CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

download CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

of 40

Transcript of CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    1/40

    Measuring and ManagingCO2 Emissions

    o European Chemical Transport

    Proessor Alan McKinnon

    Dr Maja Piecyk

    Logistics Research Centre

    Heriot-Watt UniversityEDINBURGH, UK

    Report prepared for

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    2/40

    For electronic version of this report, see www.cefc.org

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    3/40

    Contents

    Foreword 2

    ExecutiveSummary 3

    1.Introduction 4

    2.MeasurementofCO2Emissions 5 2.1Settingobjectivesorcarbonmeasurement 5

    2.2Selectingmethodsocalculation 5 2.3Defningboundaries 6

    2.4Factorsaectingthechoiceoemissionactors 9

    2.5ReviewoEuropeandatasourcesonreightemissionactors 13

    2.6Characteristicsochemicaltransportoperations 14

    2.7Averageemissionactorsorthemovementochemicalsbythedierenttransportmodes 16

    2.8Recommendedaverageemissionactorsorchemicaltransportoperations 20

    3.MeasurementofTransport-relatedCO2EmissionsinotherSectors 21

    4.OpportunitiesforDecarbonisingChemicalTransportOperations 25 4.1Modalsplit 26

    4.2Supplychainstructure 27

    4.3Vehicleutilisation 27

    4.4Fuelefciency 29

    4 .5Carbonintensityouel 30

    5.CostEffectivenessofDecarbonisationMeasures 31

    6.Conclusion 34

    Biographies 36

    1

    Contents

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    4/40

    Measuringan

    dManagingCO2

    Emissionsfromt

    heTransportofChemicalsinEurope

    2

    Foreword

    Climatechangeisoneothebiggestchallengesac-

    ingindustries,governmentsandsociety.

    Policymakersandindustrysectorsacrosstheworld

    areworkingtounderstandtheirownroleand

    requiredactions.Individualchemicalcompaniesare

    alreadydoingalotoworkintheareaoenergy

    efciencyandinnovation,recognisingenvironmental

    perormancealongsidehealth,saetyandsecurityasessentialorbusinesssuccess.

    Thechemicalindustryisuniquelyplacedtoenable

    energysavingsandreducegreenhousegasemissions

    throughtheapplicationoourproducts,orexample

    buildinginsulationandlow-temperaturedetergents.

    TheEuropeanchemicalindustryhasanexcellent

    trackrecordovermanydecadesoimprovingenergy

    efciencyatitsmanuacturingsites.

    Toidentiyhowwecanimprovetheperormanceo

    thelogisticsoperationsothechemicalindustry,we

    mustfrstunderstanditscurrentcarbonootprint.By

    developingacommonunderstandingohowtocal-

    culatethis,alongwithrelatedissuesandchallenges,

    individualcompanieswillbeabletoassessthemselves

    inawaythatiscomparableacrosstheindustry.

    InthisReport,ProessorAlanMcKinnonandDrMaja

    Piecykassessarangeoexistingtoolsandtheories

    oncarbonootprinting.Theirreviewoavailable

    literatureillustratesthenumerousapproachesand

    assumptionsinthisarea.McKinnonandPiecykalso

    lookatthelessonsthatcanbelearntromwhat

    otherindustriesaredoing.

    Althoughthereisnodefnitivemethodologyon

    calculatingcarbonemissionsatpresent,thereport

    providesclearguidanceinkeyareas.

    Bytakingacloserlookattheoperationsosomeo

    thelargerchemicalcompanies,McKinnonandPiecyk

    areabletostarttobuildapictureocurrentCO2

    emissionsothevarioustransportmodes.Finally,

    theyconsidersomeothepotentialdecarbonisationmeasuresavailabletothechemicalindustryandthe

    possiblechallengesthatneedtobeovercometo

    achievethese.

    ThisReportrepresentsthefrststeptounderstand-

    inghowwecanassessandimproveouroperations.

    Incommissioningthiswork,thechemicalindustryis

    takingaproactiveroleinimprovingthemeasurement

    andmanagementotransport-relatedcarbonemis-

    sionsaspartoitscontinuingcommitmenttosae,

    efcientandsustainablelogistics.

    Jack Eggels

    Chairman

    Cefc Strategy Implementation

    Group Logistics

    Cefc - European Chemical Industry Council

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    5/40

    Executive Summary

    Thisreportexaminestheoptionsormeasuring

    andreducingcarbondioxide(CO2)emissionsrom

    transportingchemicalsproducedinEurope.Itisbased

    onareviewoliterature,theresultsoapreliminary

    surveyolargechemicalcompaniesundertakenby

    Cefc,interviewswithseniorlogisticsmanagersin

    thechemicalindustryandahigh-levelworkshop

    onthesubjectconvenedbyCefc.Thestudyalso

    investigatedthemeasurementocarbonemissionsromtransportinotherindustrialsectorstoseewhat

    lessons,iany,canbelearnedbychemicalcompanies.

    Thereportbeginsbyconsideringthereasonswhy

    companiesneedtocarbonootprinttheirtransport

    operations.Itthendiscussesaseriesokeyissuesthat

    mustberesolvedwhendesigningacarbonmeasure-

    mentsystemorreighttransport.Theseincludethe

    choiceoapproach(eitherenergy-basedoractivity-

    based),thedefnitionocorporate,unctional,system

    andgeographicalboundariesaroundthelogistics

    systemtobeaudited,thetypesogreenhousegas

    (GHG)andtransportmodestobeincludedinthe

    calculation,thedegreeoanalyticaldisaggregation

    andassumptionstomadeabouttheallocationo

    emissionsromtheemptyrepositioningovehicles

    andcontainers.

    Wethenreviewthepublisheddata,atbothEuropean

    andnationallevels,oncarbonemissionactorsor

    thevarioustransportmodesusedbychemicalcompa-

    nies.Arangeovaluesexistoreachmodereecting

    dierencesinprimarydatasourcesandassumptions

    aboutvehicleloadactors,uelefciencyandtypeo

    energy(orelectrifedrailreightservices).Tableshave

    beencompiledtoshowtherangeovaluesreported

    inpublishedreportsanddata-sets.Aseriesoaver-ageemissionactorsarethenrecommendedorthe

    movementochemicalsbyeachothetransport

    modes,takingaccountotheparticularcharacter-

    isticsochemicallogistics.Inthecaseotrucking,

    thedominantmodeochemicaltransport,matrices

    arepresentedtoshowhowtheaverageemission

    actorsvarywiththeweight-basedloadingactorand

    percentageoemptyrunning.Giventhediversityo

    waterbornereightservices,separateaverageemis-

    sionactorsareprovidedordierenttypesoshort-

    seaanddeep-seaoperations.Mode-specifcemission

    actorshavebeencombinedtoderivecomposite

    emissionactorsorinter-modalreightservices.

    AstheEuropeanchemicalindustryisnotalonein

    tryingtocarbonootprintitstransportoperations,

    acomparisonhasbeenmadeosimilarinitiatives

    innineothersectors:cement,ertiliser,steel,metal

    cans,bitumen,wineandspirits,ood,paperand

    board/packagingandpostalservices.Severalothese

    sectors,suchasertiliser,packagingandwinesand

    spirits,havegonethroughasimilarprocesstothe

    Europeanchemicalindustryinadoptinganactivity-

    basedapproachtothecarbonootprinting

    otransport.

    Overall,however,thechemicalindustryappearstobe

    oneothemostprogressivesectorsinitsmeasure-

    mentotransport-relatedemissions.

    Havingmeasuredtheseemissions,thenextstage

    isorcompaniestodevelopstrategiesorreducing

    them.Theremainderothereportexaminesarange

    odecarbonisationmeasuresorchemicaltransport

    operationswithinagreenlogisticsramework.Thisrameworkocusesattentiononfvekeyparameters:

    reightmodalsplit,supplychainstructure(i.e.num-

    berandlengtholinksinthesupplychain),vehicle

    utilisation,energyefciencyandthecarbonintensity

    otheenergysource.Opportunitiesoralteringeach

    otheseparametersisassessed.Considerationisalso

    giventothegeneralcost-eectivenessothesede-

    carbonisationmeasures.Availabledatasuggeststhat

    mostothemeasureswhichcutcarbonemissions

    alsoreducecostsandprovesel-fnancingintheshort

    tomediumterm.

    Theconcludingsectionshowshow,astheavailability

    odataonenergyuse,loadactorsandconsignment

    routingincreases,themeasurementocarbonemis-

    sionsromchemicaltransportcanevolveromthe

    currentactivity-basedapproachtoamoreaccurate

    andexibleenergy-basedapproach.

    3

    ExecutiveSummary

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    6/40

    MeasuringandManagingCO2

    Emissionsfromt

    heTransportofC

    hemicalsinEurope

    4

    Tomeettheambitiouscarbonreductiontargetsthat

    governmentsarenowsettingor2020andbeyond,

    individualcompaniesandindustrysectorswillhaveto

    implementdecarbonisationstrategiesoverthenext

    ewyears.Thelongerthatittakesthemtogetonto

    anappropriatecarbonreductiontrajectory,theharder

    itwillbetoreachthetargets.Manyindustrysectors

    andcompaniesarestillatanearlystageinthispro-

    cess,analysingtheirgreenhousegas(GHG)emissionsandexploringoptionsorreducingthem.Astheold

    businessmantrastates,iyoucantmeasureityou

    cantmanageitandsothelogicalplacetostartis

    withdetailedmeasurementoGHGemissions.

    Eortshavebeenmadeinternationallytostandardise

    themeasurementandreportingotheseemissionsin

    ordertoensurecomparability.Atpresentthereisno

    singleagreedstandard,thoughthetwomainstan-

    dardsdevelopedbytheWorldBusinessCouncilon

    SustainableDevelopment/WorldResourcesInstitute

    (2004)(theGreenhouseGasProtocol)andInterna-

    tionalStandardsOrganisation(ISO14064)arebroadly

    similar.Bothsetoutguidelinesorthecarbonaudit-

    ingoindividualbusinessesandprovideadviceonthe

    scopingothecalculation,datacollectionmethods

    andtheallocationoemissions.Neither,however,

    providedetailedguidanceonhowcarbonemissions

    romspecifcactivities,suchastransport,shouldbe

    measured.AseparateinitiativebyCEN,theEuropean

    standardsorganisation,iscurrentlydevelopingand

    agreeingstandardsorthemeasurementoGHG

    emissionsromtransport,butthisprocessisunlikely

    tobecompleteduntilthemiddleo2012.

    Inthemeantime,companiesandindustrybodiescan

    obtainadviceonthecarbonauditingotransport

    operationsromgovernmentdepartments/agen-

    cies,suchasDEFRAintheUKandADEMEinFrance,

    andnationalstandardsbodies,suchastheBritish

    StandardsInstitutionandtheFrenchAFNOR.Inthe

    absenceoagreedmeasurementstandards,however,

    thereisadangerthatindividualsectorswilladopt

    standardsandproceduresthatproduceinconsistentresults.Onepurposeothisreportistoexamine

    thewaysinwhichcarbonemissionsromreight

    transportarebeingmeasuredinEuropeand,onthat

    basis,recommendacarbonootprintingprocedure

    orchemicaltransportoperations.

    Cefchasrecentlyconductedasurveywhichcollected

    dataontonnagesanddistancesmovedbydierent

    transportmodesandpermittedthecalculationoag-

    gregatefguresorCO2emissions.Thisinitialexercise

    hashighlightedtheproblemsochoosingsuitable

    emissionactorsorthevarioustransportmodes.The

    presentstudyaimstoachievethreemajorobjectives:

    Provideadviceonmeasuringthecarbonootprint

    oEuropeanchemicaltransport,inparticularon

    thechoiceoappropriateaveragecarbonemission

    actorsorthedierentmodesotransport

    Reviewsimilarinitiativesinotherindustrialsectors

    toseeitherearelessonstolearned

    Identiymajoropportunitiesorreducingthe

    carbonootprintoEuropeanchemicaltransport

    operations

    1. Introduction

    Inundertakingthisstudywehavereviewedrelevant

    publishedliterature,datasetsandwebsites.Allthe

    mainestimatesocarbonemissionactorsorEuro-

    peanreighttransporthavebeencompared.Insome

    caseshypotheticalvalueshavebeeninsertedintoon-

    linecarboncalculators,simulatingreightmovements

    thatwouldbetypicalothechemicalindustry.Togain

    adeeperinsightintochemicaltransportoperations

    andthepracticalproblemsocollectingemissions-relateddataandopportunitiesordecarbonisation,

    wehaveconductedtelephoneinterviewswithsenior

    logisticsmanagersinlargechemicalcompanies.

