CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

115
CE 5154 Introduction to Bridge CE 5154 Introduction to Bridge Engineering Engineering ture No. 1 -- Historical Overview and Intro ture No. 1 -- Historical Overview and Intro

Transcript of CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Page 1: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

CE 5154 Introduction to Bridge EngineeringCE 5154 Introduction to Bridge Engineering

Lecture No. 1 -- Historical Overview and IntroductionLecture No. 1 -- Historical Overview and Introduction

Page 2: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Golden Gate Bridge, USA

Firth of Forth Bridge, Scotland Sunshine skyway Bridge, USA

Page 3: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Introduction

• MOVIE

Page 4: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

LECTURE -1

• Bridge Definition

• Bridge type

• Aesthetics in bridge design

• Factors considered in deciding bridge types

• Bridge components

• Bridge specification

• Role of Bridge Engineer

• Exposure to AASHTO code (1996) and PCPHB code (1967)

Page 5: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

What is a BRIDGE?

•Bridge is a structure which covers a gapBridge is a structure which covers a gap

•Generally bridges carry a road or railway across a natural or Generally bridges carry a road or railway across a natural or artificial obstacle such as,artificial obstacle such as, a river, canal or another railway or a river, canal or another railway or another roadanother road

•Bridge is a structure corresponding to the heaviest Bridge is a structure corresponding to the heaviest responsibility in carrying a free flow of transport and is the most responsibility in carrying a free flow of transport and is the most significant component of a transportation system in case of significant component of a transportation system in case of communication over spacings/gaps for whatever reason such as communication over spacings/gaps for whatever reason such as aquatic obstacles, valleys and gorges etc.aquatic obstacles, valleys and gorges etc.

Page 6: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Bridge is the KEY ELEMENT in a Transportation System

Page 7: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

It Controls the Capacity of the SystemIt Controls the Capacity of the System

If the width of a bridge is insufficient to carry the If the width of a bridge is insufficient to carry the number of lanes required to handle the traffic number of lanes required to handle the traffic volume, the bridge will be a constriction to the flow volume, the bridge will be a constriction to the flow of traffic. If the strength of a bridge is deficient and of traffic. If the strength of a bridge is deficient and unable to carry heavy trucks, load limits will be unable to carry heavy trucks, load limits will be posted and truck traffic will be rerouted. posted and truck traffic will be rerouted.

The bridge controls both the volume and weight The bridge controls both the volume and weight of the traffic carried by the transportation system.of the traffic carried by the transportation system.

Page 8: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Highest Cost per Mile of the SystemHighest Cost per Mile of the System

Bridges are expensive. The typical cost per mile of a Bridges are expensive. The typical cost per mile of a bridge is many times that of the approach roads to the bridge is many times that of the approach roads to the bridge.`bridge.`

Since, bridge is the key element in a transportation Since, bridge is the key element in a transportation system, balance must be achieved between handling future system, balance must be achieved between handling future traffic volume and loads and the cost of heavier and wider traffic volume and loads and the cost of heavier and wider bridge structure. bridge structure.

Page 9: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

If the Bridge Fails, the System FailsIf the Bridge Fails, the System Fails

The importance of a Bridge can be visualized by considering the The importance of a Bridge can be visualized by considering the comparison between the two main components of a highway system comparison between the two main components of a highway system i.e. a road and bridge itself. i.e. a road and bridge itself.

EXAMPLEEXAMPLE: : Suppose in a road there occurs deterioration and Suppose in a road there occurs deterioration and ultimately a crack, thus making a sort of inconvenience but it wont ultimately a crack, thus making a sort of inconvenience but it wont result in stopping of the flow of traffic as traffic can pass or result in stopping of the flow of traffic as traffic can pass or otherwise a bypass can be provided. The traffic no doubt will pass otherwise a bypass can be provided. The traffic no doubt will pass with a slower speed but in case of a bridge its flow is completely with a slower speed but in case of a bridge its flow is completely stopped incase of the failure of the bridge, that is the reason its stopped incase of the failure of the bridge, that is the reason its often called “If the bridge fails the structure fails” as the function of often called “If the bridge fails the structure fails” as the function of the structure could no longer be served at all.the structure could no longer be served at all.

