplacingstoporyieldcontrolwithsignalcontroloraroundabout.Trafficsignalwarrants1,2,and3discussedpreviouslyprovidedetailedguidanceonspecificcombinationsofmajorandminorstreetvolumesassociatedwiththetransitionfromSTOPcontrolorYIELDcontroltotrafficsignalcontrol.Atsignalizedintersections,motorvehiclecapacityisgovernedbythenumberoflanesapproachingtheintersection,thenumberofreceivinglanes,andtheamountofgreensignaltimegiventotheapproach.Thetotalgreentimeavailabledecreasesasmoresignalphasesandthereforemoreredandyellow“losttime”areincludedinthesignalsequences.

Section 1 – Chapter 4

  Intersection Design  1.4‐23 

Asimplebutreliablemeasureofasignalizedintersection’scapacityisits“criticallanevolume”capacity(CLVcapacity),definedasthemaximumsumofconflictingmovementsthatcanbemovedthroughtheintersectionatagivenlevelofserviceasshowninExhibit4‐6.SignalizedintersectioncapacityisnearedastheCLVreaches1,500hourlymotorvehiclesforintersectionswithtwosignalphases(theminimumpossible)or1,375to1,425forintersectionswithmorethantwosignalphases.ThissimpleCLVmeasurecanbeusedforinitialassessmentofanintersection’scapacity,andalsoasareasonablenesscheckonproceduresintheHighwayCapacityManual.TherelationshipbetweenCLVcapacityandlevelofservice(describedinmoredetailinSection4.6.2)issummarizedinExhibit4‐7.Atroundabouts,motorvehiclecapacityisgovernedbytheabilityofenteringtraffictoenterthestreamofmotorvehiclesinthecirculatingroadway.Thiscapacityisnearedasthevehicularvolumeinthecirculatingroadway(singlelane)approaches1,800motorvehicleshourly.Atthispoint,enteringthestreamofcirculatingmotorvehicleswithintheroundaboutbecomesdifficultorimpossible.Atthisthreshold,additionallanesononeormoreapproachesandasecondcirculatinglaneshouldbeconsidered.

1.4‐24  Intersection Design  DRAFT 

Exhibit 4‐6  Computing Critical Lane Volume 

Notes: Critical lane volume (CLV) is the sum of main street CLV plus the cross street CLV. The main street CLV is the greater of either: (A) eastbound through and right per lane + westbound left, or (B)

westbound through and right per lane + eastbound left. Similarly, the cross street CLV is the greater of either: (A) northbound through and right per lane + southbound left, or (B)

southbound through and right per lane + northbound left. Total intersection CLV = main street CLV + cross street CLV = 390 + 480 = 870. Source: Transportation Research Board, Circular Number 212, TRB 1980.

Section 1 – Chapter 4

  Intersection Design  1.4‐25 

Exhibit 4‐7  Traffic Flow Related to Critical Lane Volumes1 

Flow Condition

Corresponding Highway Capacity

Manual Level of Service

Corresponding Critical Lane Volume (CLV) Vehicles Per Hour

Signal Phases

2 Phase 3 Phase 4 Phase

Free Flowing (no loaded cycles)

A, B, C Less than 1200 Less than 1140 Less than 1100

Prevailing Level of Peak-Hour Congestion in Towns and Urban Areas

D 1200 – 1350 1140-1275 1100-1225

Approaching Capacity E, F 1350 – 1500 1275 - 1425 1225 – 1375

Source: CLV/LOS relationship from Table 6, Transportation Research Circular Number 212, Transportation Research Board, 1980. 1 Based on a peak hour factor of 0.9, limited heavy vehicles, limited turning volumes, and somewhat flat grades.

4.6.1.4 Multimodal Capacity 

Undersomecombinationsofusersandintersectionconfiguration,achievingadesiredflowforoneusergroupdiminishesthecapacityforanothergroup.Typicalsituationsinclude:

Signalswithnumerousphases(5to6ormore)wherethe“walk”phaseisconstrainedbythegreentimeneededforvehiclesonotherapproachespermittedduringthe“walk”phase.

Wherebusesandothertransitvehiclesstopforpassengerloading/unloadinginalaneoftrafficapproachingordepartinganintersection.

Whereexceptionallylargevolumesofpedestrianscrossinganapproachrequirea“walk”phasetimegreaterthanthegreensignaltimeneededformotorvehiclespermittedtomoveduringthesamephase.

Insituationslikethese,intersectiondesignshouldflowfromacarefullyconsideredbalancingoftheneedsofthevarioususergroups.However,whendeterminingthisbalance,thedesigneralsoneedstoconsiderthatexcessivemotorvehicledelayscanleadtoundesirablecut‐throughtrafficpatternsonstreetsnotintendedforhighthroughvolumes.Alternatively,byprovidingmoreefficientmultimodalopportunities,themotorvehicledemandmaybereducedthroughusermodalchoice.

4.6.2 Level of Service (LOS) 

Levelofserviceisonemeasureofusersatisfactionwithanintersection.Exhibit4‐8presentsthemeasuresusedtodeterminelevel‐or‐servicebymode.Formotorvehicles,levelofserviceislinkedtoaveragedelaywhileforbicyclesandpedestrianstheLOSisderivedfromanLOSscorewhichincorporatesseveralfactorsthatimpacttravelforthesemodes.

1.4‐26  Intersection Design  DRAFT 

Exhibit 4‐8  Measures to Determine Level of Service by Mode 

Intersection Type Mode

Pedestrian Bicycle Automobile

Signalized LOS score LOS score Delay

Unsignalized Delay N/A Delay and v/c ratio

Roundabout Delay N/A Delay and v/c ratio Source: Highway Capacity Manual, 2010

4.6.2.1 Pedestrian Level of Service 

PedestrianlevelofserviceisdefinedbythepedestrianLOSscoreordelay,dependingonintersectiontype.Exhibit4‐8summarizespedestrianlevelofserviceforintersections.

Exhibit 4‐8  Pedestrian Level‐of‐Service (LOS) Criteria at Intersections 

Intersection Type

LOS Signalized Intersection

LOS score Unsignalized Intersection

Delay (s) Roundabout

Delay (s)

A ≤ 2.00 0 – 5 0 – 5

B > 2.00 – 2.75 5 – 10 5 – 10

C > 2.75 – 3.50 10 – 20 10 – 20

D > 3.50 – 4.25 20 – 30 20 – 30

E > 4.25 – 5.00 30 – 45 30 – 45

F > 5.00 >45 >45

Source: Highway Capacity Manual, 2010

Forsignalizedintersections,thepedestrianLOSscoreiscalculatedbasedonseveralfactors.Thecrosswalkadjustmentfactorrepresentsthedeteriorationinpedestriantravelqualitycausedbyconflictingmotorvehicleandpedestrianpaths.Themotorizedvehiclevolumeadjustmentfactorrepresentsthevolumesofvehiclesthatwillconflictwiththepedestriancrosswalk.Themotorizedvehiclespeedadjustmentfactorrepresentstheimpactofvehiclespeedonpedestrian’sabilitytocrossanintersection.Lastly,thepedestriandelayfactorturnsthepedestriandelaycausedbyatrafficsignalintoafactorintheLOSscore.AtunsignalizedintersectionsdelayistheonlyfactorthatdeterminestheLOSforpedestrians.Thedelayincrossingthemajorstreet(i.e.,approachesnotcontrolledbySTOPcontrol)isthetimeneededforpedestrianstoreceiveagapintrafficadequatetocrosssafely.Gapsare,inturn,relatedtothevolumeoftrafficandthelikelihoodofdriver’syieldingtherightofwaytoapedestrianinthecrosswalk.PedestrianscrossingSTOPcontrolledorYIELDcontrolledapproachesdonothavetowaitforagapintraffic,butwaitforthefirstvehicleinlinetoyieldrightofway.PedestriancrossingsacrossSTOPcontrolledorYIELDcontrolledapproachesarelikelytohaveasignificantlybetterlevelofservicethancrossingsattheuncontrolledapproaches.

Section 1 – Chapter 4

  Intersection Design  1.4‐27 

Atroundabouts,pedestriansmaywalkfurtherthanatasignalizedintersectionduetothediameterofthecirculatingroadway.However,pedestrianscrossonlyasinglelaneoftrafficatatime,takingrefugeinthesplitterisland.Actualdelayislikelytobecomparableorlessthanatanormallysituatedcrosswalk.PedestrianLOSatroundaboutsiscalculatedusingthesamemethodasforunsignalizedintersections.

4.6.2.2 Bicycle Level of Service 

Unlikeautomobiles,bicyclistsintheirlane(orshoulder)“bypass”stoppedmotorvehicles,andthereforeseldomexperiencedelayduetoqueuing.Delayduetoqueuingofbicyclesisafactoronlywithextraordinaryvolumes.Therefore,LOSforbicyclesisdeterminedbyanLOSscoremuchlikethepedestrianLOSatsignalizedintersections.LevelofserviceforbicyclesatsignalizedintersectionsissummarizedinExhibit4‐9.ThefactorsthatcontributetothebicycleLOSscorearethecross‐sectionadjustmentfactorandthemotorvehicleadjustmentfactor.HavingbicyclelanesandwideshoulderswillimprovetheLOSscorewhilelargevolumesofvehiclesorpoorlymanagedvehicleswillworsenthescore.

Exhibit 4‐9  Bicycle Level‐of‐Service (LOS) Criteria at Signalized Intersections 

Level of Service LOS Score

A ≤ 2.00

B > 2.00 – 2.75

C > 2.75 – 3.50

D > 3.50 – 4.25

E > 4.25 – 5.00

F > 5.00 Source: Highway Capacity Manual, 2010

Atunsignalizedlocations,bicyclesonthemajorstreetarenotlikelytobedelayedbecausetheyhavepriorityoverminorstreetvehicles.BicyclistscrossingorenteringthemajorstreetfromaSTOPcontrolledminorstreetaredelayedbytheamountoftimerequiredtofindanacceptablegap.Fieldmeasurementofthistime,duringpeakaswellasoff‐peakperiods,isthepreferredmethodofestablishingthisdelay.Atroundabouts,bicyclesgenerallyexperiencethesamedelaysasmotorvehiclesasthey“takethelane”inapproachingthecirculatingroadway.Currently,thereisnotaHighwayCapacityManualrecommendedmethodforanalyzingbicycleLOSatunsignalizedintersectionsorroundabouts.

1.4‐28  Intersection Design  DRAFT 

4.6.2.3 Motor Vehicle Level of Service (LOS) 

Motorvehiclelevelofservice(LOS)atanintersectionisdefinedbytheHighwayCapacityManualintermsofdelayexperiencedbyamotorvehicletravelingthroughtheintersectionduringthebusiest(peak)15minutesoftrafficoftheday.Typically,delayisaveragedoverallapproacheswithtrafficcontrols(STOP,YIELD,orsignal).Itcanalsobecomputedseparatelyforeachapproachoreachlanegroup(adjacentlaneswithatleastonemovementincommon;forexampleonelanewiththroughmovementadjacenttoalanewiththrough/right‐turnmovement).Exhibit4‐10providesmotorvehicularlevel‐of‐servicecriteriaatintersections.Forunsignalizedintersectionsandroundaboutsitisimportanttonotethatifthefacilityisoperatingatavolume‐to‐capacityratioexceeding1.0,regardlessofcalculateddelay,thefacilityisautomaticallyassignedanLOSF.Also,althoughthecriteriaforunsignalizedintersectionandroundaboutarethesamethemethodologyfordeterminingdelayisdifferentforeachfacility.