    AworkshopwasalsoheldatCefcsofcesinBrus-

    selstodiscussanearlierdratothisreport,which

    wasattendedbylogisticsmanagersromchemical

    companies.Inthisreportprimarydatacollectedrom

    theinterviewsandthisworkshophasbeenintegrated

    withsecondary,publisheddataobtainedromother

    sources.

    Inassessingtherangeomeasuresthatcanbeap-

    pliedtocutCO2emissionsromchemicaltransport,

    wehaveadoptedananalyticalrameworkdeveloped

    inthecourseoaUKuniversityresearchprojectcalled

    GreenLogistics1.

    Sections2and3othereportdealwithcarbon

    measurementissues,whilesection4concentrates

    onpossiblecarbonreductionoptionsorEuropean

    chemicaltransport.

    1 Moredetailsothisresearchprojectcanbeoundat

    www.greenlogistics.org.

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    7/40

    2 CarbonTrust(2007)CarbonFootprintsintheSupplyChain:theNextStepsorBusinessLondon.

    3 Piecyk,M.CarbonAuditingoCompanies,SupplyChainsandProductsinMcKinnon,A.C.etal(eds)(2010)GreenLogistics,Kogan

    Page,London.

    2. Measurement of CO2 Emissions

    TheUKCarbonTrust2hasrecommendedafvestep

    procedureorthemeasurementandreportingo

    carbonemissionsrombusinesses(Figure 1).Inthis

    sectionwewilldiscusseachothesestepsasthey

    relatetochemicaltransportoperations.

    FIGURE1

    CarbonMeasurementProcess

    (adaptedfromtheCarbonTrust,2007)

    2.1Settingobjectivesforcarbonmeasurement

    Itisimportantoracompanyorindustrytoestablish

    attheoutsetwhytheyaremeasuringcarbonemis-

    sionsbecausetheanswertothisquestionlargely

    determinestherequireddegreesocoverage,ac-

    curacyanddisaggregation.Thereareseveralpossible

    reasons,someexternaltothebusinessandothersyieldinginternalbenefts:

    Externalfactors

    1.Legalobligation:insectorscoveredbythe

    EuropeanEmissionsTradingScheme(ETS)or

    nationalcarbontaxation/levyschemes,carbon

    measurementiscompulsory.Whiletheproduc-

    tionactivitiesochemicalcompaniesarecurrently

    coveredbytheseschemes,transportandlogistics

    operationsarestillexcluded.(Airtransportwillbe

    includedintheETSin2012,thoughchemicalcom-

    paniessendonlyatinyproportionotheirreight

    bythismode.)

    2.Customerrequest:industrialcustomerscanaskor

    estimatesotheamountocarbonembeddedin

    theproductstheybuy.Thisisbeginningtohappen

    intheretailgrocerysector,thoughisstilluncom-

    moninthechemicalindustry.

    3.Corporatesocialresponsibility:carbonauditingand

    reportingisbecomingakeyaspectoCSR.

    4.Participationinindustry-widesurveysandbench-

    markingexercises:industrysectorsarekeento

    demonstrateandimprovetheircarboncredentials.

    Internalmotives

    5.Identiyingopportunitiesorcuttingcarbon

    andimprovingefciency

    6.Assessingthecarbonimpactologisticsdecisions

    andinvestments

    7.Measuringchangesincarbonemissions

    throughtime

    2.2Selectingmethodsofcalculation

    Therearebasicallytwoapproachestotheestimation

    oCO2emissionsromreighttransportoperations:

    onebasedonenergyconsumptionandtheotheron

    thelevelotransportactivity3.

    Energy-basedapproach:sincealmostallCO2emis-

    sionsromreighttransportareenergy-related,the

    simplestandmostaccuratewayocalculatingthese

    emissionsistorecordenergyuseandemploystan-

    dardemissionactorstoconvertenergyvaluesinto

    CO2.Theunitoenergywilltypicallybelitresouel

    ortrucks,diesel-hauledtrains,bargesandships,and

    kilowatthoursorelectrifedrailandpipeline.

    Forcarriersandcompanieswithinhousetransport

    STEP5Verication and reporting

    STEP4Calculation

    STEP3Data collection and choice

    of emission factors

    STEP 2

    Selecting calculation approachand dening boundaries

    STEP1Setting objectives

    5

    Chapter2

    Measuremento

    fCO2Emissions

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    8/40

    MeasuringandManagingCO2

    Emissionsfromt

    heTransportofC

    hemicalsinEurope

    4 Thistoolcanbeoundatthewww.greencargo.com

    website.

    operations,whichhavedirectaccesstotheenergy

    data,theenergy-basedapproachisclearlypreer-

    able.AsmosttransportoperationsintheEuropean

    chemicalindustryareoutsourced,however,shippers

    lackdirectaccesstothisenergydata.Somechemical

    companieshaveaskedorthisdataandreceivedes-

    timatesoaverageuelefciencyromtheircarriers.

    Noevidencehasbeenoundocarriersprovidinguel

    consumptiondataonajourney-by-journeybasisorchemicalows.Theissueoobtainingueldatarom

    carriersismoreullydiscussedinasection4.4.

    Activity-basedapproach:Intheabsenceoenergy

    data,itispossibletomakearoughestimateothe

    carbonootprintoatransportoperationbyapplying

    asimpleormula:

    CO2=tonnestransportedxaveragedistancetrav-

    elledxCO2emissionsactorpertonne-km

    Companyrecords,ERPsystemsanddeliverymaniests

    canprovidethenecessarydataontonnagesmoved.

    Forroadmovements,estimatesoaveragelengtho

    haulcanalsobebasedondataromthesesources.I

    necessary,sotwarepackagessuchasMapPointand

    Autoroutecanbeappliedtolistsocustomerloca-

    tionstoestimateroaddistances.Obtainingdistance

    dataorrailandwater-bornetransportcanbemore

    problematic,thoughtheEcoTransitonlineenviron-

    mentalassessmenttoolcanbeusedorthispurpose.

    Inthecaseointermodaltransport,shippersoten

    donotknowtherouteollowedorthedistancesplit

    betweendierenttransportmodes.Theyusuallyrely

    oncarrierstoprovidethisinormation,thoughthe

    EcoTransittool4providesapproximateroutinganddis-

    tancedataorintermodalowsspecifedbytheuser.

    Oneothemostdifcultissuestoresolveinapplying

    theactivity-basedapproachisthechoiceocarbon

    emissionactorsoreachmode.Thesearegenerally

    expressedasgrammesoCO2pertonne-km.

    Thisweight-basedmeasurementoemissionactorsiswellsuitedtothechemicalindustryasitsproducts

    havearelativelyhighdensityandcausevehicles

    toweighoutbeoretheycubeout.Asaconse-

    quence,vehicleloadactorsinthechemicalindustry

    aregenerallymeasuredinweightterms.

    Oneothechemicalcompaniesconsultedhad

    obtaineduelconsumptiondataromsomeoitscar-

    riersandmanagedtoderiveitsownsetoemission

    actors.Nogeneralemissionactors,however,have

    soarbeencalculatedorchemicaltransportasa

    whole.Itisnecessarytorely,thereore,onthenumer-

    ousstudiesthathavebeenundertakeninEurope

    overthepastdecadetoestimateemissionactorsor

    thegeneralmovementoreightbydierentmodes.

    Theyarereviewedinsection2.5.

    2.3Deningboundaries

    Fourtypesoboundarymustbedrawnaroundthe

    transportsystemtodelimittheextentothecalcula-

    tion:corporate,unctional,systemandgeographical

    boundaries.

    2.3.1Corporateboundary

    Thisdeterminesthedivisionoresponsibilityorcar-

    bonemissionsbetweenthecompanyanditssuppli-

    ers,customersandcarriers.Thelineshouldbedrawn

    inawaythatminimisesdouble-countingandallo-

    catesresponsibilitytotheentitythathasthegreatest

    controlovertheemissions.Thisusuallyreectsthe

    allocationofnancialresponsibility.Whoeverpaysor

    theactivityshouldbeassignedtherelatedCO2emis-

    sions.Forcompaniestakingownershipothegoods,

    thedeliverytermsprovideasolidcommercialandle-

    galbasisorallocatingthetransportemissions.Where

    thefnishedproductissoldonadeliveredpricebasis,

    theshipperwillberesponsibleortheseemissionsas

    arasthecustomerspremises.I,ontheotherhand,

    ashappenswitharound20-30%ochemicalsales,

    thecustomerarrangescollectionromtheplant,he

    mustassumeresponsibilityorthetransportCO2.

    Thesituationwithcarriersismorecomplicatedand

    requiresjudgementandnegotiation.Wheretrans-

    portisoutsourced,theemissionsallintowhatthe

    GreenhouseGasProtocolcallsScope3,i.e.emissions

    romactivitiesperormedbyothercompanieson

    yourbehal.Itisnowconsideredgoodpracticeor

    businessestocounttheseScope3emissionsaspart

    6

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    9/40

    otheircarbonootprint.Thereremainssomedebate,

    however,overtheallocationoacarriersemissions

    betweenitsclients.Whereachemicalcompanydes-

    patchesaullloadoproduct,itwouldbeallocated

    alltheemissionsromthisoutboundjourneyleg.

    Asalargeproportionooutbounddeliveriesinthe

    chemicalindustryallintothiscategory,thismakes

    theallocationrelativelystraightorward.Moreconten-

    tiousistherepositioningoemptyvehiclestocollectconsignmentsochemicals.Broadlyspeakingonecan

    taketwoviewsonthisissue:

    1.Itistheresponsibilityothecarriertofndreturn

    loadsoritsvehicles.Thisgivesitacommercial

    incentivetofndabackload.Manycarriersare

    reluctanttodivulgeinormationaboutemptyrun-

    ningandreturnloading,onthegroundsthatthis

    wouldweakentheircommercialpositioninnego-

    tiations.Iitisassumedthatitisthecarriersjobto

    maximisebackloadingandthathewillnotdisclose

    theleveloemptyrunning,itseemslogicalthathe

    shouldtakeresponsibilityorrelatedemissions.The

    carrier,aterall,hasmuchmorecontroloverthe

    useobackhaulcapacitythantheshipper.

    2.Therepositioningoemptyvehiclesisanintegral

    partothetransportserviceprovidedbyacarrier.

    Theshipperindirectlypaysortheemptylegsas

    partotheratethecarrierchargesand,hence,it

    shouldacceptatleastsomeotheresponsibility

    ortherelatedcarbonemissions.Mostothepub-

    lishedemissionactorsorroadreightalsomake

    anallowanceoremptyrunning.

    Discussionswithlogisticsmanagersinthechemical

    andotherindustriesindicatethatthefrstproposition

    commandsagooddealosupport.However,asa

    signifcantamountoemptyrunningisinevitableand

    attributabletotheoutbounddeliveryochemicals,

    itseemsreasonablethatchemicalcompaniesshould

    assumesomeresponsibilityorcarbonemissionsrom

    emptyjourneylegs.Intheestimationoemissionac-

    torsorroadtransportinSection2.4,thereore,theeectsodieringlevelsoemptyrunningonroad

    emissionactorsweremodelled.

    2.3.2Functionalboundary

    Boundariesmustalsobedrawninternallytodefne

    thescopeothetransportcalculation.Inthecaseo

    chemicallogisticstherearetwoareaswherethisis

    particularlysignifcant:

    Internalsupplychain:thereisunanimousagree-

    mentthatoutbounddeliverytocustomersandinter-

    planttransersshouldbeincludedinthecalculation

    andthatthemovementomaterialsontheproduc-

    tionsitebeexcluded.On-sitetransportisconsidered

    partotheproductionprocess.Opinionsdieron

    whetherinboundowsomaterialsshouldliewithin

    thescopeothecalculation.Theeasiestwayodeal-

    ingwiththisissueistoapplytherulediscussedabove

    underthecorporateboundaryheading(section2.3.1)

    i.e.ithecompanytakesresponsibilityorcollecting

    inboundsupplies(i.e.buysthemonanexworksbasis

    andpaysorthetransport)thentheyshouldalsoas-

    sumeresponsibilityortherelatedcarbonemissions.