Page 10: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Tacoman arrows

Page 11: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Classification of Bridges

Steel Concrete Wood Hybrid Stone/Brick

Pedestrian Highway Railroad

Short Medium Long

Slab Girder Truss Arch Suspension Cable-Stayed

MaterialMaterial

UsageUsage

Span

Structural Form

Structural Arrangement

Page 12: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Discussion on Classification According To STRUCTURAL FORM

Distinctive Features of Girder Bridge

Distinctive Features of Arch Bridge

Distinctive Features of Truss Bridge

Distinctive Features of Suspension Bridge

Distinctive Features of Cable-Stayed Bridges

Page 13: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Distinctive Features of Girder Bridges

•Widely constructedWidely constructed•Usually used for Short and Medium spansUsually used for Short and Medium spans•Carry load in Shear and Flexural bendingCarry load in Shear and Flexural bending•Efficient distribution of material is not possibleEfficient distribution of material is not possible•Stability concerns limits the stresses and associated economyStability concerns limits the stresses and associated economy•Economical and long lasting solution for vast majority of bridgesEconomical and long lasting solution for vast majority of bridges•Decks and girder usually act together to support the entire load in Decks and girder usually act together to support the entire load in highway bridgeshighway bridges

Page 14: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Distinctive Features of Arch Bridge

•Arch action reduces bending moments ( that is Tensile Stresses )Arch action reduces bending moments ( that is Tensile Stresses )

•Economical as compared to equivalent straight simply supported Economical as compared to equivalent straight simply supported Girder or Truss bridgeGirder or Truss bridge•Suitable site is a Valley with arch foundations on a DRY ROCK Suitable site is a Valley with arch foundations on a DRY ROCK SLOPESSLOPES•Conventional curved arch rib has high Fabrication and Erection Conventional curved arch rib has high Fabrication and Erection costscosts•Erection easiest for Cantilever Arch and most difficult for Tied Erection easiest for Cantilever Arch and most difficult for Tied ArchArch•Arch is predominantly a Compression member. Buckling must be Arch is predominantly a Compression member. Buckling must be worked to the detail so as to avoid reductions in allowable stresses.worked to the detail so as to avoid reductions in allowable stresses.

Page 15: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

•Classic arch form tends to favor Concrete as a construction Classic arch form tends to favor Concrete as a construction material material

•Conventional arch has two moment resistant components : Conventional arch has two moment resistant components : The deck and the Arch Rib. The deck and the Arch Rib.

•Near the crown of the arch and the region where Spandrel Near the crown of the arch and the region where Spandrel Columns are short, undesirable B.M. can occur. By using Pin Columns are short, undesirable B.M. can occur. By using Pin ended columns it can be avoidedended columns it can be avoided

•Space beneath the arch is less and hence danger for collision Space beneath the arch is less and hence danger for collision with the Rib, specially on a highwaywith the Rib, specially on a highway

•Curved shaped is always very pleasing and arch is the most Curved shaped is always very pleasing and arch is the most successful and beautiful structuresuccessful and beautiful structure

Distinctive Features of Arch Bridge

Page 16: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Stone Arch Bridge Movie

Page 17: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Distinctive Features of Truss Bridge

•The primary member forces are axial loadsThe primary member forces are axial loads

•The open web system permits the use of a greater overall The open web system permits the use of a greater overall depth than for an equivalent solid web girder, hence reduced depth than for an equivalent solid web girder, hence reduced deflections and rigid structuredeflections and rigid structure•Both these factors lead to Economy in material and a Both these factors lead to Economy in material and a reduced dead weightreduced dead weight•These advantages are achieved at the expense of increased These advantages are achieved at the expense of increased fabrication and maintenance costsfabrication and maintenance costs•Other bridge types have rendered the truss bridge types less Other bridge types have rendered the truss bridge types less likely to be used due to its high maintenance and fabrication likely to be used due to its high maintenance and fabrication costs.costs.•The truss is instead being used widely as the stiffening The truss is instead being used widely as the stiffening structure for the suspension bridges due to its acceptable structure for the suspension bridges due to its acceptable aerodynamic behavior since the wind gusts can pass through aerodynamic behavior since the wind gusts can pass through the truss as is not with the case in girder, arch bridges.the truss as is not with the case in girder, arch bridges.