Exhibit 4‐10  Motor Vehicular Level of Service (LOS) Criteria at Intersections 

Intersection Type

LOS Measure Signalized Intersection

Delay1 (s)

Unsignalized Intersection2

Delay (s)

Roundabout2

Delay (s)

A Less than 10.0 Less than 10.0 Less than 10.0

B 10.1 to 20.0 10.1 to 15 10.1 to 15

C 20.1 to 35.0 15.1 to 25 15.1 to 25

D 35.1 to 55.0 25.1 to 35 25.1 to 35

E 55.1 to 80.0 35.1 to 50 35.1 to 50

F Greater than 80.0 Greater than 50.0 Greater than 50.0

Source: Highway Capacity Manual, (HCM 2010) Transportation Research Board, 2010 1 Delay is “control delay” as defined in HCM 2010, and includes time for slowing, waiting in queues at the intersections,

and accelerating back to free-flow speed. 2 If the v/c ratio of the intersection being analyzed exceeds 1.0 the LOS is automatically F regardless of delay.

Improving Vehicular Level of Service at Intersections 

Whenattemptingtoimprovethemotorvehicularlevel‐of‐serviceatintersections,thedesignershouldworktoensurethatthemeasurestoimprovemotorvehicularlevelofservicedonothaveadisproportionatelynegativeimpactonotherintersectionusers.Thereareseveraltechniquescommonlyusedtoachievethisobjectiveasdescribedinthefollowingparagraphs.Changingthetypeoftrafficcontrol(forexample,transitioningfromSTOPcontroltosignalizationortoaroundabout)mayaddmotorvehicularcapacityatintersections.Atintersectionsalreadysignalized,morecapacitymaybegainedfromreplacingfixed‐timesignalcontrolwithmotorvehicle,bicycleandpedestrian‐actuatedcontrol.Auxiliaryleft‐turnandright‐turnlanes(seeSection4.4.2)increaseintersectioncapacitybyremovingslowingorstoppedvehiclesfromlanesotherwiseusablebythroughtraffic.Auxiliarythroughlanes(seeSection4.4.2)canbeappropriateatisolatedsignalizedintersectionsand

Section 1 – Chapter 4

  Intersection Design  1.4‐29 

increaseintersectioncapacity.However,thelengthoftheauxiliarylanesforthereceivinglegwilldeterminetheabilityofthisextrathroughtraffictomerge.Ifauxiliarylanesaretooshort,theymaycongesttheintersectionandblocktheminorstreettraffic,andfailtoreducedelay.Thedesignershouldalsonotethataddingauxiliarylanesincreasesthecrossingdistanceforpedestrians.ThedesignershouldensurethatthelevelofserviceincreasesprovidedformotorvehiclesdonotresultinlargedegradationsinLOSforotherusers.Wherewideningtoprovideauxiliarylanesisplanned,thedesignershouldconsidercrossingislandsandotherfeaturestoensuretheabilityforpedestrianstocross.Atroundabouts,capacitycanbeincreasedbyanadditionalapproachlaneandacorrespondingsectionofadditionalcirculatinglane.Addingparallellinksofstreetnetworkmayreducetrafficvolumesatanintersection,therebyeliminatingorpostponingtheneedtoincreaseitscapacity.

4.6.2.4 Multimodal Level of Service 

Asdescribedthroughoutthissection,thedesignershouldstrivetoachievethehighestlevelofserviceforallintersectionusers,giventhecontextanddemandsencountered.TheintersectionlevelofservicecommonlyfoundinvariousareatypesisshowninExhibit4‐11.Thedesignerneedstounderstandthepotentialimpactthatintersectiongeometricsandtrafficcontrolwillhaveonlevelofserviceforallmodes.Generally,thedesignershouldtrytoimproveormaintainexistinglevelsofservice.Inmostinstances,thedesignershouldnotproposeadesignthatprovidesalevel‐of‐serviceimprovementforoneusergroupattheexpenseofanother.

Exhibit 4‐11  Common Intersection Level‐of‐Service Ranges by User Group and Area Type 

Level-of-Service Ranges Pedestrian Bicycle Motor Vehicle

Rural Natural A-B A-C A-C Rural Village A-C A-D A-E(1) Rural Developed A-C A-C A-C Suburban High Density B-E C-E C-E Suburban Village/Town Center A-D C-E C-F(1) Suburban Low Density A-C A-C A-D Urban Park A-C A-D B-E Urban Residential A-C B-D C-E Urban Central Business District A-D B-E D-F(1) 1 In these instances, queuing at intersections becomes critical in that there should not be impacts that extend to adjacent

intersections.

1.4‐30  Intersection Design  DRAFT 

4.7 Geometric Design Elements 

Thefollowingsectionsdescribemanyofthedetaileddesignelementsassociatedwithintersectionsincludingintersectionalignment,pavementcornerradii,auxiliarylanes,channelizationislands,roundabouts,medianopenings,pedestriancurbcutrampsandcrosswalks,bicyclelanetreatments,andbusstops.

4.7.1 Intersection Alignment 

Intersectionalignmentguidelinescontrolthecenterlinesandgradesofboththemajorandminorstreets,inturnestablishingthelocationofallotherintersectionelements(forexample,edgeofpavement,pavementelevation,andcurbelevation).

4.7.1.1 Horizontal Alignment 

Ideally,streetsshouldintersectasclosetorightanglesaspractical.Skewedintersectionscanreducevisibilityofapproachingmotorvehiclesandbicycles,requirehigherdegreesoftrafficcontrol,requiremorepavementtofacilitateturningvehicles,andrequiregreatercrossingdistancesforpedestrians.GuidelinesforthemaximumcurvatureatintersectionsaregiveninExhibit4‐12.Curvaturethroughanintersectionaffectsthesightdistanceforapproachingmotorists,andmayrequireadditionaltrafficcontroldevices(warningsigns,stopsigns,signals,pavementmarkingsorroundabouts).Onhigher‐speedroads,superelevationoncurvesmayinclinethecrossslopeoftheintersectioninamanneruncomfortabletomotorists,orinconflictwithintersectionverticalalignmentguidelinesdescribedbelow.Theminimumtangentatcross‐streetapproach(TA)showninExhibit4‐12helpstoassurenecessarysightdistanceattheintersection,andtosimplifythetaskofdrivingformotoristsapproachingtheintersection.Often,insteepterrain,apermissiblegradecannotbeachievedwiththehorizontalalignmentguidelines.Typically,thisdesignchallengeisresolvedbyadheringtoverticalalignmentcriteria,whileincorporatingthenecessaryflexibilityinthehorizontalguidelines.

Section 1 – Chapter 4

  Intersection Design  1.4‐31 

Exhibit 4‐12  Horizontal Alignment Guidelines at Intersections 

Design Speed (MPH)

Minimum Angle of Intersection (AI, degrees) Minimum Curve

Radius, Main Street (RM, feet)

Minimum Tangent Cross

Street Approach (TA, feet)

Arterial Major Street

Collector Major Street

Local Major Street

15 60 60 60 45 30 20 60 60 60 85 30 25 60 60 60 155 30 30 60 60 60 250 30 35 60 60 60 365 45 40 60 60 60 500 45 45 65 60 60 660 45 50 65 65 60 835 60 55 65 65 65 1065 60 60 70 65 65 1340 60

Source: MassDOT

4.7.1.2 Vertical Alignment 

Themajorstreetandminorstreetprofileinfluencetheverticalalignmentofanintersection.

Major Street Profile 

Theintersectionapproachgradeintheuphilldirection,asshowninExhibit4‐13,affectstheaccelerationofmotorvehiclesandbicyclesfromastoppedcondition,andthereforecanhaveanimpactonvehiculardelayattheintersection.Theintersectionapproachgradeinthedownhilldirectionaffectsthestoppingdistanceofapproachingmotorvehiclesandbicycles.

1.4‐32  Intersection Design  DRAFT 

Theintersectiongradeistheslopeofthepavementwithintheintersectionitself.Excessiveintersectiongradecancausetallvehicles(trucks,buses)totipwhileturning.Intersectiongradecanalsohaveanimpactonaccessibilityforpedestrianswithdisabilities,bycreatingagradeoncrosswalks.

Exhibit 4‐13  Vertical Alignment Guidelines 

Source: MassDOT

Minor Street Profile 

Theprofileoftheminorstreet,asshowninExhibit4‐14,issubjecttothesameverticalalignmentcriteriaasthemajorstreet;however,severalinherentfeaturesofaminorstreet,particularlyitslowerlevelofusage,willmostlikelypermitalowerdesignspeedfortheminorstreetcomparedtothemajorstreet.WheretheminorstreetisunderSTOPorYIELDcontrol(Exhibit4‐14,PartA),thecrownofthemajorstreetistypicallycarriedthroughtheintersection.Meetingthismajorstreet

Section 1 – Chapter 4

  Intersection Design  1.4‐33 

cross‐sectioncanresultinminorstreetgradesneartheintersectionthataresteeperthanthatwhichwouldoccurwiththemajorstreetcrownremoved.Atintersectionswherethemajorstreetretainsthecrownthroughtheintersection,theminorstreetcrownisgraduallyreduced,typicallystartingatthebeginningoftheapproachgrade,andcompletedslightlyoutsidetheintersection.Atintersectionswithsignalcontrol,itiscustomarytoremovethecrownfromboththemajorstreetandtheminorstreet.Thisremovalofthecrownisadvisableforthecomfortandsafetyofmotorvehicledriversandbicyclistsproceeding,oneitherstreet,atthedesignspeedthroughagreensignalindication.Atintersectionswithall‐waySTOPcontrol,itmaybedesirabletoremovethecrownfrombothintersectingstreets,toemphasizethatallapproachesareequalintermsoftheirtrafficcontrol.Eliminatingthecrownonthemajorstreetcan,undermanycircumstances,reducetheamountofmodificationthatmustbedonetotheminorstreetprofile(Exhibit4‐14PartB).Themajorstreetcrossslopecanbeinclinedinthesamedirectionattheminorstreetprofile,therebypermittingapproachgradesontheminorstreettobeaccommodatedwithminimalalterationtotheoriginalminorstreetprofile.Wherebothmajorstreetandminorstreetcrownsareeliminated,theirremovalisaccomplishedgradually,typicallyoverthelengthoftheapproachgrade.Whethercrownedornot,pavementgradeswithintheintersectionshouldnotexceedthevaluesgiveninExhibit4‐13.Inadditiontomeetingtheverticalprofileguidelinesasstatedabove,intersectionapproachesonbothmainandminorstreetsaresubjecttotheintersectionsighttrianglerequirements(seeChapter2).Undersomecircumstances,thesesighttrianglerequirementsmaydictateapproachgradesorlengthofapproachgradesdifferingfromthoseindicatedintheverticalalignmentguidelinesabove.

