CFD Computations of a Cavitation Vortex Rope

25
CFD Computations of a Cavitation Vortex Rope Dr. J. Decaix* and Pr. C. Münch, Univ. of Applied Science and Arts - Western Switzerland Valais, Sion, Switzerland Dr. S. Alligné, Power Vision Engineering Sàrl, Escublens, Switzerland Dr. A. Müller and Pr. F. Avellan, Laboratory of Hydraulic Machines, Ecole Polytechnique Fédérale de Lausanne, Switzerland * [email protected] PASC15 – Zurich 01-03 June 2015

Transcript of CFD Computations of a Cavitation Vortex Rope

Page 1: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 1

CFD Computations of a Cavitation Vortex Rope

Dr. J. Decaix* and Pr. C. Münch, Univ. of Applied Science and Arts - Western Switzerland Valais, Sion, Switzerland Dr. S. Alligné, Power Vision Engineering Sàrl, Escublens, Switzerland Dr. A. Müller and Pr. F. Avellan, Laboratory of Hydraulic Machines, Ecole Polytechnique Fédérale de Lausanne, Switzerland

* [email protected]

PASC15 – Zurich 01-03 June 2015

Page 2: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 2

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

CONTENTS

1) CONTEXT 2) OBJECTIVE 3) METHODOLOGY 4) TEST CASE 5) MODELLING 6) NUMERICAL SET UP 7) RESULTS WITHOUT CAVITATION 8) RESULTS WITH CAVITATION 9) CONCLUSION AND OUTLOOK

Page 3: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 3

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

CONTEXT

HYdropower plants PERformance and flexiBle Operation towards Lean integration of new renewable Energies

FP7 ENERGY no: 608532 HYPERBOLE

https://hyperbole.epfl.ch

Page 4: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 4

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

CONTEXT

WHAT IS CAVITATION ? WHAT IS VORTEX ROPE ?

RUNNER

DRAFT TUBE

Pvap (T=20°C) = 2 300 Pa

Page 5: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 5

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

OBJECTIVE

Pressure surge Model test

Prototype

? Scale transposition

Page 6: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 6

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

METHODOLOGY

3D Modelling

1D Modelling

Prototype

𝜕𝜌𝜕𝑡 + 𝛻 . (𝜌𝐶) = 0

𝜕𝜌𝐶𝜕𝑡 + 𝛻 . 𝜌𝐶 ⊗ 𝐶 = − 𝛻𝛻 + 𝛻. (𝜏 + 𝜏𝑡)

𝜕𝑟𝑔𝜕𝑡

+ 𝐶.𝛻 𝑟𝑔 = 1𝜌𝑔

S

TODAY

IN A NEAR FUTURE

Simulations of the model test and comparisons with experimental results

Page 7: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 7

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

TEST CASE: FRANCIS TURBINE AT OVERLOAD

Parameter Value

Head, H (m) 26.8

Torque, T (N.m) 1400

Specific Energy, E (J/kg) 263

Rotational speed, n (rpm) 800

Discharge, Q (m3/s) 0.515

Cavitation number, σ (-) 0.11

Flow Direction

Q > Qnominal

Draft Tube

Spiral Case

Runner

Page 8: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 8

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

MODELLING

Reynolds-Averaged Navier Stokes Equations (RANS)

Mass

Momentum

Gaz volume fraction

Pvap (T=20°C) = 2 300 Pa

Turbulence stresses are modelled using the Boussinesq’s assumption. The eddy viscosity is computed using the k-ω SST model.