Page 18: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Distinctive Features of Truss Bridge

•It’s a light weight structure it can be assembled member by It’s a light weight structure it can be assembled member by member using lifting equipment of small capacity.member using lifting equipment of small capacity.

•Rarely aesthetically pleasing complexity of member Rarely aesthetically pleasing complexity of member intersections if viewed from oblique directionintersections if viewed from oblique direction

•In large span structures poor aesthetic appearance of the truss In large span structures poor aesthetic appearance of the truss bridge is compensated with the large scale of the structure. bridge is compensated with the large scale of the structure. For moderate spans its best to provide a simple and regular For moderate spans its best to provide a simple and regular structure structure

Page 19: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Truss Action Movie

Page 20: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Distinctive Features of Suspension Bridge

•Major element is a Major element is a flexible cable, shaped and supported in such a way that it transfers the loads to the towers and anchorage

•This cable is commonly constructed from High Strength wires, This cable is commonly constructed from High Strength wires, either spun in situ or formed from component, spirally formed either spun in situ or formed from component, spirally formed wire ropes. In either case allowable stresses are high of the order wire ropes. In either case allowable stresses are high of the order of 600 MPAof 600 MPA

•The deck is hung from the cable by The deck is hung from the cable by HangersHangers constructed of high constructed of high strength ropes in tensionstrength ropes in tension

•As in the long spans the Self-weight of the structures becomes As in the long spans the Self-weight of the structures becomes significant, so the use of high strength steel in tension, primarily in significant, so the use of high strength steel in tension, primarily in cables and secondarily in hangers leads to an economical structure.cables and secondarily in hangers leads to an economical structure.

•The economy of the cable must be balanced against the cost of The economy of the cable must be balanced against the cost of the associated anchorage and towers. The anchorage cost may be the associated anchorage and towers. The anchorage cost may be high where foundation material is poorhigh where foundation material is poor

Page 21: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Distinctive Features of Suspension Bridge

•The main cable is stiffened either by a pair of stiffening trusses or The main cable is stiffened either by a pair of stiffening trusses or by a system of girders at deck level.by a system of girders at deck level.

•This This stiffening system serves to (a) control aerodynamic movements and (b) limit local angle changes in the deck. It may be unnecessary in cases where the dead load is great.

•The complete structure can be erected without intermediate The complete structure can be erected without intermediate staging from the groundstaging from the ground

•The main structure is elegant and neatly expresses its function.The main structure is elegant and neatly expresses its function.

•It is the only alternative for spans over 600m, and it is generally It is the only alternative for spans over 600m, and it is generally regarded as competitive for spans down to 300m. However, shorter regarded as competitive for spans down to 300m. However, shorter spans have also been built, including some very attractive spans have also been built, including some very attractive pedestrian bridgespedestrian bridges

•The height of the main towers can be a disadvantage in some The height of the main towers can be a disadvantage in some areas; for example, within the approach road for an AIRPORTareas; for example, within the approach road for an AIRPORT

Page 22: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Distinctive Features of Cable-stayed Bridge

•The use of high strength cables in tension leads to economy in material, weight, and cost..•As compared with the stiffened suspension bridge, the cables are straight rather than curved. As a result, the stiffness is greater•The cables are anchored to the deck and cause compressive forces in the deck. For economical design, the deck must participate in carrying these forces•All individual cables are shorter than full length of the superstructure. They are normally constructed of individual wire ropes, supplied complete with end fittings, prestretched and not spun.•There is a great freedom of choice in selecting the structural arrangement•Less efficient under Dead Load but more efficient in support Live Load. It is economical over 100-350m, some designer would extend the upper bound as high as 800m