1.4‐34  Intersection Design  DRAFT 

Exhibit 4‐14  Pavement Cross‐slope at Intersections 

Source: Transportation Association of Canada

A. Major Street Retains Crown (Stop or Yield control on cross street)

B. Major Street Crown Removed: Signal Control

major street profile

minor street gradeadjusted to reduceapproach grade

minor street crownflattened at approach

to intersection

minor street gradeadjusted to reduce

approach grade

major street crowncarried throughintersection

major streetpavement

major streetpavement

minor streetapproach grade(see Exhibit 6-13for minimum length)

original minor street profile

minor street profile

minor street gradeadjusted to reduceapproach grade

minor streetapproach grade(see Exhibit 6-13for minimum length)

original minor street profile

minor street

major street

minor street crownflattened at approach

to intersection

minor street crowneliminated throughintersection

minor street

minor street

Section 1 – Chapter 4

  Intersection Design  1.4‐35 

4.7.2 Pavement Corner Radius 

Thepavementcornerradius—thecurveconnectingtheedgesofpavementoftheintersectingstreets—isdefinedbyeitherthecurbor,wherethereisnocurb,bytheedgeofpavement.Thepavementcornerradiusisakeyfactorinthemultimodalperformanceoftheintersection.Thepavementcornerradiusaffectsthepedestriancrossingdistance,thespeedandtravelpathofturningvehicles,andtheappearanceoftheintersection.Excessivelylargepavementcornerradiiresultinsignificantdrawbacksintheoperationofthestreetsincepedestriancrossingdistanceincreaseswithpavementcornerradius.Further,thespeedofturningmotorvehiclesmakingrightturnsishigheratcornerswithlargerpavementcornerradii.Thecompoundedimpactofthesetwomeasures—longerexposureofpedestrianstohigher‐speedturningvehicles—yieldsasignificantdeteriorationinsafetyandqualityofservicetobothpedestriansandbicyclists.Theunderlyingdesigncontrolinestablishingpavementcornerradiiistheneedtohavethedesignvehicleturnwithinthepermitteddegreesofencroachmentintoadjacentoropposinglanes.Exhibit4‐15illustratesdegreesofencroachmentoftenconsideredacceptablebasedontheintersectingroadwaytypes.Thesedegreesofencroachmentvarysignificantlyaccordingtoroadwaytype,andbalancetheoperationalimpactstoturningvehiclesagainstthesafetyofallotherusersofthestreet.AlthoughtheExhibitprovidesastartingpointforplanninganddesign,thedesignermustconfirmtheacceptabledegreeofencroachmentusingvehicleturningtemplatespresentedearlierinthischapterandinAASHTO’sAPolicyontheGeometricDesignofHighwaysandStreets.ForStateroadways,cornerradiishouldbeconsistentwiththeConnecticutDepartmentofTransportation’sHighwayDesignManual.Atthegreatmajorityofallintersections,whethercurbedorotherwise,thepavementcornerdesignisdictatedbytheright‐turnmovement.Leftturnsareseldomacriticalfactorincornerdesign,exceptatintersectionsofone‐waystreets,inwhichcasetheircornerdesignissimilartothatforrightturnsatintersectionsoftwo‐waystreets.ThemethodforpavementcornerdesigncanvaryasillustratedinExhibit4‐16anddescribedbelow.

Simplecurbradius:Atthevastmajorityofsettings,asimpleradius(curborpavementedge)isthepreferreddesignforthepavementcorner.Thesimpleradiuscontrolsmotorvehiclespeeds,usuallyminimizescrosswalkdistance,generallymatchestheexistingnearbyintersectiondesignsandiseasilydesignedandconstructed.

Compoundcurvesortaper/curvecombinations:Whereencroachmentbylargermotorvehiclesmustbeavoided,whereturningspeedshigherthanminimumaredesirable,orwhereangleofturnisgreaterthan90degrees,compoundcurvescandefineacurb/pavementedgecloselyfittedtotheouter(rear‐wheel)vehicletrack.Combinationsoftaperswithasinglecurveareasimple,andgenerallyacceptable,approximationtocompoundcurves.

1.4‐36  Intersection Design  DRAFT 

Turningroadways:Aseparateright‐turnroadway,usuallydelineatedbychannelizationislandsandauxiliarylanes,maybeappropriatewhereright‐turnvolumesarelarge,whereencroachmentbyanymotorvehicletypeisunacceptable,wherehigherspeedturnsaredesired,orwhereangleofturniswellabove90degrees.

4.7.2.1 Simple Curb Radius 

Pavementcornerdesignatsimpleintersectionsiscontrolledbythefollowingfactors:

Theturningpathofthedesignmotorvehicle.DesignmotorvehiclesappropriateforthevariousroadwaytypesaresummarizedinSection4.3.3ofthischapter.

Theextent(ifany)ofencroachment,intoadjacentoropposingtrafficlanes,permittedbythedesignmotorvehicledeterminedfromExhibit4‐15.

The“effective”pavementwidthonapproachanddeparturelegsisshowninExhibit4‐17.Thisisthepavementwidthusable,bythedesignmotorvehicle,underthepermitteddegreeofencroachment.Ataminimum,effectivepavementwidthisalwaystheright‐handlaneandthereforeusuallyatleast11‐12feet,onboththeapproachanddeparturelegs.Whereon‐streetparkingispresent,theparkinglane(typically7‐8feet)isaddedtotheeffectivewidthonthoselegs(approach,departureorboth)withon‐streetparking.Typically,legswithon‐streetparkinghaveaneffectivepavementwidthofaround20feet.Theeffectivewidthmayincludeencroachmentintoadjacentoroppositelanesoftraffic,wherepermitted.Amaximumof10feetofeffectivewidth(i.e.,asinglelaneoftraffic)maybeassumedforsuchencroachment.

Section 1 – Chapter 4

  Intersection Design  1.4‐37 

Exhibit 4‐15  Typical Encroachment by Design Vehicle 

To (Departure Street)

For Tractor/Trailer (WB 50) For Single-Unit Truck (SU) For Passenger Car (P)

F

rom

(App

roac

h St

reet

)

Arterial Collector Local Arterial Collector Local Arterial Collector Local

Arterial (Art)

A B C A B C A A A

Collector (Col)

B B C B B C A A A

Local (Loc)

B D D C C D A B B

A, B, C, D defined in above diagrams. Note: Cases C and D are generally not desirable at signal controlled intersections because traffic on stopped street has

nowhere to go. Source: Adapted from ITE Arterial Street Design Guidelines.

1.4‐38  Intersection Design  DRAFT 

Exhibit 4‐16  Methods for Pavement Corner Design 

Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

Exhibit 4‐17  Effective Pavement Widths 

Note: The letters A, B, C, and D refer to the typical encroachment conditions illustrated in Exhibit 4-15. Source: MassDOT

Section 1 – Chapter 4

  Intersection Design  1.4‐39 

Exhibit4‐18summarizesthesimplecurbradiusneededforvariousdesignmotorvehicles,reflectingtheextentofencroachmentandeffectivepavementwidth.Generalguidelinescanbeconcludedforright‐angle(90degree)intersections:

A15‐footsimplecurbradiusisappropriateforalmostallright‐angle(90degree)turnsonlocalstreets.Thisradiuspermitspassengercarstoturnwithnoencroachmentandaccommodatesthesingleunit(SU)truckwithacceptabledegreesofencroachment.Theoccasionaltractor/trailertruck(WB‐50)canalsonegotiatethe15‐footcornerradiuswithinitsacceptabledegreeofencroachment.

Wherethemajorstreetisacollectorstreet,a20‐30footradiusislikelytobeadequate.Whereparkingispresent,yieldinganeffectivewidthof20feet,thetypicaldesignmotorvehiclefortheintersection(theSUtruck)canturnwithlessthana20footcornerradius,withoutencroachment.Onsinglelaneapproachesanddepartures,withnoon‐streetparking,theSUvehiclecanbeaccommodatedwitha25‐footradiusandan8‐footencroachment(i.e.,a20footeffectivewidth)onthedeparture.Atlocationswherenoencroachmentcanbetolerated,aradiusof40feetwillpermittheSUtrucktoapproachanddepartwithinasinglelane.

ForarterialstreetswheretheWB‐50truckisthedesignvehicle,a35‐footradiusisadequateundermostcircumstancesofapproachanddepartureconditions.However,withasingleapproachanddeparturelane,andwithnoencroachmenttolerated,aradiusashighas75feetisrequired.Inthissituation,aturningroadwaywithchannelizationislandmaybeapreferablesolution.

OnStateroadways,cornerradiidesignshouldbeconsistentwiththeCTDepartmentofTransportation’sHighwayDesignManual.Atskewedintersections(turnanglegreaterthan90degrees),thesimpleradiusrequiredfortheSUandWB‐50vehicleissignificantlylargerthanthatneededfor90degreeintersections.Curve/tapercombinationsorturningroadwaysmaybeappropriateinthesesituations.

1.4‐40  Intersection Design  DRAFT 

Exhibit 4‐18  Simple Radius for Corner Design (Feet) 

Turn Angle and Effective Width on Approach Leg (feet)

Effective Width on Departure Leg (Feet)

Passenger Car (P)

Single-unit Truck (SU)

Tractor-Trailer (WB-50)

12 20 12 20 24 12 20 24

90O Turn Angle 12 Feet 10 5 40 25 10 75 35 30 20 Feet 5 5(a) 30 10 5 70 30 20

24 Feet (b) (b) 25 5 5(a) 70 25 15

120O Turn Angle

12 Feet 25 10 60 35 25 105 65 50

20 Feet 10 5(a) 50 25 20 95 50 40

24 Feet (b) (b) 45 20 15 95 50 35

150O Turn Angle

12 Feet 50 25 130 90 75 170 130 105

20 Feet 30 10 110 75 60 155 115 95

24 Feet (b) (b) 100 65 55 155 110 80

Source: P, SU and WB-50 templates from A Policy on Geometric Design of Highways and Streets, AASHTO, 2011. (a) Minimum buildable. Vehicle path would clear a zero radius. (b) Maximum of 20 feet (one lane plus parking) assumed for passenger car operation.

4.7.2.2 Curve/Taper Combinations 

Thecombinationofasimpleradiusflankedbytaperscanoftenfitthepavementedgemorecloselytothedesignmotorvehiclethanasimpleradius(withnotapers).Thiscloserfitcanbeimportantforlargedesignmotorvehicleswhereeffectivepavementwidthissmall(dueeithertonarrowpavementorneedtoavoidanyencroachment),orwhereturningspeedsgreaterthanminimumaredesired.Exhibit4‐19summarizesdesignelementsforcurve/tapercombinationsthatpermitvariousdesignmotorvehiclestoturn,withoutanyencroachment,fromasingleapproachlaneintoasingledeparturelane.

Section 1 – Chapter 4

  Intersection Design  1.4‐41 

Exhibit 4‐19  Curve and Taper Corner Design 

Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

Exhibit 6‐4‐20  Turning Roadways and Islands 

Turning Roadway, Edge of Pavement Angle of Turn

(Degrees) Design Vehicle

Radius (feet) R1-R2-R1

Offset (OS feet)

75 P 100-75-100 2.0 SU 120-45-120 2.0 WB -50 150-50-150 6.5

90 P 100-20-100 2.5 SU 120-40-120 2.0 WB -50 180-60-180 6.5

105 P 100-20-100 2.5 SU 100-35-100 3.0 WB -50 180-45-180 8.0

120 P 100-20-100 2.0 SU 100-30-100 3.0 WB -50 180-40-180 8.5

150 P 75-20-75 2.0 SU 100-30-100 4.0 WB -50 160-35-160 7.0

Note: W (width) should be determined using the turning path of the design vehicle. Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

1.4‐42  Intersection Design  DRAFT 

4.7.3 Auxiliary Lanes 

Thedesignelementsofthreeauxiliarylanestypesaredescribedinthefollowingsections:left‐turnlanes,right‐turnlanes,andthroughlanes.Decelerationandtaperdistancesprovidedbelowshouldbeacceptedasadesirablegoalandshouldbeprovidedforwherepractical.However,inurbanareasitissometimesnotpracticaltoprovidethefulllengthofanauxiliarylane.Insuchcases,atleastpartofthedecelerationmustbeaccomplishedbeforeenteringtheauxiliarylane.Chapter9ofAASHTO’sGeometricDesignofHighwaysandStreetsprovidesmoreinformationforthedesigner.ThedesignofauxiliarylanesonaStateroadwaysshouldbeconsistentwiththeCTDepartmentofTransportation’sHighwayDesignManual.