    Relatedlogisticsactivities:shouldthecalcula-

    tionincludeemissionsromwarehousing,materials

    handlingoperations,tankcleaningetctopermit

    morecomprehensivecarbonootprintingologistics

    asawhole?Forexample,usingdataprovidedbya

    majortankcleaningcompany,weestimatethatthe

    CO2emissionsassociatedwiththisprocessrepresent

    around5-7%otheaverageCO 2emissionsroma

    roadshipmentochemicals.Onemajorbeneftoadoptingabroaderapproachisthatitexposescarbon

    trade-osinthemanagementotheseinter-related

    logisticalactivities.Decarbonisationeortscouldthen

    bemoreeectivelyco-ordinatedacrosstheentire

    logisticsunction.Whilethiswouldbeaworthwhile

    goalinthemediumterm,thepriorityatpresentlies

    inrefningcarbonmeasurementothetransport

    unction.

    7

    Chapter2

    Measuremento

    fCO2Emissions

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    10/40

    Measuringa

    ndManagingCO2

    Emissionsfromt

    heTransportofC

    hemicalsinEurope

    2.3.3Systemboundary

    TheSwedishenvironmentalorganisation,NTM,has

    dierentiatedfvelevelsosystemboundarythatcan

    bedrawnaroundatransportoperationandlabelled

    themSB1-SB5(Figure 2).Theselevelsarecumulative:

    SB1:confnesthecalculationtoemissionsromthe

    actualtransportoperation,mostowhichemanateromthevehicleexhaust,thoughinthecaseoelec-

    trifedrailreightoperationsincludeemissionsrom

    theelectricalpowersource.

    SB2:alsotakesaccountotheextraction,production,

    refning,generationanddistributionoenergy,taking

    aso-calledwell-to-tankperspective.

    SB3:alsoincludestheservicingandmaintenanceo

    vehiclesandtransportinrastructure

    SB4:broadensthescopeevenurthertoinclude

    emissionsromthemanuactureothevehicles,

    constructionotransportinrastructureandtheir

    subsequentscrappageanddismantling.

    SB5:alsoincludesemissionsassociatedwiththeman-

    agementotransportoperations,essentiallyofce

    unctionsandtheactivitiesosta.

    ItmaybealongtermaspirationtoadopttheSB5

    levelofauditing,butatpresentmostmeasure-

    mentofcarbonemissionsfromfreighttransport

    isconductedattheSB1level.Someorganisations

    havecompiledemissionfactorsthatembracelevels

    FIGURE2

    SystemBoundariesaroundTransportOperationsforCarbonMeasurement(source:NTM)

    8

    SB5Administrative functions, personnel, etc

    SB2Energy supply (well-to-tank / power plant)

    SB1Trafc operations- propulsion (engines / power plant)- evaporation and battery losses- cargo climate control

    SB4Vehicle / train / vessel / aircraft - constructionandscrapping

    Trafcinfrastructureandtransportinfrastructure- construction and dismantlingServiceandmaintenanceinfrastructure-constructionanddismantling

    SB3Vehicle / train / vessel / aircraft - service and maintenanceTrafc infrastructure - operation and maintenanceTransport infrastructure (terminals) - operation(incl. energy supply and maintenance)

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    11/40

    SB2andSB3forsometransportmodes.Itmightbe

    possible,therefore,tomakeroughestimatesofthe

    carbonfootprintofchemicaltransportatlevelsSB1,

    SB2andSB3,thoughthefocusofthisreportwillbe

    onemissionswithinSB1.

    Itisimportanttoapplythesystemboundarylevel

    consistentlyacrosstransportmodes.Forexample,itis

    essentialtoincludeemissionsromthegenerationoelectricityorelectrifedrailreightoperations.

    AttheSB1level,onlydirectemissionsromthe

    electricalgeneratingplantareincludedandcanbe

    comparedwithuelburnedbynon-electricvehicles.

    2.3.4Geographicalboundary

    TheEuropeanchemicalindustryservesaglobal

    marketandmuchoitsexportvolumeissoldona

    deliveredpriceorcostinsurancereight(ci)basis,

    makingthecompaniesresponsibleortransportat

    leastasarastheoreignportoentry.Whilethe

    mainocusothecarbonmeasurementexerciseis

    ontransportoperationswithinEurope,allowanceis

    alsomadeoremissionsromtheexportochemicals

    bydeep-seavesselsand,toamuchlesserextent,air

    reight.

    2.4Factorsaffectingthechoiceofemissionfactors

    Severalissueshavetoberesolvedinchoosingappropri-

    ateemissionactorsorchemicaltransportoperations:

    a)Greenhousegasestobeincluded

    b)Transportmodestobecovered

    c)Degreeodisaggregationbytypeovehicleandpowersource

    d)Energysupplychain

    e)Assumptionsaboutvehicleloadactors

    andemptyrunning

    ) Natureotheproduct

    g)Logisticaloperationsatdieringlevels

    inthechemicalsupplychain

    h)Geographicalvariability

    2.4.1Greenhousegases

    CO2isestimatedtoaccountoraround93-95%

    ototalGHGpotentialoemissionsromreight

    transport.Nitrousoxideandrerigerantgasesmake

    upmostotheremainder.Asewianychemical

    consignmentsrequiretemperature-control,theCO2

    shareototalGHGemissionromchemicaltransport

    islikelytobeevencloserto100%.Furthermore,

    mostothepublishedemissionactorsorreightare

    expressedsolelyintermsoCO25.Itisrecommended

    thereorethatthecarbonootprintingochemical

    transportalsobeconfnedtoCO2.

    2.4.2Transportmodes

    Emissionactorswillberequiredorthemainmodes

    oreighttransportusedtomovechemicalsin

    Europe:

    Road

    Rail

    Inlandwaterway/barge Short-seashipping:bulk,tanker,

    ro-roerry,container

    Deep-seashipping

    Pipeline

    Air

    Althoughonlyatinyproportionochemicalconsign-

    mentsmovebyair,theytravellongdistancesbythis

    modeandairreightserviceshaveacarbonintensity

    aroundtentimesthatoroadhaulage.

    Itispossibletocalculatecompositeemissionactors

    orintermodaltransportbyweightingmode-specifc

    actorswithestimatesothedistancestravelledby

    eachmode.Whilethiscanbedoneorindividual

    owsonparticularroutesusingonlinetools(suchas

    EcoTransit),nopublisheddataareavailableonthe

    distancesplitbetweenmodesthatwouldberequired

    tocalculateaverageemissionactorsordierent

    intermodalcombinationsataEuropeanlevel.Average

    valuesorthisdistancesplithavehadtobeestimated.

    5 ADEMEquotetheiremissionactorsingCO2

    equivalent.

    9

    Chapter2

    Measuremento

    fCO2Emissions

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    12/40

    Measuringa

    ndManagingCO2

    Emissionsfromt

    heTransportofChemicalsinEurope

    10

    2.4.3Degreeofdisaggregationbyvehicletypeandpowersource

    Onecaneitheruseaveragevaluesoreachothe

    mainmodesordisaggregatethembyvehicletype

    andpowersource.Theavailabledatasetsvaryinthe

    extenttowhichtheydisaggregateemissionactors

    andintheclassifcationstheyuse.Themodeoering

    thegreatestdegreeodisaggregationbyvehicletypeisroad.Thisisortunateaschemicalsarepredomi-

    nantlymovedbyroad.Itispossibletodierentiate

    thecarbonintensityoheavyarticulatedtrucks,which

    accountoralargeproportionothetotalmovement

    ochemicalsinEurope.

    Muchlessdisaggregationispossibleorrailreight

    operations.Themaindistinctionisbetweenelectri-

    fedanddiesel-hauledreighttrains,withtheormer

    urthersub-dividedtotakeaccountowidedier-

    encesinthecarbonintensityothevariousormso

    electricitygeneration.Whileitispossibletoobtaina

    rangeoemissionactorsorthesedierentrailreightenergycategories,itisverydifculttoapplythemin

    practiceasrailcompaniesandintermodaloperators

    donotprovideshipperswithabreakdownothe

    distancetravelledortonne-kmsmovedusingdier-

    entpowersources.Untilthisinormationisroutinely

    provided,chemicalcompanieshavelittlechoicebut

    touseemissionactorsorrailreightthatreectthe

    averagediesel/electrictractionsplitorreighttrains

    andaveragemixoelectricalpowersources.

    Thereisalsolimiteddierentiationovesselsmoving

    reightontheinlandwaterwaynetworkorbysea.In

    thecaseomaritimeoperations,thegrossweighto

    thevesselisakeydeterminantotheemissionactor.

    Somedatabasescontainindicativeemissionactors

    orvesselsodieringgrossweights.

    2.4.4Energysupplychain

    Asdiscussedabove,oneothemaindecisionsthat

    mustbemadeinanycarbonmeasuringexercise

    iswhetherornottoincludeemissionsromthe

    extraction,productionanddistributionoenergy,

    inotherwordswhetherthecalculationsshouldbe

    doneonawell-to-wheelbasisoronlytakeaccount

    oemissionsatthepointoenergyconsumptionon

    thevehicle(tank-to-wheel).Theemissionactors

    quotedinthisreportrelatesolelytouelconsumption

    onboardthevehicle,exceptinthecaseoelectrifed

    railreightoperationswhereemissionsromthegen-

    erationoelectricityinpowerplantsisincluded.

    2.4.5Assumptionsaboutvehicleloadingandemptyrunning

    Averagecarbonemissionactorsareverysensitive

    totheseassumptions.ThisisillustratedbyFigure 3

    whichshowshowtheemissionactorsorthemove-

    mentoreightina44tonnetruck(witha380brake

    horsepowertractorunit)haveanegativeexponential

    relationshipwithpayloadweight.Thecalculationis

    basedondatacollectedbyCoyle6

    invehicletrialsor

    theUKgovernmenttomonitortheeectsopayload

    ontheuelefciencyotrucks.Overthepayload

    range1-10tonnesthereisadramaticreductionin

    thecarbonemissionactor.Thereatertherateo

    reductionisrelativelygentleasthecurvebecomes

    asymptotictotheX-axis.Figure 4magnifesthe

    lowersectionothecurveandshowshow,even

    acrossthisattersection,modestchangesinpayload

    canhaveasignifcantimpactontheemissionactor.Increasingtheloadrom20to26tonne,orexample,

    reducesthegCO2pertonne-kmrom48to41.5.No

    allowanceismadeinthiscalculationortheempty

    runningothetruck.Table 1addsanextradimen-

    siontothecalculationandshowshowvaryinglevels

    oemptyrunningaecttheemissionactor.Fora

    givenpayloadontheladensectionothejourney,the

    leveloemptyrunningcanhaveamarkedeecton

    theemissionactor.Forexample,oranaveragepay-

    loado26tonnesontheladensection,theemission

    actorcanvaryrom41.5gCO2pertonne-kmwith

    noemptyrunningto68.6gCO2pertonne-kmwhen

    40%othekilometresarerunempty.

    Itismucheasiertoassesstheeectsovehicleload-

    ingonemissionactorsintheroadreightsectorthan

    itisorothertransportmodes.Thisispartlybecause

    muchlessresearchhasbeendoneontherelationship

    betweenloading,energyuseandemissionsinthe

    caseothesemodes,butalsobecauseshippersoten

    havelittleknowledgeotheutilisationoreight

    trains,bargesandships.Itispossibleorthemto

    monitortheloadingotrucksaswellasdedicated

    trainsandbargesleavingtheirsites.Wherechemical

    companiesconsignmentsaregroupedwiththoseo

    6 M.Coyle(2007)EectsoPayloadontheFuelConsumptionoTrucksDepartmentorTransport,

    London.