Page 23: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Distinctive Features of Cable-stayed Bridge

•Aerodynamic stability has not been found to be a problem in structures erected to date•When the cables are arranged in the single plane, at the longitudinal center line of the deck, the appearance of the structure is simplified and avoids cable intersections when the bridge is viewed obliquely

Page 24: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Discussion on Classification According To Discussion on Classification According To SPANSPAN

Small Span Bridges (up to 15m)

Medium Span Bridges (up to 50m)

Large Span Bridges (50-150m)

Extra Large ( Long ) Span Bridges (over 150m)

Page 25: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Small Span BridgesSmall Span Bridges (up to 15m)

Culvert BridgeCulvert Bridge

Slab BridgesSlab Bridges

T-Beam BridgeT-Beam Bridge

Wood Beam BridgeWood Beam Bridge

Pre-cast Concrete Box Beam BridgePre-cast Concrete Box Beam Bridge

Pre-cast Concrete I-Beam BridgePre-cast Concrete I-Beam Bridge

Rolled Steel Beam BridgeRolled Steel Beam Bridge

Page 26: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Medium Span BridgesMedium Span Bridges (up to 50m)

Pre-cast Concrete Box Beam & Pre-cast Concrete I-BeamPre-cast Concrete Box Beam & Pre-cast Concrete I-Beam

Composite Rolled Steel Beam BridgeComposite Rolled Steel Beam Bridge

Composite Steel Plate Girder BridgeComposite Steel Plate Girder Bridge

Cast-in-place RCC Box Girder BridgeCast-in-place RCC Box Girder Bridge

Cast-in-place Post-Tensioned Concrete Box GirderCast-in-place Post-Tensioned Concrete Box Girder

Composite Steel Box GirderComposite Steel Box Girder

Page 27: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

BOX GIRDER

Page 28: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Large Span BridgesLarge Span Bridges (50 to 150m)

Composite Steel Plate Girder BridgeComposite Steel Plate Girder Bridge

Cast-in-place Post-Tensioned concrete Box GirderCast-in-place Post-Tensioned concrete Box Girder

Post-Tensioned Concrete Segmental ConstructionPost-Tensioned Concrete Segmental Construction

Concrete Arch and Steel ArchConcrete Arch and Steel Arch

Page 29: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Extra Large (Long) Span BridgesExtra Large (Long) Span Bridges(Over 150m)

Cable Stayed BridgeCable Stayed Bridge

Suspension BridgeSuspension Bridge

Page 30: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Discussion on Classification According To Discussion on Classification According To Structural ArrangementStructural Arrangement

•Main Structure Below the Deck Line

•Main Structure Above the Deck Line

•Main Structure coincides with the Deck Line

The classification of the bridge types can also be according to the location of the main structure elements relative to the surface on which the user travels, as follows:

Page 31: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Main Structure Below the Deck LineMain Structure Below the Deck Line

Arch BridgeArch Bridge

Masonry ArchMasonry Arch

Concrete ArchConcrete Arch

Inclined Leg Frame ArchInclined Leg Frame Arch

Rigid Frame ArchRigid Frame Arch

Truss-Arch BridgeTruss-Arch BridgeSteel Truss-ArchSteel Truss-Arch

Steel Deck TrussSteel Deck Truss

Page 32: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Main Structure Above the Deck LineMain Structure Above the Deck Line

Suspension BridgesSuspension Bridges

Cable Stayed BridgesCable Stayed Bridges

Through-Truss BridgeThrough-Truss Bridge

Page 33: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Main Structure Coincides with the Main Structure Coincides with the Deck LineDeck Line

Girder BridgeGirder Bridge

Slab (solid and voided)Slab (solid and voided)

T-Beam (cast-in-place)T-Beam (cast-in-place)