4.7.3.1 Left‐Turn Lane Design Elements 

Left‐turnlanesremovestoppedorslow‐movingleft‐turningmotorvehiclesfromthestreamofthroughtraffic,eliminatingtheprimarycauseofrear‐endcrashesatintersections.Thesafetybenefitsofleft‐turnlanesincreasewiththedesignspeedoftheroad,astheygreatlyreduceboththeincidenceandseverityofrear‐endcollisions.Left‐turnlanesalsoimprovecapacitybyfreeingthetravellanesforthroughtrafficonly.Thesafetyandcapacitybenefitsofleft‐turnlanesapplytoallvehiculartraffic,motorizedaswellasnon‐motorized.However,left‐turnlanesaddtothepedestriancrossingdistanceandpedestriancrossingtime.Theadditionalstreetwidthneededforleft‐turnlanesmayrequirelandtakingorremovalofon‐streetparking.Thelengthsofleft‐turnlanes,illustratedinExhibit4‐21,dependonthevolumeofleft‐turningmotorvehiclesandthedesignspeed.Thelengthoftaperrequiredtoformtheleft‐turnlanevarieswithdesignspeed.Atsignalizedintersections,aconservativeguidelinefordeterminingthestoragelengthofaleft‐turnlaneis150percent(1.5times)ofthelengthoftheaveragenumberofleft‐turningvehiclesarrivingduringasinglesignalcycleinthepeakhour.Amoreanalyticalguidelineforthelengthofrequiredstoragelaneistoobtaintheexpectedlengthoftheleft‐turnqueueandassociatedprobabilitiesfromintersectionanalysiscomputations(computerizedversionsofHighwayCapacityManualmethodologyorderivativeprogramssuchasSYNCHRO).Typically,left‐turnlanesaresizedtoaccommodatethemaximumlengthofqueueforthe95thpercentiletrafficvolumes,aqueuelengththatisexceededononly5percentofthepeak‐hourtrafficsignalcycles.

Section 1 – Chapter 4

  Intersection Design  1.4‐43 

Exhibit 4‐21  Left‐Turn Lane Design Guidelines 

Dimensions for Left-Turn Lane Elements (feet)

Design Speed (mph)

Lane Width

(W, feet)

Deceleration Distance

(feet)1

Storage Distance2

(feet)

Length of Lane2

(L, feet)

Taper Length

(T, feet)3

Widened Taper Length (T, feet)

15-25 10 115 50 165 100 See Note 4 30-35 10 170 50 220 100 See Note 4 40 10-11 275 75 350 110 See Note 4 45 10-11 340 75 415 150 See Note 4 50 11-12 410 75 485 180 See Note 4 55 11-12 485 75 560 180 See Note 4 60 12 530 75 605 180 See Note 4

Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections 1 For deceleration grades of 3 percent or less. 2 Storage distance and therefore total lane length (L) are based on an unsignalized left-turn volume of 100 vehicles hourly.

For larger volumes, compute storage need by formula or from intersection analysis queue calculation. 3 This taper length is not applicable for “widened for turn lane” cases, see note 4. 4 For “widened for turn lane” cases, use T = WS2/60 for speeds less than 45 mph and T = WS for speeds 45 mph and greater.

1.4‐44  Intersection Design  DRAFT 

4.7.3.2 Right‐Turn Lane Design Elements 

Rightturnlanesareusedtoremovedeceleratingright‐turningmotorvehiclesfromthetrafficstream,andalsotoprovideanadditionallaneforthestorageofright‐turningmotorvehicles.Wheretheright‐turnvolumeisheavy,thisremovaloftheturningmotorvehiclefromthetrafficstreamcanalsoremoveaprimarycauseofrear‐endcrashesatintersections.Designelementsforright‐turnlanesaresummarizedinExhibit4‐22.

Exhibit 4‐22  Right‐Turn Lane Design Guidelines 

Dimensions for Right-Turn Lane Elements (feet)

Design Speed1 (mph)

Lane Width

(W. feet)

Turning Lane Width (WT, feet)

Deceleration Distance

(feet)

Storage Distance2

(feet)

Length of Lane2

(L, feet)

Taper Length (T, feet)

15-25 10 14 115 50 165 100

30-35 10 14 170 50 220 100

40 10-11 15 275 60 335 110

45 10-11 15 340 60 400 150

50 11-12 15 410 60 470 180

55 11-12 16 485 60 545 180

60 12 16 530 60 590 180 Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2004. Chapter 9 Intersections 1 Based on grades of less than three percent for speeds less than 60 mph. Based on grades of less than two percent for

speeds greater than 60mph. 2 Storage distance and therefore total lane length (L) are based on an unsignalized right-turn volume of 100 vehicles

hourly. For larger volumes, compute storage need by formula or from intersection analysis queue calculation.

Right‐turnlanesprovideasafetyandcapacitybenefitformotorizedtraffic.However,inareasofhighpedestrianorbicyclistactivity,thesebenefitsmaybeoffsetbytheadditionalpavementwidthintheintersection,higherspeedsofmotorvehicularturningmovements,

Section 1 – Chapter 4

  Intersection Design  1.4‐45 

andvehicle/bicyclistconflictcreatedasmotoristsenteraright‐turnlaneacrossanon‐streetbicyclelaneoracrossthepathofbicycletrafficoperatingnearthecurb.

4.7.3.3 General Criteria for Right‐Turn and Left‐Turn Lanes 

Criteriaforconsideringinstallationofleft‐turnlanesaresummarizedinExhibit4‐23.Thesecriteriaarebasedonacombinationofleft‐turningmotorvehiclevolumesplusopposingthroughmotorvehiclevolumesatunsignalizedlocations.Forexample,if330vehiclesperhourtraveleastboundat40mphandfivepercentareturningleft,anexclusiveleft‐turnlaneiswarrantedoncethewestboundvolumeexceeds800vehiclesperhour.

Exhibit 4‐23  Criteria for Left Turn Lanes 

A. Unsignalized Intersections, Two-Lane Roads and Streets1:

Design Speed

Opposing Volume (motor vehicles

per hour)

Advancing Motor Vehicle Volume (vehicles per hour) 5%

Left Turns 10%

Left Turns 20%

Left Turns 30%

Left Turns 30 mph or less 800 370 265 195 185 600 460 345 250 225 400 570 430 305 275 200 720 530 390 335 40 mph 800 330 240 180 160 600 410 305 225 200 400 510 380 275 245 200 640 470 350 305 50 mph 800 280 210 165 135 600 350 260 195 170 400 430 320 240 210 200 550 400 300 270 60 mph 800 230 170 125 115 600 290 210 160 140 400 365 270 200 175 200 450 330 250 215

B. Signalized Intersections2: Left-Turn Lane Configuration Minimum Turn Volume

Single exclusive left-turn lane 100 motor vehicles per hour Dual exclusive left-turn lane 300 motor vehicles per hour

1 AASHTO Green Book (1990) 2 Source: Highway Capacity Manaual (2000)

Considerableflexibilityshouldbeexercisedinconsideringleft‐turnlanes.Typically,theyinvolvelittleimpacttothesetting,whilegenerallyyieldinglargebenefitsinsafetyanduserconvenience.Left‐turnlanesmaybedesirableinmanysituationswithvolumeswellbelowthosestated.Theseincludetodestinationsofspecialinterest(shopping,majorinstitutions,etc.),orforlocationswithmarginalsightdistanceonthemainroadoraconsistentoccurrenceofrear‐endcrashes.

1.4‐46  Intersection Design  DRAFT 

Wherethereisaneedformultiple,closelyspacedleft‐turnlanes(duetodrivewaysorsmallblocks),itmaybeadvisabletodesignateacontinuouscenterlaneasa“two‐wayleftturnlane”(TWLTL)asdiscussedinChapters3and7.Criteriafortheinstallationofright‐turnauxiliarylanesaremorejudgmentalthanthenumericalguidelinesfortheirleft‐turnlanecounterpart.Positiveandnegativeindicators(i.e.,conditionsfavoringorarguingagainstright‐turnlanes)aresummarizedinExhibit4‐24.

Exhibit 4‐24  Criteria for Right‐Turn Lane Placement 

Positive Criteria (Favoring Right-Turn Placement)

Negative Indicators (Arguing Against Right-Turn Lane Placement)

High speed arterial highways In residential areas

High right-turn motor vehicle volumes In urban core areas

High right-turn plus high cross-street left-turn volumes On walking routes to schools

Long right-turn queues Where pedestrians are frequent

Intersection capacity nearly exhausted Low right turn volumes

History of crashes involving right-turning vehicles

Little to no pedestrian activity

Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

4.7.3.4 Auxiliary Through Lane Design Elements 

Shortsegmentsofadditionalthroughlane(wideningastreetthroughasignalizedintersection)canbeaneffectivewayofincreasingintersectioncapacityatrelatively“isolated”intersections(forexample,inruralareasandinsettledareaswithaminimumofaboutone‐milespacingbetweensignalizedintersections).Wherethroughlanesareprovided,motoristsapproachingtheintersectionarrangethemselvesintotwolanesoftrafficandmergebacktoasinglelaneoftrafficonthedeparturesideoftheintersection.Mergingunderacceleration(i.e.,onthedeparturesideoftheintersection)workswell,sincegaps(spacesbetweenmotorvehicles)areincreasingasvehiclesaccelerate,leavingnumerousopportunitiestomergeasthetrafficstreamleavestheintersection.DesignelementsforauxiliarythroughlanesaregiveninExhibit4‐25.

Section 1 – Chapter 4

  Intersection Design  1.4‐47 

Exhibit 4‐25  Auxiliary Through Lane Design Guidelines 

Dimensions for Auxiliary Through-Lanes (feet)

Design Speed (mph)

Lane Width (feet)

Taper Length

(T, feet)1

Length of Lane

(L, feet)

15-25 10 WS2/60 See Note 2

30-35 10 WS2/60 See Note 2

40 10-11 WS2/60 See Note 2

45 10-11 WS See Note 2

50 11-12 WS See Note 2

55 11-12 WS See Note 2

60 12 WS See Note 2 1 W is the lateral shift required to form the additional through lane. 2 L should be based on anticipated queue derived from intersection operations analysis. Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections and

the Manual on Uniform Traffic Control Devices

4.7.4 Channelization Islands 

Channelizationislandsareusedto:

Delineatetheareainwhichmotorvehiclescanoperate; Reducetheareaofmotorvehicleconflict; Bringmotorvehiclemergingintoasafer(smaller)angleofmerge;and Providepedestrianrefuge.

Ideally,channelizationislandsareraisedabovepavementlevel,typicallytocurbheight(6inches).Lesspreferably,theymaybeflushwiththepavementlevel.Bothraisedandflushislandsmaybeconstructedofavarietyofmaterials,includingconventionallyfinishedconcrete,scoredconcrete,orrigidpaversofvarioustypes.Somegeneralcriteriaforthedimensionsofchannelizationislandsinclude:

1.4‐48  Intersection Design  DRAFT 

Triangularislandsshouldbeaminimumof100squarefeetinsurfaceareawithonesideatleast15feetinlength.Linearislandsshouldbeatleast2,andpreferably3feetormorewide.Iftheycontainsigns,theyshouldbeatleast4feetwide.Iftheyintersectpedestriancrosswalksorcontainsigns,theyshouldbeatleast6feetwidewithmaximum1.5percentslope.Theminimumlengthoflinearislandsshouldbe25feet.