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    13/40

    FIGURE3

    RelationshipbetweenCarbonEmissionFactorandTruckLoadintonnes(fullrange)

    TABLE1

    CarbonEmissionFactors(gCO2/tonne-km)for40-44tonneTruck

    withVaryingPayloadsandLevelsofEmptyRunning

    FIGURE4

    RelationshipbetweenCarbonEmissionFactorandTruckLoad(10-29tonnes)

    (basedondatafromCoyle2007)

    0

    100

    200

    300

    400

    500

    600

    700

    800

    2928272625242322212019181716151413121110987654321

    gCO

    2/tonne-km

    Payload-tonnes

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    2928272625242322212019181716151413121110

    gCO

    2/tonne-km

    Payload-tonnes

    loadtonnes

    %oftruck-kmsrunempty

    0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

    10 81.0 84.7 88.8 93.4 98.5 104.4 111.1 118.8 127.8 138.4 151.1

    11 74.8 78.2 81.9 86.1 90.8 96.1 102.1 109.1 117.3 127.0 138.6

    12 69.7 72.8 76.2 80.0 84.3 89.2 94.7 101.1 108.6 117.5 128.1

    13 6 5.4 6 8.2 7 1.4 74 .9 7 8.9 8 3.4 8 8.5 9 4.4 1 01.3 10 9.5 119 .3

    14 61.7 6 4.4 6 7.3 7 0.6 74 .2 7 8.4 8 3.2 8 8.7 9 5.1 1 02 .7 111.8

    15 5 8. 6 61. 0 6 3. 8 6 6. 8 70 .3 74 .2 78 .6 8 3. 7 8 9.7 9 6. 8 10 5. 3

    16 55 .9 5 8. 2 6 0.7 6 3. 6 6 6. 8 70 .5 74 .6 79. 5 8 5.1 91.7 9 9. 7

    17 5 3. 5 55 .7 5 8.1 6 0. 8 63 .8 6 7. 2 71. 2 75 .7 81. 0 87. 2 9 4. 7

    18 51. 4 53 .5 55 .8 5 8. 3 61. 2 6 4. 4 6 8.1 72. 4 7 7. 4 8 3. 3 9 0. 4

    19 4 9. 6 51. 5 53 .7 5 6.1 5 8. 8 61. 9 6 5. 4 6 9. 5 74 .2 79 .8 8 6. 5

    20 4 8. 0 4 9. 8 51.9 5 4. 2 5 6. 8 5 9.7 6 3. 0 6 6. 9 71. 4 76 .7 8 3. 0

    21 4 6. 6 4 8. 3 5 0. 3 52. 5 5 4. 9 5 7.7 6 0. 9 6 4. 5 6 8. 8 73 .9 8 0. 0

    22 45 .3 47. 0 4 8. 8 5 0. 9 53 .3 55 .9 59. 0 6 2. 5 6 6. 5 71. 4 7 7. 2

    23 4 4. 2 45 .8 47. 6 4 9. 6 51. 8 5 4. 3 57. 2 6 0. 6 6 4. 5 69 .1 74 .7

    24 4 3. 2 4 4.7 4 6. 4 4 8. 3 5 0. 5 5 2. 9 55. 7 5 8. 9 6 2.7 67.1 72. 4

    25 42. 3 43 .8 4 5. 4 47. 3 4 9. 3 51.7 5 4. 3 57. 4 61. 0 65 .2 70. 3

    26 41. 5 4 2. 9 4 4. 5 4 6. 3 4 8. 3 5 0. 5 53.1 5 6. 0 59. 5 6 3. 6 6 8. 5

    27 4 0. 8 4 2. 2 4 3.7 4 5. 4 47. 3 4 9. 5 52. 0 5 4. 8 5 8.1 6 2.1 6 6. 8

    28 4 0. 2 41. 5 4 3. 0 4 4. 6 4 6. 5 4 8. 6 51. 0 5 3. 7 5 6. 9 6 0.7 6 5. 3

    29 3 9.7 41. 0 4 2. 4 4 4. 0 45 .7 47. 8 5 0.1 52. 7 55 .8 59 .5 6 3. 9

    11

    Chapter2

    MeasurementofCO2Emissions

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    14/40

    MeasuringandManagingCO2

    Emissionsfromt

    heTransportofChemicalsinEurope

    othercompaniesintrainsandvessels,however,the

    overalldegreeoloadingisnotknown.Onemust

    thenrelyonestimatesbasedonaverageloadingo

    thesemodes.Therehasbeenevidenceinthepasto

    modalbiasesintheassumptionsmadeaboutvehicle

    loading,withemissionactorsorsomemodesbased

    onullloadingandorothersonlyonaverageload

    actors.Itisimportantthattheorganisationscompil-

    ingemissionactordatasetsmakeassumptionsaboutvehicleutilisationexplicit.Wheretheyarenotde-

    clared,cautionmustbeexercisedinusingthequoted

    emissionactors.

    Aurthercomplicationexistsinthecaseoro-roer-

    riesandcontainervessels.Estimatingacarbonemis-

    sionactororthemovementochemicalsbythese

    modesrequiresatwo-tierassessmentoloading.The

    frstistheloadingactorothevehicleorcontainer

    andthesecondtheloadingotheavailablespace

    onboardthevessel.Theaverageemissionvalues

    currentlyavailableorro-roerriesneithermakethis

    distinctionnordeclaretheassumptionsonloading.

    2.4.6Natureoftheproduct

    TheCefcsurveyochemicaltransportoperations

    askedcompaniestodistinguishbulkrompackaged

    product.Thenatureotheproductanditspackaging

    willinuenceitsdensityandhencetheweight-based

    loadandemissionactors.Itisourunderstanding,

    however,thatinthechemicalindustrymostpackaged

    productisalsodenseandresultsinahighproportion

    oloadsreachingthemaximumvehicleweightlimit.

    Theremay,thereore,belittleneedtoapplydierent

    emissionactorsorbulkandpackagedproduct.I

    itwerenecessarytodothis,newempiricalresearch

    wouldberequiredasnoneothepublishedsetso

    emissionactorscurrentlydierentiatereightby

    physicalcharacteristics,otherthanweight.

    2.4.7Logisticaloperationsatdifferentlevelsofthechemicalsupplychain

    Thenatureothereighttransportoperationvaries

    acrossthechemicalsupplychain.Attheupperendo

    thechain,primaryproducersobasechemicalsdis-

    tributetheirproductsmainlyinbulkinvolumesthat

    canfllroadvehicles,barges,ships,wagonsandeven

    wholetrains.Theyalsomakerelativelyheavyuseo

    thelowercarbontransportmodes(rail,water-borne

    servicesandpipeline).Theaveragecarbonintensityo

    theseoperationswill,thereore,besignifcantlylower

    thanthoseomorespecialistproducersurtherdownthechainwhoseoutputisdespatchedinsmaller

    orderstoamorediversemixocustomers,some-

    timesonroad-basedmultiple-dropdeliveryrounds.

    Ideally,separateemissionactorsshouldbeapplied

    tocompaniesatdierentlevelsothechaintoreect

    thesedierencesincarbonintensity.Simplyextrapo-

    latingthecarbonootprintotransportoperations

    attheprimaryendothechaintotheindustryasa

    whole,inproportiontotonnagesorsales,islikelyto

    under-estimatetotalcarbonemissionsromEuropean

    chemicaltransport.

    2.4.8Geographicalvariability

    Theaverageemissionactorsorparticularmodes

    varyromcountrytocountryinEuropeasaresulto

    severalactors:

    Road:natureotheroadinrastructure,levelotra-

    fccongestion,maximumvehicleweight,levelouel

    taxes,climate,topography,drivingstylesetc.

    Rail:%orailreightserviceselectrifed,%orail-

    reightelectricityromlowcarbonsources,railway

    loadinggauge,densityoaccesspointsonthe

    networketc.

    Inlandwaterways:maximumdraught,size,weight

    andageovessels,densityoaccesspointsonthe

    networketc.

    Somedatabases(e.g.Tremove,INFRASandIFEU)

    containseparateaverageemissionactorsordier-

    entcountries.Somecountriesalsomaintainnationalemissioninventories,basedoncountry-specifcemis-

    sionactors.Therangeocarbonemissionactors

    currentlyavailableatcountrylevelorthevarious

    transportmodesistoolimitedtoconducttheanalysis

    anacountrybasis.Thiswouldalsorequirethechemi-

    calcompaniestoprovideabreakdownbycountryo

    thequantitiesoreightmovedandaveragedistance

    travelled.Itmayeventuallybepossibletoobtainall

    thenecessarycountrydataorabottomupanalysis

    oEuropeanchemicaltransportemissions.Forthe

    oreseeableuture,however,itwillbenecessaryto

    relyonaveragemodalemissionsactorsorEurope

    12

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    15/40

    7 McKinnon,A.andPiecyk,M.(2009)MeasurementoCO2EmissionsromRoadFreightTransport:AReviewoUKExperience.EnergyPolicy,Vol.37,no.10.

    8 INFRAS/IWW/IFEA(2004)ExternalCostsoTransport:UpdateStudyZurich/Karlsruhe.

    9 Knorr,W.andReuter,C.(2005)EcoTransIT:EcologicalTransportInormationTool-EnvironmentalMethodologyandDataIFEU,Hiedelberg.

    asawholeandhopethattheseaithullyreectthe

    nationalpatternotransportemissionsacrossthe

    continent.

    2.5ReviewofEuropeandatasourcesonfreightemissionfactors

    Numerousstudieshavebeenundertakenoverthe

    past20yearswithinEuropetodevelopemission

    actorsordierentormsotransport.Muchothis

    workhasbeensponsoredbytheEuropeanCommis-

    sionandnationalgovernments.Thesestudiescan

    bedividedintotwogeneralcategories;thosewhich

    havecompiledprimarydataromlaboratoryexperi-

    ments,runningvehiclesunderartifcialconditions

    onrollerbedsandthosebasedonthecollectiono

    uelconsumptiondataromvehiclesinthecourse

    onormal,real-worldoperation.Recentresearchin

    theUK7hassuggestedthat,wheretheobjectiveisto

    measurecarbonemissionsromtrucksatanationallevel,thelattermethodyieldsmoreaccurateand

    realisticresults.Undercontrolledconditionsinlabo-

    ratories,however,itispossibletomodelrelationships

    betweenvehiclespeed,loading,energyconsumption

    andemissionsinmuchgreaterdetail.Whilethisisre-

    quiredorenvironmentalmodellingotrafcowsby

    publicagencies,itgoeswellbeyondtheneedsothe

    currentCefcinitiativetocarbonootprintchemical

    transportoperations.Someothisprimarydataon

    vehicleemissions,rommajorprojectssuchasMEET,

    PHEM,ARTEMISandCOPERT,hasneverthelessbeen

    usedtocalibratemoregeneralisedemissionactor

    datasets,suchasTremove.Itisthemoregeneralised

    datasets,derivedeitherromlaboratorytest-bed

    analysisorindustrysurveys,whicharemostrelevant

    tothepresentstudy.Someothesedatasetsrelate

    totransportataEuropeanlevel,otherstonational

    transportsystems.

    2.5.1EU-widestudies

    INFRAS/IWW/IFEU: Theseorganisationsdeveloped

    emissionactorsorarangeoreightandpassenger

    transportmodesinthecourseoaprojectundedby

    CER,themainorganisationoEuropeanRailways,to

    calculatetheexternalcostsotransport.Emission

    actorsareprovidedorEuropeasawholeandor

    individualEuropeancountries.Thelastsetofgures

    waspublishedin20048.

    IFEU:OnaseparatecontractromEuropeanrailway

    companies,thisorganisationhasdevelopedthe

    EcoTransittoolwhichallowsuserstocomparetheenvironmentalimpactomovinggoodsbydier-

    enttransportmodesonspecifc,user-defnedroutes

    acrossEurope.Inaseparatemanual,IFEUoutlinesthe

    methodologyandchoiceoemissionactors9.Unor-

    tunately,inthismanual,theemissionactorsorthe

    varioustransportmodesareexpressedusingdierent

    metrics(e.g.gCO2pertonne-km,gCO2perkgo

    uel),makingitdifculttocomparethemonaconsis-

    tentbasis.Byapplyingthetooltoasampleoreight

    movements,however,itispossibletodeterminethe

    underlyingemissionactorsusingthestandardgCO2

    pertonne-kmratio.