I-beam (pre-cast or pre-stressedI-beam (pre-cast or pre-stressed

Wide-flange beam (composite & non- Wide-flange beam (composite & non- compositecomposite

Concrete Box (cast-in-place, segmental Concrete Box (cast-in-place, segmental & pre-stressed& pre-stressed

Steel Plate Girder (straight & haunched)

Steel box (Orthotropic deck)

Page 34: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

FACTORS CONSIDERED IN DECIDING FACTORS CONSIDERED IN DECIDING BRIDGE TYPEBRIDGE TYPE

•Geometric Conditions of the Site

•Subsurface Conditions of the Site

•Functional Requirements

•Aesthetics

•Economics and Ease of Maintenance

•Construction and Erection Consideration

•Legal Considerations

In general all the factors are related to economy, safety and aesthetics.

Page 35: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Geometric Conditions of the SiteGeometric Conditions of the Site

•The type of bridge selected will always depend on the horizontal and vertical alignment of the highway route and on the clearances above and below the roadway

•For Example: if the roadway is on a curve, continuous box girders and slabs are a good choice because they have a pleasing appearance, can readily be built on a curve, and have a relatively high torsion resistance

•Relatively high bridges with larger spans over navigable waterways will require a different bridge type than one with medium spans crossing a flood plain

•The site geometry will also dictate how traffic can be handled during construction, which is an important safety issue and must be considered early in the planning stage

Page 36: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Subsurface conditions of the soilSubsurface conditions of the soil

•The foundation soils at a site will determine whether abutments and piers can be founded on spread footings, driven piles, or drilled shafts

•If the subsurface investigation indicates that creep settlement is going to be a problem, the bridge type selected must be one that can accommodate differential settlement over time

•Drainage conditions on the surface and below ground must be understood because they influence the magnitude of earth pressures, movement of embankments, and stability of cuts or fills

•For Example: An inclined leg frame bridge requires strong foundation material that can resist both horizontal and vertical thrust. If it is not present, then another bridge type is more appropriate.

Page 37: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

•The potential for seismic activity at a site should also be a part of the subsurface investigation. If seismicity is high, the substructure details will change, affecting the superstructure loads as well

•All of these conditions influence the choice of substructure components which in turn influence the choice of superstructure

Subsurface conditions of the soilSubsurface conditions of the soil

Page 38: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Functional RequirementsFunctional Requirements•Bridge must function to carry present and future volumes of traffic.

•Decisions must be made on the number of lanes of traffic, inclusion of sidewalks and/or bike paths, whether width of the bridge deck should include medians, drainage of the surface waters, snow removal, and future wearing surface.

•For Example: In the case of stream and flood plain crossings, the bridge must continue to function during periods of high water and not impose a severe constriction or obstruction to the flow of water or debris.

•Satisfaction of these functional requirements will recommend some bridge types over others.

•For Example: if future widening and replacement of bridge decks is a concern, multiple girder bridge types are preferred over concrete segmental box girders.

Page 39: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

AestheticsAesthetics

•It should be the goal of every bridge designer to obtain a positive aesthetic response to the bridge type selected

•There are no equations, no computer programs or design specifications that can make our bridge beautiful.

•It is more an awareness of beauty on our part so that we can sense when we are in the presence of something good.

•Aesthetics must be a part of the bridge design program from the beginning. It can’t be added on at the end to make the bridge look nice. At that time it is too late. From the beginning, the engineer must consider aesthetics in the selection of spans, depths of girders, piers, abutments, and the relationship.

Page 40: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Economic and ease of maintenanceEconomic and ease of maintenance

•The initial cost and maintenance cost over the life of the bridge govern when comparing the economics of different bridge types.

•A general rule is that the bridge with the minimum number of spans, fewest deck joints, and widest spacing of girders will be the most economical.