Channelizationislandsshouldcontainat‐gradepassagesforbicyclelanes,wheelchairandpedestrianpaths,andshouldgenerallybeplacedtoavoidimpedingbicyclemovement,whetherornotbicyclelanesarepresent.

Theedgesofchannelizationislandsshouldbeoffsetfromthetravellanes,toguidedriverssmoothlyintothedesiredpath.Typically,a2‐footoffsetisappropriate.

TypicalarrangementsandapplicationsofchannelizationareshowninExhibit4‐26.

4.7.4.1 Right‐turn Channelization Islands 

Asmallchannelizationislandcandelineatearight‐turnlaneatasimpleintersection(i.e.,whereneithertheapproachnordeparturelaneisflared).Thistypeofchannelizationisappropriateforlarge‐radiuscorners.Amorecommonusefortheright‐turnchannelizationislandisatflaredintersections,whereadecelerationlaneflareisprovidedontheapproachtotheintersection,sometimescombinedwithanaccelerationlaneflareonthedepartureside.Thelargestchannelizationislandsaretypicallyfoundwhereanauxiliaryright‐turnlaneisprovidedonboththeapproachanddeparturesideoftheintersection.Right‐turnchannelizationislandscanbenefitpedestrianscrossingtheaffectedapproachesbyprovidinganinterimrefugeinthecrosswalk.Thisrefugepermitspedestrianstodevotefullattentiontocrossingtheright‐turnlanewithoutneedingtoassureasafecrossingfortherestofthestreet.Fromthechannelizationisland,pedestrianscanthenproceedacrossthethroughlanesoftrafficwithoutthecomplicatingfactorofcrossingtheright‐turnmovement.

4.7.4.2 Divisional Islands 

Divisionalislandsareusefulindividingopposingdirectionsoftrafficflowatintersectionsoncurves,orwithskewedanglesofapproach.Insuchinstances,theycanimprovethesafetyandconvenienceforapproachingmotorists.Althoughsuperficiallysimilartomedians,divisionalislandsdifferfromthemintheirshortlengthandrelativelynarrowwidthandarediscussedfurtherlaterinthischapterandinChapter6.

4.7.4.3 Left‐Turn Lane Delineator Islands 

Theleft‐turndelineatorislandresemblesashortsectionofmedianisland,withtriangularstripingtoguidetrafficaroundit.Attheintersectionendoftheisland,itisnarrowedtoprovidestorageforleft‐turningmotorvehiclesandbicycles.

Section 1 – Chapter 4

  Intersection Design  1.4‐49 

Onundividedstreets,theleft‐turnlanedelineatorislandisusedtoformtheleft‐turnbay.Atitsupstreamnose(i.e.,ontheapproachtotheintersection),theislandandassociatedstripingshiftsthethroughtrafficlanetotheright,creatingroomforthetaperandleft‐turnbay.

1.4‐50  Intersection Design  DRAFT 

Exhibit 4‐26  Channelization Islands 

Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

Section 1 – Chapter 4

  Intersection Design  1.4‐51 

4.7.5 Roundabout Geometric Design Elements 

ThekeyelementsofgeometricdesignforroundaboutsareshowninExhibit4‐27andinclude:

Thecirculatingroadway,whichcarriesmotorvehiclesandbicyclesaroundtheroundaboutinacounterclockwisedirection.

Thecentralisland,definingtheinnerradiusofthecirculatingroadwayaroundit.

Acoreareawithinthecentralisland,fromwhichmotorvehiclesareexcluded.

Atruckapronareaontheouterperimeterofthecentralisland,traversablebylargemotorvehicles.

Theinscribedcircle,definedbytheouteredgeofthecirculatingroadway.

Splitterislands,onallapproaches,separatingtheenteringfromtheexitingtraffic.

Crosswalksacrossapproachanddepartureroadways.

Thekeydesignelementoftheroundaboutisitsouterdiameter,theinscribedcirclediameter(ICD).Thisdimensiondeterminesthedesignofthecirculatingroadwayandcentralislandwithinit.Thealignmentofapproachanddepartureroadwaysandtheresultingsplitterislandsarealsoestablishedbytheinscribedcircle.ForfurtherinformationonroundaboutdesignrefertotheFHWApublicationRoundabouts:AnInformationalGuide,2010.

4.7.5.1 Inscribed Circle 

TheICDisderivedfromthemotorvehicle.Theinscribedcircleisestablishedbytheouterturningradiusofthedesignvehicle,plusamarginforcontingenciesencounteredinnormaloperation.

4.7.5.2 Width of Circulating Roadway 

Thewidthofthecirculatingroadwayisestablishedfromtheturningpathofthedesignvehicleplusamargintoallowfornormaloperatingcontingencies.Thecriticalturningmovementistheleftturn,requiringa270degreemovementaroundthecirclewhich,inturn,producesthelargestsweptmotorvehiclepathandtherebyestablishesthewidthofthecirculatingroadway.

1.4‐52  Intersection Design  DRAFT 

Exhibit 4‐27  Circle Dimensions, Single Lane Roundabout 

Note: The design vehicle should be the largest vehicle expected to be accommodated on the street. Source Roundabouts: An Informational Guide, FHWA 2010.

4.7.5.3 Central Island 

Thediameterofthecentralislandisderivedfromthediameteroftheinscribedcirclelessthewidthofthecirculatingroadway.Typically,centralislandsconsistofacoreareanotintendedtobetraversedbymotorvehiclesandbicycles,borderedbyatruckapronofaslightlyraisedpavementnotintendedtobeusedbyvehiclessmallerthanaschoolbus,butavailablefortheinnerrearwheeltrackoflargermotorvehicles.

4.7.5.4 Entry and Exit Curves 

Theentryradiuscanbevariedasdesiredtoachievethedesiredentryspeed.Curvatureislimitedonlybytheneedtoprovidesufficientclearanceforthedesignvehicle.Entranceroadwaysaredesignedsothatthecontinuationoftheinsideedgeoftheentrycurvejoinstangentiallytothecentralisland,whiletheoutsideedgeoftheentrycurvejoinssmoothlyandtangentiallytotheoutsideedgeofthecirculatingroadway.Typically,theentryradii(measuredattheoutsidepavementedge)rangefrom30to100feet.Exitcurvesjointangentiallytotheinnerandouterdiametersoftheroundaboutinthesamemannerastheentrycurve.Theoutsideexitcurvejoinssmoothlyandtangentiallytotheoutsideedgeofthecirculatingroadway,whiletheinsidecurve,ifcontinued,wouldjointangentiallytothecentralisland.Aswiththeentrycurve,thewidthoftheroadwayshouldaccommodatethedesignmotorvehicle.Theexitpathradius(measured

Section 1 – Chapter 4

  Intersection Design  1.4‐53 

atthecenterlineoftheexitcurve)shouldbeatleastasgreatasthemotorvehiclepatharoundthecirculatingroadway,sothatdriversdonotreducespeeduponleavingthecircle,or,failingthat,overruntheexitcurveandcollidewiththesplitterisland.Frequently,exitcurveshavelargerradiithanentrycurves,toreducethepossibilityofcongestionattheexitpoints.However,theexitspeedshouldalsobeinfluencedbytheaccommodationofpedestriansandbicyclists.

4.7.5.5 Splitter Islands  

SplitterislandsareformedbytheseparationbetweentheentryandexitlanesasillustratedinExhibit4‐28.Splitterislandsguidemotorvehiclesandbicyclesintotheroundabout,separatetheenteringandexitingtrafficstreams,assureamergebetweenenteringandcirculatingtrafficatanangleoflessthan90degrees,andassistincontrollingspeeds.Further,splitterislandsprovidearefugeforpedestriansandbicyclists,andcanbeusedasaplaceformountingsigns.Largersplitterislandsaffordtheopportunityforattractivelandscaping,butsignsandlandscapingmustnotobstructsightdistanceforapproachingmotorists.Splitterislandsshouldbeatleast50feetintotallengthtoproperlyalertdriverstotheroundabout.Thesplitterislandshouldextendbeyondtheendoftheexitcurvetoassurethatexitingtraffichascompleteditsturn,andtopreventitfromcrossingintothepathofon‐comingtraffic.

1.4‐54  Intersection Design  DRAFT 

Exhibit 4‐28  Entry/Exit Lanes, Single Lane Roundabouts 

Source: Roundabouts: An Informational Guide, FHWA, 2010.

4.7.6 Intersection Median Openings 

Atintersectionswhereoneorbothofthestreetshavedividedroadwaysseparatedbyamedian,thedesignofthemedianbecomesanelementintheintersectiondesign.Twofactorscontrolthedesignoftheendsofmediansatintersections:

Theturningpathofmotorvehiclesandbicyclesmakingaleftturnfromtheminorstreetintothemajorstreetcontrolsthelocationandshapeoftheendofthemedianinthedeparturelegofthemajorstreet;and,

Theleftturnfromthemajorstreetintotheminorstreetdeterminesthelocationandconfigurationofthemedianendontheapproachlegofthismovement.

Right‐turnmovementsareseldomafactorinmedianopeningdesign.However,thepresenceofamedianmaylimittheeffectivepavementwidthformotorvehiclesandbicyclesmakingarightturn.Effectivepavementwidth,aspreviouslydiscussed,hasalargebearingonthecornerradiusneededforrightturns.

Section 1 – Chapter 4

  Intersection Design  1.4‐55 

4.7.6.1 Design Vehicles for Median Openings 

Thedesignvehicleformedianopeningsisthesameasthedesignvehicleselectedfortheintersection.Roadswithmediansarelikelytobeclassifiedasarterialroads,withtheappropriatedesignvehiclethereforebeingtheWB‐50truck.However,forsomemedianopenings,thepassengercar(P)orsingleunittruck(SU)designvehiclemaybeappropriate.

4.7.6.2 Permitted Encroachment at Median Openings 

Atintersectionsofstreetswithmedians,turningvehiclesmaybepermittedtoencroachintoadjacentlanes,accordingtoguidelinesdiscussedearlier.However,ondividedhighways,encroachmentintoopposinglanesoftrafficisphysicallyimpossible,duetothemedian.Somecategoriesofencroachment,therefore,eventhoughpermissible,maynotbeavailablefortheturninquestion.

4.7.6.3 Median and Design Controls 

Theleft‐turnmovementfromtheminorstreetintothedeparturelegofthemajorstreetcontrolstheplacementandshapeoftheaffectedmedianisland.Similarly,theleftturnfromthedividedmajorstreetintotheminorstreetcontrolstheplacementandshapeoftheaffectedmedianislandonthatapproachlegoftheintersection.Whereboththemajorstreetandtheminorstreetaredivided,thefourpossibleleftturnscontrolthelocationandshapesofallfourmedianislands.

4.7.6.4 Median Openings 

Animportantdesignelementisthelengthofthemedianopening,assummarizedinExhibit4‐29.Openingdimensionsaregivenfortwoconfigurationsofmedianend:semi‐circularandbullet‐nose.Medianopeningsaregivenforthethreecategoriesofdesignvehicleaddressedthroughoutthischapter:passengercar(P),singleunittruck(SU),andthetractor/50‐foottrailer(WB‐50).

1.4‐56  Intersection Design  DRAFT 

Exhibit 4‐29  Median Openings 

Note: R1, R2 and NL determined by design vehicle turning paths. Source: Adapted from A Policy on the Geometric Design of Streets and Highways, AASHTO, 2011. Chapter 9 Intersections

Section 1 – Chapter 4

  Intersection Design  1.4‐57 

4.7.7 Pedestrian Crosswalks 

Crosswalksareacriticalelementofintersectiondesign.Crosswalksareessentialfordesignatingtheappropriatepathoftravelforapedestrianthroughtheintersection.Crosswalksaredefinedbypavementmarkings,texturedpavement,andcoloredpavementasdescribedbelow.Severaltechniquesareavailabletoshortenpedestriancrossingsandforimprovingcrosswalkvisibility,asdescribedbelow.