    TREMOVE:ThisdatasetiscompiledbyTransport

    MobilityLeuven(TML)oncontracttotheEuropean

    Commission.TheTremove2.7bspreadsheet(February

    2009)providespast,presentandutureestimateso

    totaltonne-kms,energyconsumptionandemissions

    ortrucks,vans,railreightservicesandinlandship

    orseventeenEUcountries.Manyotheemissionac-

    torshavebeenderivedromCOPERTandotherearlier

    studies.BydividingestimatesoCO2

    emissionsor

    thevariousmodesbythecorrespondingtonne-kms,it

    ispossibletocalculatetheaverageemissionactors.

    TREND:ThisisanotherEU-undedprojectwhichhas

    reviewedpasttrendsinemissionsbyalltransport

    modesandprojectedtheiruturecourse.Again,

    byanalysingtherelevantspreadsheetsitispossible

    toestablishtheembeddedemissionactorsorthe

    majorreightmodes.

    2.5.2Nationalstudies

    Sweden

    TheSwedishtransportandenvironmentorganisa-

    tionNTMhasgainedareputationasanauthoritative

    sourceotransportemissionvalues.ItsonlineNTM

    Calctoolemploysaseriesoemissionactorsor

    reightmovementsbyroad,rail,inlandwaterway,sea

    andair,ineachcasesplitbyvehicletypeand,where

    appropriate,powersource.Inmostcasesthesevalues

    havebeenobtainedromtransportoperators.The

    NTMcalculatoralsogivesuserstheoptionomeasu-

    ringemissionsonawell-to-tankbasis(SB2)andwith

    inrastructure-relatedCO2emissionsincluded(SB3).

    13

    Chapter2

    MeasurementofCO2Emissions

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    16/40

    MeasuringandManagingCO2

    Emissionsfromt

    heTransportof

    ChemicalsinEurope

    10 DEFRA(2009)GuidanceonhowtomeasureandreportyourgreenhousegasemissionsLondon.

    11 ADEME(2007)EmissionFactorsGuide:EmissionFactorsCalculationandBibliographicalSourcesUsedVersion5.0.

    NTMwillbereleasinganupdatedandmorerefned

    versionotheircalculator(NTMCALC3.0)in2010.

    Muchmoredatahasbeenobtainedromoperators

    topermitgreaterdierentiationbyvehicletypeand

    powersource.

    UK

    TheDepartmentotheEnvironment,FoodandRural

    Aairs(DEFRA)publishesguidelines10orcompanies

    onthereportingoCO2emissionswhichcontain

    indicativeemissionactorvaluesorseveralreight

    transportmodes.Inthecaseoroadreightmove-

    ments,dierentloadactorsarespecifed,thoughthe

    updatedversionothisguidancein2007actuallyre-

    ducedtheourlevelsoloading(empty,25%,50%,

    75%and100%ullbyweight)toonlythree(empty,

    50%and100%ull).

    TheNationalAtmosphericEmissionsInventoryalso

    containsemissionactorsorheavygoodsvehicles

    andrailreightoperations,thoughinthelattercase

    onlyasingleaverageisquoted.Theroadreightemissionactorsordierentclassesotruckwere

    originallybasedsolelyonlaboratorytestbedstudies,

    thoughnowmakegreateruseosurveysoroad

    reightoperators.

    France

    ThemainreightemissionactorsusedinFrancewere

    compiledbythestateenvironmentalagencyADEME.

    ItpublishesanEmissionsFactorManual,whichis

    nowinitsfthversion11.Thisonlycontainsemission

    actorsorroadandrailreightoperations.Thepub-

    lishedemissionactorsorroadarebasedonaverage

    levelsovehicleloadingandemptyrunninginFrance

    andsomaynotbetranserabletoothercountries.

    Noneothesedatasetsontheirownprovidea

    comprehensivesetoemissionactorsoruseby

    thechemicalindustry.Theyvaryintheircoverageo

    reighttransportmodes,theextenttowhichthey

    dierentiatebyvehicletypeandpowersourceand

    intheassumptionstheymakeaboutvehicleloading

    (wherethisismadeexplicit).Itisnecessarythereore

    tocherry-pickincompilinganappropriateseto

    emissionactorsorchemicaltransportoperations.

    Othersectors,suchastheWineandSpiritTradeAs-

    sociation,andcompanies,suchasJ.F.Hillebrandthe

    worldslargestdistributorowinesandspirits,have

    adoptedasimilarapproach.

    2.6Characteristicsofchemicaltransportoperations

    Indevelopingasystemocarbonootprintingor

    chemicaltransportoperations,itisimportantto

    recognisethattheseoperationshaveseveraldistin-

    guishingeatures:

    1.Almostallchemicaltransport,withtheexcep-

    tionomovementsbypipeline,isoutsourced.As

    chemicalcompaniesdonotcontrolthetransport,

    theycannotcollectenergyandemissionsdata

    directlyandmustrelyontheircarrierstoprovide

    thenecessaryinormation.

    2.Chemicalcompaniesemploytheullrangeoreight

    transportmodes.Unlikeinsomeothersectors,in

    whichallbutasmallproportionoreightmoves

    byasinglemode,abroadrangeomodalemission

    actorsarerequiredorthecarbonootprintingex-

    ercise.Thechemicalindustryisalsooneotheew

    tomakeextensiveuseopipelinesasatransport

    mode.

    3.Thechemicalindustrygeneratesahighproportion

    oullloads,particularlyattheupperendothe

    supplychainwherelargevolumesareproduced

    anddistributed.Thisreducestheneedtoallocate

    CO2emissionsbetweendierenttypesoreight

    trafcsharingthesamevehicle.

    4.Astransportcostsrepresentarelativelyhigh

    proportionoproductsellingprice,chemical

    companiesareunderstrongpressuretomaximise

    loadsizeandweightandthusmaximisetheiruse

    otransportcapacity.Itcanbeassumed,thereore,

    thatvehiclescarryingchemicalsachievehighloadactors.

    5.Therelativelyhighdensityochemicalproducts,

    particularlyattheupperendothesupplychain,

    resultsinroadvehiclesreachingtheirmaximum

    weightlimitbeoretheirvolumelimit.Thisheavy

    weight-basedloadingovehiclesiswellaligned

    withweight-basedemissionactorsnowwidely

    usedorreighttransport(gCO2/tonne-km).

    14

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    17/40

    6.Thenatureothetransportoperationchangesas

    productsmovedownthechemicalsupplychain:

    theproportionopackagedgoodsincreases,

    averageordersizedeclines,theaveragenumber

    odropsperdeliveryandrelativeuseonon-road

    modesdecreases.Asthesechangesaectthecar-

    bonintensityothetransportoperationpertonne-

    km,itisimportantthatanycarbonmeasurement

    systemadequatelyrepresentsthedierenttiersin

    thesupplychain.

    7.WhilethemajorityochemicalsalesinEurope

    aremadeonadelivered-pricebasis,asubstantial

    minority(estimatedtobearound20-30%)involve

    thecustomercollectingtheproduct.Thishasim-

    plicationsorthedivisionotransport-relatedCO2

    emissionswithinthechemicalsupplychain.

    8.Nootherindustryinteraceswithsomanysectors

    asthechemicalindustry,aschemicalsareincorpo-

    ratedintoabroadarrayoproducts.Atthespecial-

    istendothechemicalindustrytheseinteracescanblur,makingitdifcult,intermsoproduct

    classifcation,todeterminewheretheouterperim-

    eterothechemicalindustryshouldbedrawn.

    15

    Chapter2

    Measurement

    ofCO2Emissions

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    18/40

    MeasuringandManagingCO2

    Emissionsfromt

    heTransportof

    ChemicalsinEurope

    organisation gCO2/tonne-km assumptionsaboutvehicleloading

    NTM 59 60%utilisation

    IFEU 66 average

    Tremove 77.2

    DEFRA 82 >32tGVW/27%emptyrunning/59%loadactor

    INFRAS 91

    ADEME 109 maxload25t/21%emptyrunning/57%loadactor

    TABLE2

    PublishedEmissionFactorsforHeavyArticulatedTruck

    TABLE3

    PublishedEmissionFactorsforRailFreightMovement(gCO2/tonne-km)

    organisation allrailfreight diesel-hauled electric-hauled

    ADEME 7.3 55 1.8

    NTM 15 21 14

    AEATechnology 20

    DEFRA 21

    INFRAS 22.7 38 19

    TRENDS 23

    Tremove 26.3

    IFEU 35 18

    McKinnon/EWS 18.8

    2.7Averageemissionfactorsforthemovementofchemicalsbythedifferenttransportmodes

    Thissectiondiscussesthechoiceoaverageemission

    actorsortherangeomodesusedtotransport

    chemicals.Theycanbeusedtoestimatethetotal

    carbonootprintochemicaltransportoperationsor

    byindividualcompaniesasdeaultvalues.Itisclearly

    preerable,ipossible,orcompaniestoderiveemis-

    sionactorsortheirspecifctransportoperations,

    reectingthecharacteristicsotheirsupplychains,

    productsandcustomerbase.

    2.7.1Road

    Itisassumedthatthestandardvehicleusedorchem-

    icaldeliveriesisa40tonnearticulatedtruckcarrying

    amaximumpayloado26tonnes12.Table 2shows

    thepublishedemissionactorsorsuchavehicleand

    indicatestheassumptionsmadeaboutvehicleload-ing,wherethesearedisclosed.Theseemissionactors

    varywidelyrom59to109gCO2/tonne-km.Some,

    butnotall,othisvariationcanbeexplainedbydi-

    erencesinthedefnitionothevehicleweightclass

    andassumptionsaboutaveragevehicleloadactors

    onladentripsandtheleveloemptyrunning.

    16

    12 Estimatesotheemissionactorsorthe44tonnetruckspermittedintheUKandIrelandareshownonFigure4andTable1.Thesevehiclescancarryamaximumloadoaround29tonnes.

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    19/40

    Anindependentanalysis,reerredtoinSection2.4.5

    above,wascarriedoutorthisstudyusingUKdata

    collectedinon-the-roadtrialsomaximumweight

    articulatedvehiclesrunningwithvaryingpayloads.

    ThevaluesinthebottomhaloTable 1tendto

    confrmemissionactorsatthelowerrangeovalues

    showninTable 2.I,orexample,weightbasedload

    actorsacrossthechemicalsupplychainaveraged

    77%andtheleveloemptyrunningaround20%,

    anaverageemissionactoro59.8gCO2/tonne-km

    wouldapply,similartotheNTMvalue.A77%load

    actorwouldbesubstantiallyhigherthantheaverage

    ormaximumweightarticulatedvehicles,thoughin

    othersectorsahigherproportionoloadscubeout

    beoretheyweighout.Ontheotherhand,theneed

    tocleantanksandcontainerspriortobackloading

    mayresultintheaveragelevelobackloadinginthe

    chemicalindustrybeinglowerthantheaverageor

    heavytrucks.Ioneweretocombineanaverageload

    actoro80%witha25%emptyrunningfgure,the

    resultwouldbeanaverageindustryemissionactor

    oroughly62gCO2/tonne-km,slightlyabovetheNTMfgure,butwellbelowtheaveragefguresor

    roadhaulageasawholeadoptedbyTremove,INFRAS

    andtheBritishandFrenchgovernments.Individual

    companiesmayhoweverusedierentemissionac-

    torsthatbetterreecttheparticularcircumstances

    otheirtransportoperations(see Table 1).An

    averageemissionactoro62 gCO2 / tonne-kmis

    recommendedorroadtransport.

    2.7.2Railfreight

    Averageemissionactorsorrailreightrangerom

    7.3to23gCO2/tonne-km,thoughmostestimates

    liewithintherange15-23(Table 3).Asexplained

    earlier,theseaveragesareinuencedmainlybyour

    actors:thesplitbetweendieselandelectrichaulage,

    thecarbonintensityotheelectricalpowersource,

    theenergyefciencyothelocomotiveandassump-

    tionsabouttrainloadactors.Allourcanvarywidely

    betweencountries,makingitdifculttoestablisha

    representativeemissionfgureorthewholeoEu-

    rope.Itisworthnotingthewidevariationsinthecar-

    bonintensityodierenttypesoelectrifedrailreight

    servicerom0.003gCO2/tonne-kmorelectricity

    generatedbyrenewables(NTM)to1.8orpredomi-

    nantlynuclearpoweredservicesinFranceto19or

    theelectricalenergymixacrosstheEU,comprising

    55%ossiluel,30%nuclearand15%renewables.