Cavitation model

𝜕𝜌𝜕𝑡

+ 𝛻 . (𝜌𝐶) = 0

𝜕𝜌𝐶𝜕𝑡 + 𝛻 . 𝜌𝐶 ⊗ 𝐶 = − 𝛻𝛻 + 𝛻. (𝜏 + 𝜏𝑡) 𝜕𝑟𝑔𝜕𝑡

+ 𝐶.𝛻 𝑟𝑔 = 1𝜌𝑔

𝑆

𝑁𝑉 = 1 − 𝛼𝑉3 𝑟𝑛𝑛𝑛4𝜋𝑅𝐵3

𝑁𝐶 =3𝛼𝑉4𝜋𝑅𝐵3

By default: 𝐹𝑉 = 50, 𝐹𝐶 = 0.01, 𝑟𝑛𝑛𝑛 = 5−4, 𝑅𝐵 = 2−6 𝑚

𝑆 = 𝑆𝑉 = 𝐹𝑉𝑁𝑉𝜌𝑉4𝜋𝑅𝐵2 32

𝑃𝑣𝑣𝑣 − 𝑃

𝜌𝐿if 𝑃 < 𝑃𝑣𝑣𝑣

𝑆 = 𝑆𝐶 = −𝐹𝐶𝑁𝐶𝜌𝑉4𝜋𝑅𝐵232

𝑃𝑣𝑣𝑣 − 𝑃

𝜌𝐿 if 𝑃 > 𝑃𝑣𝑣𝑣

Vaporisazion term

Condensation term

Page 9: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 9

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

MESHING

Part Number of nodes

Spiral Case 1.69E+06

Stay Vane + Guide Vane 3.17E+06

Runner 2.63E+06 DraftTube 3.10E+06

Total 10.6E+06

Structured mesh with hexahedra

ICEM

Page 10: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 10

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

NUMERICAL SET UP

Equation Scheme

Momentum Backward Second Order

Turbulence Backward First Order

Gas Volume Fraction Backward First Order

Time Scheme

Boundary Condition

Inlet Discharge

Outlet Opening Pressure

Wall No slip condition

Rotating wall Rotation speed

Interface Transient rotor/stator

Boundary conditions

Advection Scheme Equation Scheme

Momentum TVD Scheme

Turbulence Upwind First Order

Gas Volume Fraction TVD Scheme

ANSYS CFX 15.0

Page 11: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 11

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

ROTOR/STATOR INTERFACE

Page 12: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 12

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

COMPUTATIONAL RESSOURCES

CPU ressources: 2 CPU with 10 cores => 20 cores. Memory allocated: from 30 to 60 Gb. Computational time: 20 days. Storage: 100 Gb Message passing : MPICH

Page 13: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 13

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

GLOBAL RESULTS WITHOUT CAVITATION

Parameters Experiment Computation Head (m) 26,8 26,2

Torque (N.m) 1411 1411 Specific Energy (J/kg) 263 257

Efficiency (-) 0,87 0.90 Ned (-) 0,288 0,291 Qed (-) 0,259 0,262

Δt = 10-3 s 4.8° of revolution per time step Simulation time duration: t = 4 s

Page 14: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 14

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

VORTEX ROPE WITHOUT CAVITATION

Upper Section

Lower Section

Pressure iso-surface

Page 15: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 15

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

VELOCITY FIELDS WITHOUT CAVITATION Upper Section Lower Section

Mean Axial

Velocity

Mean Tangential

Velocity

Page 16: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 16

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

UPPER SECTION: TANGENTIAL VELOCITY

Page 17: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 17

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

LOWER SECTION : TANGENTIAL VELOCITY

Page 18: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 18

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

REDUCED DOMAIN: MOTIVATION

Pressure surge due to the elbow

Pressure surge controlled by the boundary condition

To reduce CPU time To better control the fluctuations

Page 19: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 19

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

REDUCED DOMAIN: METHODOLOGY

Reduced domain Runner + Straight part of the Draft Tube

Guide Vanes/Runner interface

Full domain

Transfer of the radial velocity field with a correction coefficient in order to guarantee the mass flow conservation

Page 20: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 20

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

CAVITATING VORTEX ROPE

Iso-surface: αL = 0.5

Δt = 0.96 deg

Time duration: 1s

Page 21: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 21

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

VELOCITY FIELD WITH CAVITATION

Mean Axial

Velocity

Mean Tangential

Velocity

Upper Section Lower Section

Page 22: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 22

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

UPPER SECTION: TANGENTIAL VELOCITY

Page 23: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 23

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

LOWER SECTION: TANGENTIAL VELOCITY

Page 24: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 24

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

CONCLUSION AND OUTLOOK

Achievement Full domain: CFD results are in agreement with the experiment.

Reduced domain: Cavitating rope is captured accurately compared to the experiment.

Ongoing work To compute the flow with an excitation pressure at the

outlet of the reduced domain.

To provide the correct inputs to the 1D model.

Methodology has been already tested on a 2D case

Page 25: CFD Computations of a Cavitation Vortex Rope

HES-SO Valais-Wallis Page 25

PASC15- Zurich 01-03 June 2015 CFD Computations of a Cavitation Vortex Rope J. Decaix, S.Alligné, A. Müller, C. Münch, F. Avellan

THANK YOU FOR YOUR ATTENTION