4.7.7.1 Crosswalk Pavement Markings 

Pavementmarkingsindicatetopedestrianstheappropriaterouteacrosstrafficandremindturningmotorvehicledriversandbicyclistsofpotentialconflictswithpedestrians.Thecrosswalkedgenearesttotheintersectionshouldbealignedwiththeedgeofthesidewalknearesttotheroad.Whendifferentpavementtreatmentsareused,crosswalksmustbeboundedbyparallelbars.Atsignalizedintersections,allcrosswalksshouldbemarked.TobeconsistentwithConnDOTpolicy,crosswalksatsignalizedintersectionsshouldbe8‐feetwidewith16‐inchbarsandspaces(forstandardcrossings)or24‐inchbarsandspaces(forschool/elderlyandhandicappedcrossings)ifpossible.Atunsignalizedintersections,crosswalksshouldbemarkedwhenthey:

Helporientpedestriansinfindingtheirwayacrossacomplexintersection;

Helpshowpedestrianstheshortestrouteacrosstrafficwiththeleastexposuretomotorvehiclesandbicycles,andtotrafficconflicts;or

Helppositionpedestrianswheretheycanbestbeseenbyon‐comingtraffic.Whenusedwithoutotherintersectiontreatments,crosswalksaloneshouldnotbeinstalledwithinuncontrolledenvironmentswhenspeedsaregreaterthan40mph.Allcrosswalksontheentriesandexitsofroundaboutsshouldbemarked.Crosswalksaretypicallylocatedonecarlengthbackfromtheyieldlineorcirculatingroadwayatsingle‐laneroundabouts.Crosswalkstobe10‐feetwidewith16‐inchbarsandspaces(forstandardcrossings)or24‐inchbarsandspaces(forschool/elderlyandhandicappedcrossings)atmidblockandunsignalizedlocations.Formoreinformation,refertotheManualonUniformTrafficControlDevices.

4.7.7.2 Vehicular Stop Bar Placement 

Wherecrosswalksareprovidedacrossastreetwithastoplineorwithtrafficsignals,thereshouldbeaminimum4‐footspacingbetweentheouteredgeofthecrosswalkandthenearestedgeofthestopbar.StopbarsshouldbedimensionedinaccordancewithguidelinesintheMUTCD.Atsignalizedintersections,theinstallationofloopdetectorswithincrosswalksshouldbeavoided.

1.4‐58  Intersection Design  DRAFT 

4.7.7.3 Methods to Reduce Pedestrian Crossing Distance 

Markedorunmarked,crosswalksshouldbeasshortaspossible.Atallintersections,reducingthetimepedestriansareinthecrosswalkimprovespedestriansafetyandmotorvehicleandbicyclemovement.Atsignalizedintersections,reducingthepedestriancrossingdistancecanimprovecapacityforbothmotorvehicles(longergreentime)andforpedestrians(longerWALKinterval).

Curb Extensions 

Curbextensionsshortenthecrossingdistance,provideadditionalspaceatthecorner,allowpedestrianstoseemotorvehiclesandbeseenbymotorvehicledriversbeforeenteringthecrosswalk,andkeepparkingawayfromcrosswalks.CurbextensionsarediscussedfurtherinChapter6.

Crossing Islands and Medians 

Raisedmediansandtriangularchannelizationislandscanbeusedtointerruptextremelylongcrosswalks.Theseraisedareas:

Allowpedestrianstocrossfewerlanesatatime,reducingexposuretime;

Providearefugesothatslowerpedestrianscanwaitforabreakinthetrafficstream;

Allowpedestrianstofocusontrafficfromonlyonedirectionatatime;

Reducethetotaldistanceoverwhichpedestriansareexposedtoconflictswithmotorvehicles;and,

Mayprovideeasilyaccessiblelocationforpedestriansignalcallbuttons.Ingeneral,fiftyfeetisthelongestuninterruptedcrossingapedestrianshouldencounteratacrosswalk,butislandsandmediansarealsoappropriateforshorterdistances.Islandsandmediansshouldnotbeusedtojustifysignaltimingthatdoesnotallowpedestrianstocompletetheircrossinginonecycle.CrossingislandsarediscussedfurtherinChapter6.

4.7.7.4 Improving the Visibility of Pedestrian Crossings 

Safepedestriancrossingisdependentonawarenessbymotoristsofthepedestrian.Methodstoimprovethevisibilityofpedestrians,inadditiontocurbextensions,sometimesincludetexturedcrosswalks,raisedcrosswalks,andflashingbeaconsatmid‐blocklocationsasdiscussedfurtherinChapter6.

4.7.7.5 Pedestrian Crossing Prohibitions 

Someintersectioncrossingsincludeconflictsbetweenpedestriansandmotorvehicletrafficthatareespeciallydangerous;however,prohibitingpedestriancrossingshouldbeconsideredonlyinverylimitedcircumstances,forexample:

Section 1 – Chapter 4

  Intersection Design  1.4‐59 

Whereitwouldbeverydangerousforpedestrianstocross,aswherevisibility

(forpedestrians,motoristsorbicyclists)isobstructedandtheobstructioncannotbereasonablyremoved,andwheresignalizationisnotanoption.

Wheresomanylegalcrosswalksexistthattheyconflictunreasonablywithothermodes,asonanarterialstreetwithmultipleoffsetor"T"intersections.

Crosswalksat“T”andoffsetintersectionsshouldnotbeclosedunlessthereisasafercrosswalkwithin100feetoftheclosedcrosswalk."PedestriansUseMarkedCrosswalk"signsshouldbeusedforcrosswalksclosedtoreduceanexcessofcrosswalksonastreetwith“T”oroffsetintersections."NoPedestrianCrossing"signsshouldbeusedforcrosswalksclosedforpedestriansafety.ThesesignsneedtobeapprovedbytheOfficeofStateTrafficAdministration(OSTA)onroadwaysunderStatejurisdiction.

4.7.8 Pedestrian Curb Cut Ramps 

Therearetwopreferredconfigurationsofpedestriancurbcutramps.Theseconfigurationsincludeseveraldesignelements.Boththeconfigurationsanddesignelementsaredescribedinthefollowingsections.

4.7.8.1 Ramp Types 

Pedestriancurbcutrampsatmarkedcrossingshallbewhollycontainedwithinthemarkings,excludinganyflaredsides.Twotypesoframpconfigurationsarepreferred—perpendicularrampsandparallelramps.Thefirsthasarampleadingatrightanglesfromthesidewalkintoacrosswalk,whilethesecondhasarampleadingintoalandingthatisflushwiththestreetsurface.Athirdtype,adiagonalramp,isdiscouragedbutpermissibleforcertainspecificintersectionconditions(seebelow)underspecificconditions.

Perpendicular 

Wheneverpossible,requiresthatapedestriancurbcutrampisorientedsothatthefalllineoftherampisinlinewiththecrosswalkandperpendiculartothecurb.Whereconditionsarenotconstrained,thedesignershouldlocatetherampsothatbothconditionscanbemet.Aminimumfourfeetlevellandingwithacrossslopedesignedatamaximumof1.5%foreachapproachatthesidewalkandstreetlevelwithinthedesignatedcrosswalkisrequired.

Parallel 

Parallelcurbcutrampsareusedwheretheavailablespacebetweenthecurbandthepropertylineistootighttopermittheinstallationofbotharampandalanding.Aminimumfourfootlandingisnecessarybetweenthetworamps.

1.4‐60  Intersection Design  DRAFT 

Diagonal or Apex 

Diagonalor“apex”curbcutrampsaresingleperpendicularpedestriancurbcutrampslocatedattheapexofthecorner.Diagonalrampsareonlypermittedunderthefollowingspecificconditionsby:a. Driverorpedestrianlineofsighttoorfromthefrontofthelevellandingontheramp

isimpaired,preventingsafeobservationofcrosswalksorapproachingtrafficattheintersectionbyasignificantimmovableorunalterablestreetscapefeaturesuchasabuildingstructureorhistoricelement,etc.

b. StoplineisbeyondtheallowedlimitasstatedintheManualonUniformTrafficControlDevices.

c. Vaultscontainingelectrical,telecommunication,etc.thatareunderorontheexistingsidewalk.

d. Largeradiuscorners(30feetorgreater).Whenusingdiagonalorapexcurbcutramps,theremustbea4footlevellandingatthebase(street)leveloftherampthatiswithinthemarkedcrosswalk.

4.7.8.2 Design Elements 

Keydesignelementsofpedestriancurbcutrampsincludetherampedsection,landingareasandsideflaresasdescribedbelow.

Ramp Section 

Theminimumslopepossible(givencurbheightsandsidewalkwidth)shouldbeusedforanypedestriancurbcutramp.Themaximumcurbcutrampslopeis8.33%inthebuiltconditionwithacrossslopeofnomorethan2%inthebuiltcondition.Toensurethatthebuildconditionsdonotexceedtheemaximums,designersshouldusestandardsspecificationsof7.5percentforslopesand1.5percentforcross‐slopes.Theminimumwidthofapedestriancurbcutrampisatleast3feet,with4feetpreferred,exclusiveofflaredsides.Acurbcutrampshallhaveadetectablewarningthatextendsthefullwidthandlengthofthecurbramp.DetectablewarningsshallcomplywiththeADAAccessibilityGuidelinesforBuildingsandFacilities.Curbcutrampsandtheirapproachesshallbedesignedsothatwaterwillnotaccumulateonwalkingsurfaces.Surfacesofpedestriancurbcutrampsshallbestable,firm,andslip‐resistant.

Landings 

Thebasicprincipleisthateverycurbcutrampmusthavealandingatthetopandatthebottom.Thelandingatthetopofarampshouldbeaminimumoffourfeetlong(5feetpreferred)andatleastthesamewidthasthecentercurbcutrampitself.Itshouldbedesignedtoslopenomorethan1.5%inanydirection,allowingthebuiltconditionto

Section 1 – Chapter 4

  Intersection Design  1.4‐61 

slopenomorethan2%.Asinglelandingmayserveasthetoplandingforonerampandthebottomlandingforanother.Whenperpendicularrampsrundirectlyintoacrosswalk,thelandingatthebottomwillbeintheroadway.Thelanding,atleast4feetlong,shouldbecompletelycontainedwithinthecrosswalkpavementmarkingsandshouldnothavearunningslopewhenbuiltnogreaterthan5percent.Whentheparallelramplandingiswithinthesidewalkorcornerareawhereapersonusingawheelchairmayhavetochangedirection,thelandingmustbeaminimumoffivefeetlongandatleastaswideastheramp,althoughawidthoffivefeetispreferred.Thelandingmaynotslopemorethan2%whenbuilt(1.5%indesign)inanydirection.

Flares 

Flaresaregradedtransitionsfromtherampsectiontothesurroundingsidewalk.Flaresaretypicallynotpartoftherouteforpeopleusingwheelchairs.Flaresmaybesteeperthantherampwherethereisa4‐footdeeplevellandingatthetopoftheramp’scenterlanding.Themaximumslopeoftheflareshallbe10%(9%indesign).Ifthelandingdepthatthetopofapedestriancurbcutrampislessthanfourfeet,thentheslopeoftheflaredsideshallnotexceed8.33%inthebuiltcondition(7.5%design).Whenintersectionsarelocatedonahill,itispossiblethatthesideflaresrampcannevermeetthe8.33%maximumsloperequirement.