    Thefgureo7.3recommendedbyADEMEorFrance

    isclearlyanoutlier,reectingthehighproportiono

    electrifedrailreightservicesandheavydependenceonnuclearpower.AstudyundertakenbyMcKinnon

    (2007)13intheUKoundthatthecountryselectrical

    energymixresultedinelectrifedrailreightservices

    havingaverysimilarcarbonintensitytodiesel-hauled

    services.Forthepurposeothisstudyanaverage

    industryemissionactoro22 gCO2 / tonne-kmis

    recommended.

    2.7.3Inlandwaterway

    Thereareewerpublishedestimatesoaverageemis-

    sionactorsorbargemovementsoninlandwater-

    waysandamuchnarrowerrangeovalues(Table 4).

    Indeedtheclosesimilaritybetweensomeothese

    valuessuggestthatthefguresmayhavebeen

    derivedromthesamesource.Reectingtheappar-

    entconsensusbetweenthestudiesonthecarbonintensityothismode,itisrecommendedthatavalue

    o31 gCO2 / tonne-kmbeused.

    TABLE4

    PublishedEmissionFactorsforInlandWaterway

    /BargeMovements

    organisation gCO2/tonne-km

    INFRAS 31

    TRENDS 31

    Tremove 32.5

    IFEU 28-35

    13 McKinnon,A.C.(2007)CO2EmissionsromFreightTransportintheUKCommissionorIntegratedTransport,London.

    17

    Chapter2

    Measurement

    ofCO2Emissions

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    20/40

    Measuring

    andManagingCO2

    Emissionsfromt

    heTransportof

    ChemicalsinEurope

    18

    gCO2/tonne-km Source

    Bulkship

    Smalltanker(844tonnes) 20 DEFRA

    Largetanker(18371tonnes) 5 DEFRA

    Small(solid)bulkvessel(1720tonnes) 11 DEFRA

    Large(solid)bulkvessel(14201tonnes) 7 DEFRA

    Containervessels

    Smallcontainervessel(2500tonnes) 13.5 DEFRA

    Largercontainervessel(20000tonnes) 11.5 DEFRA

    Averagedeep-seacontainervessel 8.4 BSR/CleanCargo

    (assuming mean 11 tonne load per TEU)

    Deep-seatanker(120,000tonnes) 5 NTM

    AllMaritime 14 TRENDS

    TABLE5

    PublishedEmissionFactorsforMaritimeTransport

    2.7.4Shipping

    Shortseashippingoperationscanbedividedintothree

    types:ro-roerryoperations(carryingtrucksand/or

    railwagons),bulkshipsandcontainervessels.Foreach

    othesemaritimemodestwosetsopublishedemis-

    sionactorvalueswereound,thoughtheyarenot

    directlycomparablegivendieringassumptionsmade

    aboutthevesselweightclass(Table 5).Thereisthere-

    orelittlechoiceintheselectionoemissionvalues

    orshipping.Anoverallemissionactororshort-sea

    shippingo16 gCO2 / tonne-km isproposed.

    Acrossasampleoninedeep-seacontainership-

    pinglines,CleanCargo/BSRoundtheweighted

    averageemissionsoCO2perTEU-kmtobearound

    93g.AssumingthattheaverageTEUcarriesaload

    o11tonnes,thisyieldsacarbonintensityvalueor

    deep-seacontainershippingo8.4 gCO2 / tonne-km.

    (Thisemissionactormakesnoallowanceorthere-

    positioningoemptycontainers.)Anestimateothe

    carbonintensityodeep-seatankeroperationshas

    beenobtainedromNTM,5 gCO2 / tonne-km.

    2.7.5Intermodaltransport

    Onceasetoemissionactorshasbeenagreedor

    individualtransportmodes,thesevaluescanbeused

    toderivecompositeemissionactorsorintermo-

    daloperations.Thesecompositevaluesneedtobe

    weightedbytherelativedistancestravelledoneach

    othemodesinthecourseotheintermodaljourney.

    Chemicalcompaniesotendonotknowtherouteing

    ointermodalconsignmentsandhencethedistance

    splitbetweenthemodes.Onecompanycontribut-

    ingtotheCefcsurvey,assumedthattheaverage

    road-railintermodalhaulwas1000kmlongand

    thatroadeedermovementsatbothendsotherail

    line-haulwouldbearound100kmslong.Itisnot

    knownithesefgureswouldberepresentativeo

    theEuropeanchemicalindustryasawholeando

    otherintermodalcombinations.Onewayoobtain-

    ingarepresentativevaluewouldbetosurveylarge

    intermodaloperatorsspecialisinginthemovemento

    chemicalsandaskthemtoprovideaveragevalueso

    thedistancesplitsordierentintermodalcombina-tions.Inthemeantime,wehaveconstructedatable

    showingarangeoemissionactorsordierent

    typesointermodalservicewiththeroadshareo

    thetotaldistancetravelledvaryingrom5%to20%

    (Table 6).Untilmoredataisprovidedbyintermo-

    daloperators,weproposethata10%roadeeder

    distancebeadoptedandthatemissionactorsinthe

    secondcolumnoTable6beusedorintermodal

    services(bolded).

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    21/40

    TABLE6

    CompositeEmissionFactorsforIntermodalCombinations

    intermodalcombination Roaddistanceas%oftotal

    5% 10% 15% 20%

    road-rail averagerailreight 24.0 26.0 28.0 30.0

    electrifedrail(EUaverage) 21.2 23.3 25.5 27.6

    electrifedrail(France) 10.0 12.8 15.5 18.2

    dieselrail 25.9 27.8 29.7 31.6

    road-inlandwaterway 32.6 34.1 35.7 37.2

    roadshort-sea ro-roerry-truck 49.7 50.3 51.0 51.6

    ro-roerry-rail 38.3 39.5 40.8 42.0

    s ma ll t ank er (8 44 to nne s) 22 .1 24.2 26.3 28.4

    largetanker(18371tonnes) 7.9 10.7 13.6 16.4

    smallbulkvessel(1720tonnes) 13.6 16.1 18.7 21.2

    largebulkvessel(14201tonnes 9.8 12.5 15.3 18.0

    smallcontainervessel(2500tonnes) 15.9 18.4 20.8 23.2

    largercontainervessel(20000tonnes) 14.0 16.6 19.1 21.6

    allshortsea 18.3 20.6 22.9 25.2

    shorthaul mediumhaul longhaul source

    1580 800 570 WRI/WBCSD(2003)

    1925 867 633 NTM(2005)

    673 INFRAS/TRENDS(2004)

    TABLE7

    EmissionFactorsforAirFreightTransport

    2.7.6Airfreight

    Relativelysmallamountsochemicalsmovebyair.

    TheCefcsurveyindicatedthatonly0.01%otonnes

    and0.07%otonne-kmsmovebyair.Theseare

    mainlyspecialistpolymers,samplesandemergency

    consignments.Publishedcarbonemissionactorsor

    airreightvarywidely,reectingdierencesinthe

    lengthohaulandnatureotheoperation(Table 7).

    Twosources,WRI/WorldBusinessCouncilor

    SustainableDistributionandNTM,haveprovided

    dierentemissionactorsoreachdistancerange.

    Asthemeanlengthohaulorairreightmovements

    intheCefcsurveywas7000kms,anaverageothe

    twolonghaulemissionactorsisproposedi.e.602

    gCO2 / tonne-km.

    2.7.7Pipeline

    Theonlypublishedfgurethatwehavebeenable

    tofndorpipelineappearedinareportpublishedbytheUKRoyalCommissiononEnvironmentalPol-

    lutionin199414.Thisstudyassignedavalueo10

    gCO2/tonne-kmtopipelines.Sincethenthecarbon

    contentoelectricityhasreducedasaresultothe

    switchtogas-fredstationsandrenewables.Itisalso

    likelythattheenergyefciencyopipelinepumping

    equipmentwillhaveimproved.Ithasbeendecided

    thereoretousealowervalueo5 gCO2/ tonne-km

    atpresent,pendingurtherenquiries.14 RoyalCommissionon

    EnvironmentalPollution(1994)TransportandtheEnvironmentHMSO,London.

    19

    Chapter2

    Measurement

    ofCO2Emissions

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    22/40

    Measuring

    andManagingCO2

    Emissionsfromt

    heTransportofChemicalsinEurope

    20

    Transportmode gCO2/tonne-km

    Roadtransport 62

    Railtransport 22

    Bargetransport 31

    Shortsea 16

    Intermodalroad/rail 26

    Intermodalroad/barge 34

    Intermodalroad/shortsea 21

    Pipelines 5

    Deep-seacontainer 8

    Deep-seatanker 5

    Airreight 602

    TABLE8

    RecommendedAverageEmissionFactors

    2.8Recommendedaverageemissionfactorsforchemicaltransportoperations

    Theproposedsetocarbonemissionactorsaresum-

    marizedinTable 8.

    Theserecommendedemissionactorsareaveragevalues

    orthewiderangeotransportactivitiesothechemical

    industry.Theycanbeusedtoestimatethetotalcarbon

    ootprintochemicaltransportoperationsorbyindividual

    companiesasdeaultvalues.

    Itisclearlypreerable,ipossible,orcompaniestoderive

    emissionactorsortheirspecifctransportoperations,re-

    ectingthecharacteristicsotheirsupplychains,products

    andcustomerbase.

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    23/40

    15 WBCSD(2009)CementIndustyEnergyandCO2Perormance:GettingtheNumbersRightGeneva.

    16 InternationalFertiliserIndustryAssoc(2009)Fertilisers,ClimateChangeandEnhancingAgriculturalProductivitySustainablyParis.

    3. Measurement of Transport-relatedEmissions in other Sectors

    TheEuropeanchemicalindustryisnotaloneintrying

    tocarbonootprintitstransportoperations.Other

    sectorshavelaunchedsimilarinitiatives.Itispossible

    thatthechemicalindustrymaybeabletolearnrom

    theexperienceintheseothersectors.Aspartothis

    study,thereore,areviewwasconductedoother

    industrialandcommercialsectorstoexaminetheir

    eortstomeasureCO2emissionsromtheirtransport

    operations.Thismainlyinvolvedanonlinesearcho

    thewebsitesoindustrytradebodiesandcompanies,

    combinedwithkeywordsearchesorreports,papers

    andpresentations.Inormaldiscussionswerealso

    heldwithlogisticsspecialistsinseveralindustrieswho

    havecontributedtoourpreviousresearchprojects.

    Thisreviewhasrevealedthatinmostsectorscarbon

    measurementisataairlyearlystageandrelates

    principally,andinsomecasessolely,toemissions

    romthecoreactivity,suchasprimaryprocessing,

    manuacturingorpackaging.Littlereerenceismade

    tothecarbonootprintotransportoperations,

    particularlyinthosesectors,suchascement,withahighlycarbon-intensiveproductionprocess.Where

    industryassociationsorcompanieshavepublished

    dataontransport-relatedemissions,theyseldom

    disclosethemethodsusedtoderivethesestatistics,

    theunderlyingassumptionsandtheirchoiceoemis-

    sionactors.

    Itispossibletodetectanevolutionarypathinthe

    developmentocarbonmeasurementcapability

    atanindustrylevel.Initiallymacro-level,top-down

    estimatesoaggregateemissionsarecompiledwith

    littleornodierentiationbyactivity.Thesearetypi-

    callybasedonsimplerelationshipsbetween,onthe

    onehand,totaloutput,salesandenergyconsump-

    tionand,ontheotherhand,carbonemissions.Ata

    laterstage,surveysokeycompaniesintheindustry

    permitmoreaccuratebottom-upestimationo

    CO2emissionsandsomedierentiationoemissions

    byactivity,includingtransport.Atfrst,thecarbon

    auditingotransportreliesongeneral,cross-industry

    averageemissionactors,butcansubsequentlybe

    refnedwiththedevelopmentosector-specifcemis-

    sionactors.Furtherevolutionseesthedisaggregation

    otransport-relatedcarbonmeasurementbyindustry

    sub-sectorandcanleadtointer-companybenchmark-

    ingocarbonintensity.Mostothesectorsreviewed

    arecurrentlyintheearlystagesothisevolutionary

    path.Thechemicalindustryappearstobeoneo

    themoreprogressiveinitseortstoquantiycarbon

    emissionsromitstransportoperationanddevelop

    carbonreductionstrategiesortransport.Itmay,

    nevertheless,beneftromadoptingsomeotheideas

    andpracticesoothersectors.Thecurrentsituationin

    theseothersectorscanbesummarisedasollows:

    Cement

    TheCementSustainabilityInitiative,ledbythe

    WorldBusinessCouncilorSustainableDevelopment,

    haspublishedareport15ongettingthenumbers

    rightinmeasuringenergyandCO2perormance.