•For Example: (1) By reducing the number of spans in a bridge layout by one span, the construction cost of one pier is eliminated. (2) Deck joints are a high maintenance cost item, so minimizing their number will reduce the life cycle cost of the bridge. (3) When using the empirical design of bridge decks in the AASHTO (1994) LRFD Specifications, the same reinforcement is used for deck spans up to 4.1m. Therefore, there is little cost increase in the deck for wider spacing for girders and fewer girders means less cost although at the “expense” of deeper sections.

Page 41: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Economic and ease of maintenanceEconomic and ease of maintenance

•Generally, concrete structures require less maintenance than steel structure. The cost and hazard of maintenance painting of steel structures should be considered in type selection studies.

•One effective way to reduce the overall project cost is to allow contractors to propose an alternative design or designs.

Page 42: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Construction and Erection Considerations

•The length of the time required to construct a bridge is important and will vary with the bridge type.

•Generally, larger the prefabricated or pre-cast members shorter the construction time. However, the larger the members, the more difficult they are to transport and lift into place.

•The availability of skilled labor and specified materials will also influence the choice of a particular bridge type.

•For Example: if there are no pre-cast plants for pre-stressed girders within easy transport but there is a steel fabrication plant nearby that could make the steel structure more economical.

•The only way to determine which bridge type is more economical is to bid alternative designs.

Page 43: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Legal ConsiderationsLegal Considerations

•Regulations are beyond the control of an engineer, but they are real and must be considered.

Examples of certain regulations are as follows:

•Permits Over Navigable Waterways

•National Environmental policy Act

•Department of Transportation Act

•National historic preservation Act

•Clean Air Act

•Noise Control Act

Page 44: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Legal ConsiderationsLegal Considerations

•Fish and Wildlife Coordination Act

•The Endangered Species Act

•Water Bank Act

•Wild and Scenic Rivers Act

•In addition to the environmental laws and acts defining national policies, local and regional politics are also of concern

Page 45: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Legal ConsiderationsLegal Considerations

•Fish and Wildlife Coordination Act

•The Endangered Species Act

•Water Bank Act

•Wild and Scenic Rivers Act

•In addition to the environmental laws and acts defining national policies, local and regional politics are also of concern

Page 46: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Discussion on Bridge ComponentsDiscussion on Bridge Components

•Common bridge components

•Components of a Girder bridge (Beam Bridge)

•Components of a Suspension Bridge

Page 47: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

General Bridge ComponentsGeneral Bridge Components

Bridge Bearings: These are supports on a bridge pier, which carry the

weight of the bridge and control the movements at the bridge supports,

including the temperature expansion and contraction. They may be metal

rockers, rollers or slides or merely rubber or laminated rubber ( Rubber with

steel plates glued into it).

Bridge Dampers & Isolators: Bridge dampers are devices that absorb Bridge dampers are devices that absorb

energy generated by earthquake waves and lateral loadenergy generated by earthquake waves and lateral load

Bridge Pier: A wide column or short wall of masonry or plain or reinforced

concrete for carrying loads as a support for a bridge, but in any case it is

founded on firm ground below the river mud

Page 48: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

General Bridge ComponentsGeneral Bridge Components

Bridge Cap:Bridge Cap: The highest part of a bridge pier on which the The highest part of a bridge pier on which the bridge bearings or rollers are seated. It may be of stone, brick bridge bearings or rollers are seated. It may be of stone, brick or plain or reinforced concrete.or plain or reinforced concrete.

Bridge Deck:Bridge Deck: The load bearing floor of a bridge which The load bearing floor of a bridge which carries and spreads the loads to the main beams. It is either of carries and spreads the loads to the main beams. It is either of reinforced concrete., pre-stressed concrete, welded steel etc.reinforced concrete., pre-stressed concrete, welded steel etc.

Abutment: A support of an arch or bridge etc which may carry a horizontal force as well as weight.Expansion Joints : These are provided to accommodate the translations due to possible shrinkage and expansions due to temperature changes.