Returned Curbs 

Flaresarenotnecessarywherepedestrianswouldnotnormallywalkacrosstheramp,suchaswheretherampedgeabutsgrass,otherlandscaping,orothernon‐walkingsurface.Pedestriancurbcutrampsmayhavereturnedcurbsorotherwell‐definededgesonlywhentherampitselfisslopedat8.33%maximum,andthereisnopedestrianapproachfromeithersideoftheramp.Suchedgesshallbeparalleltothedirectionofpedestrianflow,andtheadjacentareashouldclearlyprohibitpedestrianusewith,forexample,plantings,railings,streetfurniture,etc.Thebottomoframpswithreturnedcurbsshallhaveafourfootminimumclear,levellandingthatdoesnotextendintoatravellaneandiswithinthecrosswalkmarkings.

4.7.9 Bicycle Lanes at Intersections 

Onstreetswithoutbicyclelanes,abicyclist’stravelthroughintersectionsreflectsthebicyclist’saccommodationatadjacentnon‐intersectionstreetsegments.Wherebicyclistssharealanewithmotorists,theycontinuethroughintersectionsinthisshared‐lanemodeofaccommodation.Wherearoadshoulderispresentandusedbybicyclists,theyapproachanddepartintersectionsontheroadshoulderorinthetravellane.Onstreetswithbicyclelanes,thedesignofbicyclelanesatintersectionsiscomplicatedbytheneedtoaccommodatenumerousturningmovementsbybothmotoristsand

1.4‐62  Intersection Design  DRAFT 

bicyclists,oftenwithlimitedavailablespace.Intersectiondesignisbasedontheassumptionthat:

Motoristsmakingrightturnsshouldmaketheirturnfromasclosetotheright‐handcurbaspractical;

Bicyclistsgoingstraightaheadshouldbetotheleftofrightturningtraffic;and,

Bicycliststurningleftshouldturnfromaleftturnlaneortheleftsideofacombinationthrough/leftlane.

Thebicyclelanemarkingisa6‐inchwidewhitesolidstripe.Nearintersections,thesolidstripeshouldbereplacedbyabrokenlinestripe(two‐foot–longstripesseparatedbysix‐foot‐longspaces)wherebicyclesandvehiclesmerge.Theouterbicyclelanemarkingisskipstripedallthewaytothestopbaratcontrolledintersections,andtotheextensionofthepropertylineatuncontrolledintersections.Theskipstripealertsbicycliststothepotentialformotoriststobecrossingtheirpathandencouragessafemerginginadvanceoftheintersection.Thelanesshouldresumeonthefarsideoftheintersection.Whenabicyclelaneintersectswithaone‐waystreet,orwhererightturnsareprohibited,thebicyclelanemarkingsaresolidallthewaytotheintersection.Bicyclelanestripesshouldnotbeextendedthroughapedestriancrosswalkoranystreetintersection.Exceptionsincludedashedlinesthroughsomecomplexintersections,andthebicyclelanestripingonthesideacrossfromtheT‐intersectionshouldcontinuethroughtheintersectionareawithnobreak.AtypicalconfigurationforbicyclelanesatasimpleintersectionisillustratedinExhibit4‐30.ItshouldbenotedthatbicyclelanesonroadwaysunderStatejurisdictionrequireapprovalfromtheOfficeofStateTransportationAdministration(OSTA).

 

Section 1 – Chapter 4

  Intersection Design  1.4‐63 

Exhibit 4‐30  Typical Bicycle Accommodation at a Simple Intersection 

Source: Guide for the Development of Bicycle Facilities, AASHTO, 2012.

4.7.9.1 Intersections with Bus Stops 

Wherethereisabusorothertransitstop,eithernearsideorfarside,the6‐inchsolidlineshouldbereplacedbytwo‐inchdotsseparatedbysix‐footspacesforthelengthofthebusstop.

bike lane symbol and arrow

bike lane stripe issolid to intersection

parking lanes

sight distance requirementsrestrict vehicle parking within20’ of all intersections

For streets with no on-streetparking, the bike lane will beadjacent to the curb with noother necessary changes.

parking lanes

20’

1.4‐64  Intersection Design  DRAFT 

4.7.9.2 Intersections with Bus Stops 

Wherethereisabusorothertransitstop,eithernearsideorfarside,the6‐inchsolidlineshouldbereplacedbytwo‐inchdotsseparatedbysix‐footspacesforthelengthofthebusstop.

4.7.9.3 Flared Intersections 

Rightturnlanesshouldbeusedonlywherejustifiedbyatrafficstudysincetheyforceright‐turningvehiclesandthroughbicycliststocrosspaths.WhererightturnlanesareonstreetswithbicyclelanesasshowninExhibit4‐31,thecurblaneisdesignatedwithmarkingsandsignsindicating“RightTurnOnlyExceptforBicycles.”Thisimprovessafetyforbicyclistsbypreventingthroughmotoristsfrompassingontherightwhilestillallowingthroughbicycliststousethelane.Signsalsoindicatethatmotoristsshouldyieldthesharedlanetothebicyclist.Whenthewidthallows,thebicyclelaneisdottedtoencourageright‐turningvehiclestomergeright.Thebicyclelanethencontinuesforaminimumof30feetuntilthestopbar.Thebicyclelaneshouldnotbeplacedtotheleftofarightturnlaneinthreecircumstances:

Heavyrightturnvolumes‐Atfour‐leggedintersectionswithheavyright‐turnvolumesandwhereitisexpectedthatmostbicyclistswillmakearight‐turn(suchaswherethestraightthroughmoveleadstoaminorsidestreet),thebicyclelaneshouldbeplacedontheright.

T‐intersections‐Bicyclelanesshouldbeplacedtotherightoftheright‐turnlane.Whereleft‐turnvolumesareheavy,abicycleleft‐turnlanemaybeplacedbetweenthevehicleleft‐turnandright‐turnlanes.

Optionalright/straightandright‐turnonlylanes‐Stripedbicyclelanesshouldendwiththebeginningofthetaperfortheright‐turnlane,resumingonthefarsideoftheintersection.

Section 1 – Chapter 4

  Intersection Design  1.4‐65 

Exhibit 4‐31  Typical Bicycle Accommodation at a Flared Intersection 

Source: Guide for the Development of Bicycle Facilities, AASHTO, 2012.

4.7.9.4 Bicycle Lanes at Roundabouts 

Roundaboutdesignshouldaccommodatebicyclistswithawiderangeofskillsandcomfortlevelsinmixedtraffic.Bicyclistshavetheoptionofeithermixingwithtrafficorusingtheroundaboutasapedestrian,asillustratedinExhibit4‐32.

Wherebikelanesarepresent,low‐speed(approximately12to15mph)andsingle‐laneroundaboutsallowforsafemixingofbicyclesandmotorvehicleswithinthe

1.4‐66  Intersection Design  DRAFT 

roundabout.Thisoptionwilllikelybereasonablycomfortableforexperiencedbicyclists.Bicyclistswilloftenkeeptotherightontheroundabout;theymayalsomergelefttocontinuearoundtheroundabout.Motoristsshouldtreatbicyclistsasothervehiclesandnotpassthemwhileonthecirculatoryroadway.Thebicyclelaneshouldbediscontinuedabout100feetpriortolow‐speedroundaboutstoindicatethatbicyclistsshouldeithermixwithmotorvehicletrafficorexittothesharedusepath.

Ontheperimeterofroundabouts,thereshouldbeasidewalkthatcanbesharedwithbicyclists.Less‐experiencedbicyclists(includingchildren)mayhavedifficultyanddiscomfortmixingwithmotorvehiclesandmaybemoresafelyaccommodatedaspedestriansinsomeinstances.Bicyclelanesleadingtowardaroundaboutshouldbediscontinuedatthebeginningoftheentrycurveoftheroundabout,endinginarampleadingtowardasharedusebicyclepedestrianpatharoundtheroundabout.Bicyclelanesshouldresumeontheendoftheexitcurve,beginningwitharampfromasharedusepath.

 

Exhibit 4‐32  Bicycle Accommodations at Roundabouts 

Source: Guide for the Development of Bicycle Facilities, AASHTO, 2012.

Bicyclistsrequireparticularattentionwithinhigherspeedanddoublelaneroundabouts,especiallyinareaswithmoderatetoheavymotorvehiclevolume.Itmaysometimesbepossibletoprovidebicyclistswithgradeseparationoranalternativeroutealonganotherstreetthatavoidstheroundabout,whichshouldbeconsideredaspartofoverall

Section 1 – Chapter 4

  Intersection Design  1.4‐67 

planning.Theprovisionofalternativeroutesshouldnotbeusedtojustifycompromisingthesafetyofbicycletrafficthroughtheroundaboutbecauseexperiencedbicyclistsandthosewithimmediatelyadjacentdestinationswilluseit.

4.8 Other Considerations 

Severalotherconsiderationsimportantforintersectiondesignaredescribedinthefollowingsectionsincluding:sighttriangles;intersectionspacing;busstopconsiderations;othertypesofroadwaycrossings;mid‐blockpathcrossings;andhighway‐railroadgradecrossings;anddriveways.

4.8.1 Intersection Sight Triangles 

Theintersectionsighttriangleisatriangular‐shapedzone,sufficientlyclearofvisualobstructionstopermitdriversenteringtheintersectiontodetectanyhazardsorconflictsandreactaccordingly.IntersectionsightdistanceandsighttrianglesarediscussedfurtherinChapter2.

4.8.2 Intersection Spacing 

Aprimarypurposeofintersectionspacingguidelinesistominimizethepossibilityofconflictsintrafficoperationsbetweenadjacentintersections.Examplesofsuchconflictsarequeuesoftrafficextendingfromoneintersectionthroughanadjacentintersection,orintersectionspacingthatprecludesthepossibilityoftrafficsignalprogressionbetweenintersections.Onarterials,intersectionspacingrequirementsareintendedtominimizethe“friction”arisingfromsignalcontrolandturningmovementsatintersections.Intersectionspacingcanalsoinfluencethepedestrianconnectivityalongacorridorsincecrossingopportunitiesareoftenlocatedatintersections.

4.8.2.1 Spacing Between Public Street Intersections 

GuidelinesforspacingbetweenpublicstreetsaregiveninExhibit4‐33.Inmostsituations,onlyaminimumspacingisrecommended.However,forstreetsinurbanareas,maximumspacingarealsorecommendedtoenableaproperdensityofconnectingstreetnetwork.

1.4‐68  Intersection Design  DRAFT 

Exhibit 4‐33  Intersection Space Guidelines 

Source: Adapted from Congress for the New Urbanism (CNU), AASHTO, 2005Frequently,intersectionspacingisnotacontrollableelementofintersectiondesign,andthespacingis“given”asafixedcondition.Insuchcircumstances,spacingguidelinesarenotapplicable.However,inmanysituations,particularlyinvolvingareasofnewdevelopment,intersectionspacingisanimportantpartofthecontext,andshouldbeconsideredinlightoftheaboveguidelines.