    Noneothenumbersinthisreportrelatetotrans-

    port,however.Carbonmeasurementisconfnedto

    theproductionoperation,withonlyabriereerence

    tothetransportoinboundclinkerbeingminimalas

    cementplantsaregenerallylocatedbesidequarries.

    TheCementIndustryGHGProtocolcurrentlyexcludes

    o-sitetransportbecausetheseemissionsaresmall

    comparedtoemissionsromthekilnanddifcult

    toquantiyinaconsistentmanner.Icompanies

    choosetoincludetransport-relatedemissionsthey

    areencouragedtousetheWRI/WBCSDMobile

    CombustionToolorthispurpose.LaFarge,oneo

    thelargestEuropeancementproducers,estimates

    thatitsoutbounddistributionbyroadrepresents5%

    oitsmanuacturingemissions,thoughgivesno

    indicationothemethodocalculation.

    Fertiliser

    TheInternationalFertiliserIndustryAssociation16has

    includedtransportandlogisticsinitsanalysisoGHG

    emissions.Itconcedes,nevertheless,thatthisisdif-

    cultbecauseocontinuouslyshitingtradeandtrans-portpatternsandbecausetradeaccountsoronly

    aminorityoertilisermovements.Itestimatesthat

    distributionrepresentsabout3%ototalemissions

    associatedwiththeertiliserliecycle(thisexcludes

    theupstreamtransportorawmaterials).Themethod

    adoptedbytheIFIAisverysimilartothatoCefc:

    multiplyingthenumberotonnesbythenumber

    okilometresandthecoefcientortheappropriate

    ormotransport.Itencouragescompaniestoobtain

    locallyadjustedcoefcients,inrecognitionothe

    actthatthereseemstobesomeregionalvariation

    withregardtowhethertransportbyrailandinland

    21

    Ch

    apter3

    MeasurementofTransport-relatedEmission

    sinotherSectors

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    24/40

    Measuring

    andManagingCO2

    Emissionsfromt

    heTransportofChemicalsinEurope

    22

    17 McKinnon(2007)op.cit.

    18 WorldSteelAssociation(2008)CO2EmissionsDataCollection:UserGuideversion6Belgium.

    19 WSTALogisticsGroupTransportEmissionsCarbonCalculatorLondon.

    20 Smith,A.etal(2005)ValidityoFoodMilesasanIndicatoroSustainableDevelopmentDEFRA,London.

    waterwayhastheleastenvironmentalimpact.The

    modalemissionactorsquotedintheIFIAreportare

    obtainedromMcKinnon(2007)17andNTM.

    Steel

    TheWorldSteelAssociation18providesadviceto

    membercompaniesonthecalculationoCO2emis-

    sionsandhascalculatedtheindustrystotalcarbon

    ootprint(1.7tonnesoCO2emittedpertonneo

    steelproduced).Transportorawmaterialsupstream

    otheplantareexcludedromthesystemboundary.

    Presumablydownstreamdistributionofnishedprod-

    uctsisincluded,thoughtheWSAsCO2Emissions

    DataCollectionreportoersnoguidanceonhow

    therelatedcarbonemissionsshouldbemeasured.All

    thepublishedemissionactorsapplytoproduction

    operations.

    Metalcans

    CanMakers,thetradebodyrepresentingmanuac-

    turersormetalcans,commissionedconsultantsto

    constructacarboncalculatorortheirsupplychain

    operations.Thistoolcanbecalibratedwithcompany-

    specifcemissionactorsorstandarddeaultvalues

    derivedmainlyromDEFRA.

    Bitumen

    Nynas,oneothemainproducersobitumen,has

    carbonootprintedtheproductionoperationand

    upstreamsupplychainorthisproduct.Thisincludes

    theinboundmovementooiltotheirEuropean

    productionacilities,butexcludesdistributionothe

    fnishedproduct.Nodetailsaregivenothemethod

    ocalculation,thoughDEFRAappearstobethemain

    sourceoemissionactorvalues.

    Wineandspirits

    TheWineandSpiritsTradeAssociation19,jointlywith

    J.F.Hillebrand,havedevelopedacarboncalculator

    ormeasuringcarbonemissionsromtransportin

    thissector.Thisrepresentsanobjective,reasonable

    andconservativeassessmentoemissionsromone

    othemostcomplexelementsothebeveragesup-

    plychain.Thecalculatorallowsuserstoestimate,onalanebylanebasis,CO2emissionsperlitreo

    winetransportedbydierenttransportmodes,or

    bulkandpackagedproductandorull-loadsand

    groupage.TheWSTAandHillebrandindicatethe

    sourcesoallthemodalemissionactorsbuiltinto

    theircalculator.TheseincludeDEFRA,McKinnon,

    theUKNationalAtmosphericEmissionsInventoryor

    road;Tremove,NTMandINFRASorrailandNTM,

    McKinnonandMaerskorshipping.Typicalpayloads

    arealsoprovidedorwines/spiritsmovedbyroad

    trailerorcontainerindierentcountries.Inaseparate

    initiative,theScotchWhiskyAssociation,hasanalysed

    (withtheassistanceotheScotchWhiskyResearchIn-

    stitute),onaliecyclebasis,totalCO2emissionsrom

    theproductionandworld-widedistributionowhisky.

    Thishasestablishedthatoutbounddistributionothe

    fnishedproductconstitutesaround11%othetotal.

    Themacro-levelootprintwascalculatedbymultiply-

    ingoutboundtonnagesbycarbonemissionactors

    orthedierenttransportmodesused,assuming

    highlevelmodalsplitestimates.Anemissionactoro

    85gCO2/tonne-kmisusedorroadmovements,ob-

    tainedromtheUKLowCarbonVehiclePartnership.

    Inthesecondphaseothisproject,themainwhisky

    producersareprovidingmuchmoredetailedfgures

    onthequantitiesoScotchmovedondierentlanes

    bydierentmodes.Carriershavealsobeenasked

    toprovideuelconsumptionandemissionsdatato

    helptorefnethecalculationandreducerelianceon

    standardised,cross-industryemissionactors.

    Food

    Numerousstudieshavecarbonootprintedthesupply

    chainsooodproductsonaliecyclebasis.Many

    havebeenmotivatedbyconcernabouttheood

    milesissuei.e.thetrendtosourceoodproducts

    rommoredistantlocations.Thishasocusedatten-

    tiononemissionsromthetransportoperation.Given

    thepublic/governmentinterestinthistopic,much

    othisworkhasbeenpublicly-undedratherthan

    commissionedbytradeassociationsorcompanies.

    Studies,suchasSmithetal(2005)20,orexample,

    haveproducedmacro-levelestimatesotransport-

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    25/40

    relatedCO2emissionsordierentclassesooodby

    multiplyingtonnage,distanceandmodalemission

    actorvalues.Overthepastthreeyears,however,

    muchmoreprogresshasbeenmadeatthemicro-

    level,measuringcarbonemissionsromthesupply

    chainsospecifcproductstopermitcarbonlabelling.

    Numerousstudieshavebeenconductedonproduct

    carbonootprintingintheUK,France,Germany,

    KoreaandJapan.Inaneorttostandardisethis

    process,theBritishStandardsInstitute(BSI)published

    guidelinesonthecarbonootprintingoconsumer

    products(PAS2050) 21whichincludesasectionon

    transportoperations.Itprovidesadvice,orexample,

    ontheallocationoCO2emissionsbetweenconsign-

    mentssharingthesamevehicle.

    Inthecaseoloadslimitedbymass(i.e.weight),

    theallocationisbymass;wheretheloadisvolume-

    constrained,CO2istobedividedbyvolume.This

    recommendationiscrude,however,andoerslittle

    guidanceonhowtodealwithmanycommonly-encounteredtransportsituationssuchas:wherethe

    loadisneithermass-norvolume-constrained,where

    aloadcomprisesamixtureohighandlowdensity

    consignmentsorwheregoodsaredelivered/collected

    onmultiple-stoprounds.

    Asitisunlikely,ortheoreseeableuture,that

    chemicalcompanieswillberequiredtodisaggregate

    transportCO2estimatesbyproductorconsignment,

    thisrecentdevelopmentocarbonauditinginthe

    oodsectorislikelytobeolimitedinterestinthe

    shorttomediumterm.

    21 BritishStandardsInstitute(2008)PAS2050:SpecifcationorthemeasurementoembodiedgreenhousegasemissionsinproductsandservicesLondon.

    Ch

    apter3

    MeasurementofTransport-relatedEmissionsinotherSectors

    23

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    26/40

    Measuring

    andManagingCO2

    Emissionsfromt

    heTransporto

    fChemicalsinEurope

    Paperandboard/Packaging

    Therameworkorthecarbonootprintingopaper

    andboardproductswascompletedin2007and

    approvedbytheConederationoEuropeanPaper

    Industries(CEPI)22laterthatyear.Itdefnedtransport-

    relatedgreenhousegasemissionsasoneotheten

    toesotheindustryscarbonootprint.Thisincludes

    transportingrawmaterials,productsandwastes

    alongthevaluechain.TheGHGcalculationproce-

    dureisasollows,withdatacomingromcompanies

    providingtransportservices,companytransport

    expertsandlie-cycledatabases:

    Calculationsteps:

    1.Usesystemboundaries,cut-ocriteriaand

    knowledgeromotherstudiestodecidewhich

    typeotransporttoincludeintheanalysis

    2.Estimateemissionsassociatedwiththeselected

    aspectsotransport

    3.Itransportisusedormultipleproducts,use

    appropriateallocationmethodstoidentiytheemissionsassociatedwiththeproductointerest

    4.Ineededtosatisytheobjectivesotheootprint,

    dividetheemissionsintocategoriesreecting

    control

    5.Recordthegreenhousegasemissionsattribuable

    totheunctionalunitotheproductbeingstudied

    intheappropriatereportingorm

    ForpaperproductsanEnvironmentalPaperAs-

    sessmentTool(EPAT)hasbeendevelopedinNorth

    Americawhichincludesacalculationotransport

    emissionsassociatedwithcarryingproductrom

    themillstoadistributionpointorconverter.This

    providesbuyersandsellersopaperproductswitha

    consistentlanguageandrameworktoevaluateand

    selectenvironmentallypreerablepaper.TheFedera-

    tionoEuropeanCorrugatedBoardmanuacturers

    (FEFCO)whichisafliatedtoCEPI,haspublisheda

    moretechnicalmanualonthecarbonootprintingo

    thisclassoproducts.Thismakesnoexplicitreerence

    totransport,thoughindicatesthattheBritishPAS

    2050methodologyhasbeenemployedinitsGHG

    calculations.

    Concernabouttheenvironmentalimpactothe

    growthopackagingand,insomecountriesthe

    proposedintroductionotaxesonpackaging,has

    stimulatedresearchontheenvironmentalauditingo

    thepackagingsupplychain.AstudybyCEDelt23has

    estimatedthetransport-relatedCO2emissionsrom

    thesupplychainsoarangeopackagingproducts.

    ThishasusedaseriesoCO2-intensityvaluesordi-

    erenttransportmodes(78g/tonne-kmorroadand

    34g/tonne-kmorrailandinlandwaterway).Ithasalsoestimatedtheaveragelengthoeachlinkinthe

    packagingsupplychainwithintheNetherlandsand

    quantitiesoproductmovingoneachotheselinks.