Page 49: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Components of a Components of a Girder bridge (Beam Bridge)Girder bridge (Beam Bridge)

Page 50: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Components of a Components of a Suspension BridgeSuspension Bridge

• Anchor Block: Just looking at the figure we can compare it as a dead man having no function of its own other than its weight.

• Suspension girder: It is a girder built into a suspension bridge to distribute the loads uniformly among the suspenders and thus to reduce the local deflections under concentrated loads.

• Suspenders: a vertical hanger in a suspension bridge by which the road is carried on the cables

• Tower: Towers transfers compression forces to the foundation through piers.

• Saddles: A steel block over the towers of a suspension bridge which acts as a bearing surface for the cable passing over it.

• Cables: Members that take tensile forces and transmit it through saddles to towers and rest of the forces to anchorage block.

Page 51: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Anchor Block Movie

Page 52: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

BRIDGE SPECIFICATIONS• Meaning of bridge specifications.

• Need of bridge specifications. History Development Lack of specification and usage of proper codes and safety

factors -------reason of failure of a structure (bridge) Use and check of safety factors case study of wasserwork bridge

for the check of present working capacity. Assignment: Main reason of failure for some bridge/bridges

Page 53: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

BRIDGE SPECIFICATION• Basically the word specification stands in general for a

collection of work description upon which there is a mutual agreement of the most experienced group of people based upon their practical and theoretical knowledge

• Bridge specification:

Applying the above mentioned definition, context to bridge makes it self explanatory.

Page 54: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

HISTORY AND NEED OF BRIDGE SPECIFICATIONS

• Early bridge were design built type contract.• No proper specifications so contract went to lowest bidder• Statistics of built bridges in 1870’s show 40 bridges failed per year.• Engineers thought about a mutual ground of practice that is both economical

and general along with restricting the bidding companies to follow a course of work there by improving the quality of structures and forcing them to compromise on quality which was a very common practice in case of absence of any code or specification.

Page 55: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 56: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Development• First practical step was taken after the collapse of a locomotive bridge on 29 th

September 1876 across Ashtabula Creek at Ashtabula.• 1914 American Association of State Highway Officials (AASHO) was formed• 1921 committee on Bridges and Allied Structures was organized.. • The first edition of standard specifications for Highway Bridges and Incidental

Structures was published in 1931 by AASHO.• In 1963 AASHO became AASHTO (American Association for State Highway and

Transportation Officials)• In the beginning the design philosophy utilized in the standard specification was

working stress design (allowable stress design). In the 1970s variation in the uncertainties of loads were considered and load factor design was introduced as an alternative method.

• In 1986 the subcommittee on Bridges and structures initiated study of the load and resistance factor design (LRFD) .

• The subcommittee authorized a comprehensive rewrite of the entire standard specification to accompany the conversion to LRFD. The result is the first edition of the AASHTO (1994) LRFD Bridge Design Specification.

Page 57: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

CASE STUDY TO VISULAIZE THE IMPORTANCE OF BRIDGE SPECIFICATIONS

Location: Waserwork strasse, Zurich Switzerland, slab bridge modeled in CUBUS

software then later on modeled in SAP 2000.Problem: A 70 year old slab bridge (sort of cause way) was asked to be checked for the

current code of practice in turn checking the safety factors.Solution: The bridge was analyzed for the current loading situations according to the

current codes of practice and the results were compared with the results of the older bridge analysis.

Result: The safety factors were found in accordance with the older analysis and

design of bridge on which it was being built.

Page 58: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 59: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

ROLE OF A BRIDGE ENGINEER

The role of an engineer can be broadly classified in two major working environments.

• Consultancy Environment

• Contractor Environment

Page 60: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Consultancy Environment• Meeting the demand of clients• Not compromising on quality control at the same time

while remaining economical.• Must work properly on factors such as environment of

the location, traffic growth rate, population growth rate etc before designing.

• Design should be flexible to the practical considerations.• Following the proper design specifications.• Proper Management both off site and on site.