4.8.2.2 Spacing between Signalized Intersections 

Frequently,criteriaforthedesirablespacingofsignalizedintersectionsareconfusedwiththatforspacingofallintersections,whethersignalizedornot.Goodsignalprogressioninbothdirectionssimultaneouslyrequiressignalspacingofapproximately1,200feetormore,wellbeyondtheidealspacingforintersectionsinvillage,towncenter,andurbansettings.However,signalizedintersections,spacedforgoodsignalprogression,canbecombinedwithnon‐signalizedintersections,yieldingoverallintersectionspacingwithsmallblocks(ideallyaround200feet)appropriateforurbansettings.Mid‐blockcrossingsshouldbespacednocloserthan300feetfromasignalizedintersection,unlesstheproposedcontrolsignalwillnotrestricttheprogressivemovementsoftraffic.Goodconnectivitytothesignalizedintersectionsalongthemajorstreetcanbeassuredwithawellconnectednetworkoflocalandcollectorstreetsparalleltothemajorstreet.Withsuchanetworkinplace,turningmovementscanbemadeatalllocations,signalized

Section 1 – Chapter 4

  Intersection Design  1.4‐69 

andunsignalized,duringnon‐peakhours.Duringpeakhours,motoristsandbicyclistswantingtoenterorcrossthemajorstreetcanchoosetousethesignalizedintersections.

4.8.3 Transit Stop Considerations 

Fromthepointofviewofbusoperations,itisdesirabletohavebusstopslocatednearintersectionssothatbusriderscanapproacheasilyfromboththestreetcarryingthebusrouteandfromtheminorstreets.Further,itisdesirabletointegratebusstopswiththeadjoiningpedestriansystem(sidewalks,sharedusepathsandcrosswalks)andalsowithanyadjoiningbikepath/lanesystem.Withrespecttointersections,busandothertransitstopsmaybeeither:

Nearside,locatedontheapproachlegoftheintersection;or,

Farside,locatedonthedeparturelegoftheintersection.

Busandothertransitstopsatintersections,whileadvantageousforbusservice,createchallengesforothervehicleflows,aswellasnon‐motorizedtravel:

Ifthebusstopisinitsownlane(typicallyanextensionofparkinglanestowardtheinterioroftheblock),itmustreenterthetrafficstreamaftercompletingastop.If,ontheotherhand,thebusstopsinalaneoftraffic,itblocksthatlaneforthedurationofthestop.

Atfar‐sidestops,astoppedbusmaycausefollowingvehiclestobackupthroughtheintersection.

Atnear‐sidestops,wherethestoppedbusisoutsidethetrafficstream,thereentryofthebusintothetrafficstreamislikelytooccuratapedestriancrosswalk.Atunsignalizedlocations,thispresentsavehicle/pedestrianconflictpossibility.Evenatsignalizedintersections,busdriversmaybegintheirexitfromtheirloadingspaceduringtheredsignalphase,thusconflictingwithcrossingpedestrians.

Busstopsandaccessibleon‐streetparkingwillcompeteforthelocationnearesttheintersection.Thelocationsofbothshouldberesolvedwithinputfromthelocaldisabilitycommission,regionalindependentlivingcenter,andtransitagency.

Thechallengesassociatedwithbusstopsatintersectionsareaddressedthroughthefollowingdesignguidelines:

Far‐sidebusstopsaregenerallypreferabletonear‐sidestops.

Itisdesirabletoseparatebusloadingareasfrommovinglanesoftraffic.Whereon‐streetparkingisgenerallypresentonthestreet,suchaloadingareacanbegainedbyrestrictingtheparkinginthevicinityoftheintersection.Onstreetswithouton‐streetparking,busbaysmaybeconsidered.

1.4‐70  Intersection Design  DRAFT 

Parkingshouldberestrictedforadistanceof60feetfromthebeginningofthepavementcornerradius.Thedesignatedbusloadingareashouldnotextendcloserthan20feettothepavementcornerradius.Thesedimensionsapplytobothnear‐sideandfar‐sidebusstops.

Buspullouts,undersomecircumstances,maybeappropriateatintersectionareas.However,thedrawbackofpullouts—difficultyforthebusinreenteringthetrafficstream—canbeproblematicnearintersections.Pulloutsaremorelikelytobeacceptableatfar‐sidestops,wheretheexitingbusvehicleismorelikelytoencounteracceptablegapsinthetrafficstream,comparedtoanear‐sidestopontheapproachlegoftheintersection.BuspulloutsonStateroadwaysshouldbeconsistentwiththeCTDepartmentofTransportation’sHighwayDesignManual.

4.8.4 Mid‐Block Path Crossings 

Atintersections,sharedusepaths(forpedestrians,bicyclistsandothernon‐motorizedusers)areaccommodatedasintersectioncrosswalks,asdescribedinSection4.7.8.Wherepathscrossstreetsatlocationsotherthanatintersections,theyshouldconformtothefollowingguidelinesfor“mid‐block”crossings(theMUTCDprovidesfurtherguidanceonplacementandspacing):

Mid‐blockpathcrossingsshouldbeusedonlywhereneeded.Factorslikelytoproducethisneedareexistingrouteofpaths,availabilityofright‐of‐wayforpathextensions,distancetoalternatecrossinglocationsatintersections,andtopography.

Mid‐blockpathcrossingsshouldbeinstalledonlywherestoppingsightdistanceisfullyadequateforvehiculartrafficonthestreetbeingcrossed.

Mid‐blockpathcrossingsshouldprovideadequatesightdistanceforpedestrians,bicyclesandotherusersofthepath.

Wheremid‐blockpathcrossingsexceed60feetinlength,amedianislandshouldbeconsidered.Medianislandsprovidethedualbenefitofprovidingarefugeforcrossingpathusers,reducingthesizeofgapintrafficneededtocrossthestreetsafely,andmayhelpalertapproachingmotoristsandbicycliststothepresenceofthecrossing.

Medianislandsshouldbeatleast6feetwide,toshieldbicyclesormorethanonepedestrian.

Treesalongtheroadsideatthepathcrossing,andinlargermedians,cancallattentionofon‐comingmotoriststothepresenceofthetrailcrossing.However,treesandotherlandscapingshouldnotbeallowedtoinfringeonthesightdistanceofpedestriansormotoristsinthevicinityofthecrossing.

Allmedianorchannelizingislandsshouldhavepedestriancurbcutrampsorat‐gradecut‐throughs.At‐gradecut‐throughsshouldbeslopedgently(maximumof2percentinthebuildconditionand1.5%indesign))toallowdrainage.

Section 1 – Chapter 4

  Intersection Design  1.4‐71 

Onmulti‐lanearterialstreets,pedestriancallbutton‐actuatedtrafficsignalsmaybeappropriate.Wheninstalled,suchsignalinstallationsshouldhaveasupplementarycallbuttonatthemedian,aswellasateithercurb.TheFederalAccessBoard’scurrentreviseddraftversion(2005)oftheADAAccessibilityGuidelinesforPublicRight‐of‐way(notadoptedatthetimeofthisGuidebook)requiresaudibletrafficsignalswhereverwalksignalsareinstalled.Althoughnotyetrequired,these,alongwithdetectablewarnings,willprovidestrongcuesforpeoplewithlimitedsight.

Pedestriancallbuttonsshouldhavelocatortonesforpedestrianswithlimitedsight.

Pathsshouldbemarkedbywhitecontinentalcrosswalkmarkings(longitudinalstripes).

On‐streetparkingshouldberemovedforadistance(typically40to60feet)adequatetoassuresightdistanceforpathuserswaitingonthecurb.

Analternativetreatmentwhereparkingispresentistoprovideacurbextension,typically6feetdeepfora7to8footparkinglane.Curbextensionsreduceoreliminatetheneedforremovingparking,anddecreasethecrossingdistanceforthepath.

Atcrossingswithmarginalsightdistance,advancesigningorevenadvanceflashingindicatorsmaybeappropriate.

4.8.5 Railroad‐Highway Grade Crossings 

Thefollowingguidelinesaffectthehorizontalalignmentofstreetsatarailroad‐highwaygradecrossing:

Crossingsshouldbeavoidedonbothhighwayandrailroadcurves.Railroadcurvespresentaproblemofsuperelevatedtrackcrossingtheroadway.Acurveonthecrossinghighwaypreventsanysuperelevationonthehighway,resultinginanawkwardorunsafecurve.

Thehighwayshouldintersecttracksasnearaspossibleto90degrees.

Ideally,thereshouldnotbenearbyintersectionswithstreetsordriveways.Whereitisnotpossibletoprovidesufficientdistancebetweenthecrossingandnearbyintersections,trafficsignalsatthenearbyintersectioncanbeinterconnectedwiththegradecrossingsignal,toenablevehiclestoclearthegradecrossingasatrainapproaches.

Thecrossingshouldbewideenoughtopermitbicycliststocrossthetracksatrightangles,whilestayingintheirtrafficlane.

Thefollowingguidelinesapplytotheverticalalignmentofstreetsatrailroadhighwaygradecrossings:

1.4‐72  Intersection Design  DRAFT 

Thestreetsurfaceshouldbeatthesameplaneasthecross‐slopeofthetopoftherails(levelfortangentrailandadoptingthegradeofsuper‐elevatedrail)foradistanceof2feetoutsideeitherrail.Beyondthispoint(i.e.,2feetfromoutsideedgeofrail),thegradeshouldnotbemorethan1percentgreaterthanthegradeacrossthetracks.

Verticalcurvesshouldbeusedtomakethetransitionfromthestreetgradetotherailcross‐slopeplanedescribedabove.

Trafficcontroldevicesforrailroad‐highwaygradecrossingsrangefrompassive(signs,pavementmarkings)toactive(flashinglightsignals)torestrictive(automaticgates).ConsulttheMUTCDfordetailedcriteriaforthedesignandoperationofthesedevices.Atcrossingsprotectedbyactivesignalsorgates,thesightdistancerequirementisdeterminedbythedesignspeedofthecrossingstreet(seeChapter2ofthisGuidebook).AtgraderailcrossingsshouldbeconsistentwiththeDepartmentofTransportation’sHighwayDesignManual.Atcrossingswithouttrainactivatedwarningdevices,thesightdistancemustallowthedriverorbicyclisttoobservetheapproachingtrainatsufficientdistancetopermitstoppingpriortoreachingthecrossing.Thedistanceneededforthiscasedependsonthespeedofthevehicleandthespeedofthetrain.DetailedsightdistancesaregivenfortheWB‐65designvehicleintheAASHTOGreenBook.Wherepublicsidewalkscrossrailsystemsat‐grade,thesurfaceofthecontinuouspassageshallbelevelandflushwiththerailtopattheouteredgeandbetweentherails.

4.8.6 Driveways 

Drivewaysarepointsofaccessfrompublicstreetstoprivateproperty,andarethereforenotintersections,asdefinedinthischapter,althoughsomelargevolumedrivewaysshouldbedesignedasintersections.GuidelinesfordrivewaydesignandspacingareofferedinChapter7.

4.9 For Further Information 

HighwayCapacityManual,TransportationResearchBoard,Washington,D.C.,2010.

ManualonUniformTrafficControlDevices,FederalHighwayAdministration,2009.

APolicyonGeometricDesignofHighwaysandStreets,AASHTO,2011.

Roundabouts:AnInformationalGuide,FederalHighwayAdministration,2010.

GuideforthePlanning,DesignandOperationofPedestrianFacilities,AmericanAssociationofStateHighwayandTransportationOfficials(AASHTO),2004.

Section 1 – Chapter 4

  Intersection Design  1.4‐73 

GuidefortheDevelopmentofBicycleFacilities,AmericanAssociationofStateHighwayandTransportationOfficials(AASHTO),2012

UrbanBikewayDesignGuide,NACTO,2011.

ADAAccessibilityGuidelinesforBuildingsandFacilities,TheAccessBoard,amendedthroughAugust2005.

GuidelinesforDrivewayLocationandDesign,InstituteofTransportationEngineers(ITE),1987.