    Postalservices

    Althoughthemovementomailpresentsverydi-

    erenttransportchallengestothedistributiono

    chemicals,arecentinitiativebytheInternationalPost

    Corporation24(IPC),whosemembershandle80%o

    globalmailvolume,meritsattention.Ithasestab-

    lishedanEnvironmentalMeasurementandMonitor-

    ingSystem(EMMS)thatmemberorganisationsand

    theircustomerscanusetocarbonootprinttheirmail

    operations,whichareessentiallylogistical.EMMSwas

    developedtoimplementacommoncarbonmeasure-

    mentandreportingrameworkinlinewithcustomer

    requirementsandstakeholderexpectations.Itscores

    companiescarbonmanagementprofciencyon

    aconsistentbasisusingtheplan-do-check-act

    approachadvocatedbytheInternationalStandards

    Organisation.TheIPChassetitsmembersatargeto

    reducingtheirtotalCO2emissionsby20%by2020.

    Summary

    Thereisnoindustryorsectorwhichcancurrentlybe

    regardedasbestpracticeintermsotransport-related

    carbonauditing.Some,suchasertiliser,packaging

    andwines&spirits,havegonethroughasimilarpro-cesstoCefcinadoptinganactivity-basedapproach

    tocarbonmeasurementandsurveyinglargemember

    companiestocompilethenecessarybasedataor

    macro-levelestimationoCO2emissions.

    Severalothesectoralinitiativesoutlinedabove,most

    notablythoserelatingtoertiliser,oodandpaper&

    board,gobeyondcarbonmeasurementandprovide

    advicetocompaniesonmethodsodecarbonising

    theirtransportoperations.

    24

    22 CEPI(2009)FrameworksortheDevelopmentoCarbonFootprintsorPaperandBoardProductsBrussels.

    23 CEDelt(2007)EnvironmentalIndicesortheDutchPackagingTaxDelt.

    24 InternationalPostCorporation(2009)PostalSectorSustainabilityReport2009Brussels.

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    27/40

    4. Opportunities for Decarbonising ChemicalTransport Operations

    Theseopportunitieswillbeexaminedwithina

    rameworkdevelopedortheGreenLogisticsresearch

    projectintheUK (Figure 5).Thisrameworkmapsthe

    complexrelationshipbetweentheweightogoodspro-

    ducedinaneconomyorindustrialsectorandtheCO 2

    emissionsromitsreighttransportoperations.This

    relationshippivotsonasetosevenkeyparameters:

    Modalsplitindicatestheproportionoreight

    carriedbydierenttransportmodes.Followingthissplit,subsequentparametersneedtobecalibrated

    orparticularmodes.TherestoFigure 5hasbeen

    defnedwithrespecttoroadtransport.

    Averagehandlingfactor:thisistheratioothe

    weightogoodsproducedbyanindustrialsectorto

    reighttonnagesloadedontovehiclesatthestart

    oajourney,allowingortheactthat,astheypass

    throughthesupplychain,productsareloadedonto

    vehiclesseveraltimes.Thehandlingactorservesas

    acrudemeasureotheaveragenumberolinksina

    supplychain.

    Averagelengthofhaul:thisisthemeanlengtho

    eachlinkinthesupplychainandessentiallyconverts

    thetonnes-litedstatisticintotonne-kms.

    Averagehandlingactorandlengthohaulreect

    thatoverallsupplychainstructure.

    Averagepayloadonladentripsandthepropor-

    tionofkmsrunemptyarethetwokeyvehicle

    utilizationparameters.Averagepayloadisnormally

    measuredsolelyintermsoweight.Thisisveryap-

    FIGURE5

    DecarbonisationFrameworkforFreightTransport

    CO2emissions

    Distribution of vehicle - kms by vehicle size, wieght and type

    Aggregate

    Key parameter

    Determinant

    Efciency of vehicle routing

    Vehicle carrying capacityby weight / volume

    Vehicle utilisationon laden trips

    Level of backhaulage

    Supply chain structure

    Road tonne -kms

    Total vehicle -kms

    Trafc conditions

    Timing ofdeliveries

    Spatial patternof deliveries

    Weight of goods

    transported by road

    Road tonnes -lifted

    Weight of goodsproduced / consumed

    Similaranalysesforothermodes

    Fuel consumption

    Fuel efciency

    Carbon intensity of fuel

    Modal split

    Average % empty running

    Average length of haul

    Average handling factor

    Average load on laden trips

    25

    Cha

    pter4

    OpportunitiesforDecarbonisingChemicalTransportOperations

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    28/40

    MeasuringandManagingCO2

    Emissionsfromt

    heTransporto

    fChemicalsinEurope

    26

    propriateinthechemicalindustryasalargepropor-

    tionoloadsareweightconstrained.

    Energyefciency:defnedastheratioodistance

    travelledtoenergyconsumed.Itisaunctionmainly

    ovehiclecharacteristics,drivingbehaviourandtrafc

    conditions.

    Carbonintensityoftheenergysource:i.e.

    theamountoCO2emittedperunitoenergycon-sumedeitherdirectlybythevehicleorindirectlyatthe

    primaryenergysourceorelectrically-poweredreight

    operations.

    4.1Modalsplit

    Ithasbeenseenhowcarbonintensity(expressed

    asgrammeoCO2pertonne-km)varieswidely

    betweentransportmodes.Shitingrommodeswith

    relativelyhighcarbonintensitiestothosewithmuchlowercarbonemissionscanhelptodecarbonise

    reighttransport.Toillustratethepotentialsavings

    inCO2romreightmodalshitwithinthechemical

    supplychaintwohypotheticalscenarioshavebeen

    constructedonthebasisothedatacollectedin

    theCefcsurvey (Figure 6).Thefrstreducesroads

    shareochemicaltonne-kmsrom37%to27%and

    spreadsthedisplacedtrafcevenlyaroundtheother

    lowercarbonmodes.Thesecondappliestheaverage

    modalsplitothetwocompaniesintheCefcsurvey

    whichsendthelowestproportionsotheirreight

    tonnagebyroad.Inthefrstscenario,anetCO2sav-

    ingo15%wouldbeachieved,whileinthesecondit

    wouldbealmost27%.

    Allthecompaniesconsultedindicatedthatthere

    wasapotentialtoshitmorereighttorailand

    water-borneservices,thoughsomecompanieshave

    alreadyincreasedtheirrelativeuseolowercarbon

    modesoverthepastdecade.Modalshitwasbeing

    constrainedbyseveralactors:

    1.Shortlengthsofhaul:itwasarguedthat,in

    chemicaldistribution,railtendsonlytobecome

    competitivewherethelengthohaulisgreater

    than400-500kms.Thethresholddistancepartly

    dependsonwhethertheoriginand/ordestination

    arerail-connectedand,inot,theextenttowhich

    owshavetodeviateromthedirectroadrouteto

    passthroughintermodalterminals.ManyEuropean

    chemicalplantslackarailconnection.

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    Intermodal road-railPipelineShort SeaInland WaterwayRailRoad

    FIGURE6

    Impactof2ModalShiftScenariosonCO2EmissionsfromChemicalTransport

    Current modal split

    Greener modal split

    Two greenest modal splits

    %o

    ftonne-km

    Greenermodalsplit: Marginalreallocationoroadreighttolowercarbonmodes:15%lessCO2Twogreenestmodalsplits: ApplyingthetwogreenestmodalsplitsinCefcsample:27%lessCO2

  • 7/30/2019 CEFIC_Measuring & Managing Co2 Emissions of European Chemical Transport

    29/40

    25 Chemicalcompaniesinswaparrangementssupplycustomerswithstandardproducts,otenbrandedbyaparticularcompany,romthe

    nearestproductionplant.CompanyAmaythereoresupplyCompanyBscustomeriitsplantiscloserandviceversa.Thisminimisestheaveragedistanceoverwhichproductsaredistributed.

    26 McKinnon,A.(2004)SupplyChainExcellenceintheEuropeanChemicalIndustryEPCA/Cefc,Brussels.Braithwaite,A.(2005)MaximisingPerormance:ThePoweroSupplyChainCollaborationEPCA/Cefc,Brussels.

    2.Lengthofthetransittime:water-borneservices,

    inparticular,areotentooslowtomeetcustomer

    orderleadtimerequirements.

    3.Inadequatereliability:whileulltrainloaddeliv-

    eriestendtobequitereliable,therecanbequite

    widevariationsinthetransittimesorwagonload

    trafcontheEuropeanrailnetwork.

    4.Lackofcostadvantage:modalswitchtorailorwaterstillcannotbejustifedpurelyonenviron-

    mental/decarbonisationgrounds.Theremustalso

    beacommercialcaseoritandthisisotenlacking.

    5.Capacitylimits:therailand,toalesserextent,

    waterwaynetworkscanlacksufcientcapacityon

    keylinksatbusytimestoaccommodateasubstan-

    tialmodeshitromroad.

    4.2Supplychainstructure

    Forsomechemicalcompaniestheaveragelength

    ohauliscurrentlyincreasingastheirmarketareas

    expand.Thegradualcentralisationoproductionand

    inventoryinthechemicalindustryisalsoincreasing

    itsreighttransportintensity.Thereislittleprospect

    intheoreseeableutureorthesewell-established

    geographicaltrendsbeingreversed.Thereare,never-

    theless,othermeasuresthatcompaniescantaketo

    osetthesetrendsandpossiblyreducetheindustrys

    transport-relatedcarbonootprint.

    Expandingswaparrangements25:byessentially

    reducingthedemandortransportandeliminating

    tonne-kms,swappingisanidealdecarbonisation

    measure.Itisalreadywidelyappliedinthechemical

    industryorcommodityproductssuchasethylene,

    propyleneandbenzene,though,intheopinion

    oseveralothemanagersconsulted,itcouldbe

    expanded.Nogeneraldataisavailableonthecurrent

    leveloswapsortheresultingsavingintransportand

    CO2emissions.Itisnotpossible,thereore,tomodelthepotentialsavingsromaurtherincreaseinswaps.

    Toachieveasignifcantincreaseintheleveloswap-

    ping,itwouldprobablybenecessarytotreatasstan-

    dardcommoditiessomeproductsthatarecurrently

    brandedanddierentiatedormarketingpurposes.

    Disintermediation:inotherwords,allowinglarger

    consignmentstobypassdistributorsandexternal

    warehousesandtraveldirectlyromplanttocustom-

    ers.Thiseliminatesalinkinthesupplychain,reduc-

    ingthehandlingactorandcuttingtotaltonne-kms.

    Thisalreadyhappens,evenwherethesaleisstillhandledbythechemicaldistributor,butisrelatively

    uncommon.Companieswouldhavetoensurethat

    thisdidnotcontraveneEUcompetitionrulesandthat

    highvehicleloadactorsweremaintainedonthese

    directdeliveries.

    Improvedrouting:thecircuitousroutingoprod-

    ucts,bothatasupplychainlevelviaintermodaltermi-

    nals,warehousesandtankcleaningstations,andon

    theroadandrailnetworkscangenerateunnecessary

    tonne-kms.Thereisprobablyscopeoroptimising

    chemicaltransportoperationsatboththeselevels,

    usingmoreadvancedlogisticsplanningandvehicle

    routingtools.Inthecaseohazardouschemicals,

    morecareulroutingotheproductsalsoreducesthe

    riskoaccidentsandthusyieldssaetybenefts.

    4.3Vehicleutilisation

    Theloadingoroadandrailvehicles,tanksandcontainersinthechemicalindustryisalreadyhigh,

    particularlyattheupperlevelsothesupplychain.

    Astransportcostsrepresentarelativelylargepropor-

    tionoproductvalue,companiesareunderintense

    pressuretomaximisevehicleutilisation.Pricingstruc-

    turesalsogivecustomersastrongincentivetotake

    ulltruck,tankandcontainerloads.Furtherdownthe

    supplychain,however,acombinationojust-in-time

    pressuresandproductdiversifcationismakingitdi-

    fcultorchemicalcompaniestomaintainloadactors,

    letaloneincreasethem.Figure 7(page28)liststhe

    rangeoactorsthattypicallyconstrainvehicleloadingandgroupsthemintofvecategories.Allotheseac-

    torsimpingeonchemicaltransportoperations.There

    are,nevertheless,somemeasuresthatwouldpermita

    sign