Page 61: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Contractor Environment• On site decision making keeping in mind factors such as cultural

& environmental factors etc• Quality assurance to the consultants there by working up to the

needs of clients• Be economical to the contracting firm along with not making a

compromise on quality.• Proper time management and scheduling of works without undue

delays.• Beneficial use of labors at various important locations of bridge.

Page 62: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

CASE STUDY• LOCATION:• Arachtos, Greece.• Arachtos bridge pier design for construction phase modeled in SAP 2000.• Problem------Counter acting the forces just introduced for construction phase

due to heavy machinery to be used.• Solution------Attaching with a cable or some other appropriate element with the

girder end so as to take part of loads.• Result------calculation of the percentage of loads taken by the cable element.• Acrachtos

bridge pier design for construction phase modeled in SAP 2000 after the introduction of cable attached to the box girder.

Page 63: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 64: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 65: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Aesthetics in Bridge DesignAesthetics in Bridge Design

•The conventional order of priorities in bridge design is safety, economy, serviceability, constructability, and so on. Somewhere down this list is aesthetics. There should be no doubt in an engineer’s mind that aesthetics needs a priority boost, and that it can be done without infringing upon the other factors.

•The belief that improved appearance increases the cost of bridges is unfounded and oftentimes the most aesthetically pleasing bridge is also the least expensive.

•The additional cost is about 2% for short spans and only about 5% for long spans

•It is not necessary that everyone agrees as to what makes a bridge beautiful, but it is important that designers are aware of the qualities of a bridge that influence the perception of beauty

Page 66: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Definition Aesthetics and BeautyDefinition Aesthetics and Beauty

•Aesthetics is the study of qualities of beauty of an object and of their perception through our senses.

•Even if this particular aesthetic air be the last quality we seen in a bridge, its influence nonetheless exists and has an influence on our thoughts and actions. ( Santayana )

Page 67: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Qualities of Aesthetic DesignQualities of Aesthetic Design“ There are not HARD & FAST rules or formulas for aesthetics of bridge design. It finally gets down to the responsibility of each designer on each project to make personal choices that will lead to a more beautiful structure “

•Function

•Proportion

•Harmony

•Order & Rhythm

•Contrast & Texture

•Light and shadow

Page 68: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

FunctionFunction•For a bridge design to be successful, it must always safely perform its function.

•For example, a bridge is designed that fulfills every requirements of aesthetic consideration and other requirements such as economy, constructability etc. but is somehow unable to perform the function for which it was designed, then however beautiful it is, it won’t be appealing.

•The very first notion of beauty in a bridge is that it performs its function efficiently and people using it are satisfied.

•Moreover, the IMPORTANCE of function also enhances the BEAUTY or AESTHETICS of the BRIDGE.

•For Example: A bridge across straits of Bosporus at Istanbul. This bridge replaces a slow ferry boat trip, but it also serves the function of connecting two continents (Asia and Europe).

Page 69: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

ProportionProportion

•Good proportions are fundamental to achieving an aesthetically pleasing bridge structure

•It is generally agreed that when a bridge is placed across a relatively shallow valley, the most pleasing appearance occurs when there are an odd number of spans with span lengths that decrease going up the side of the valley.

•The bridge over a deep valley again should have an odd number of spans, but should be of equal length. And slender girders and the tall, tapered piers can add to the aesthetic pleasure

Page 70: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

•Another consideration is the proportion between piers and girders. From strength viewpoint, the piers can be relatively thin compared to the girders. However, when a bridge has a low profile, the visual impression can be improved by having strong piers supporting slender girders.

•Slender girders can be achieved if the superstructure is made continuous. Infact, the superstructure continuity is the most important aesthetic consideration

•The proportions of a bridge change when viewed from an oblique angle.

ProportionProportion

Page 71: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

HarmonyHarmony•Harmony means getting along well with others. The parts of the structure must be in agreement with each other and the whole structure must be in agreement with its surroundings.

Harmony between the elements of a bridge:

•It depends on the proportions between the span lengths and depth of girders, height and size of piers, and negative spaces and solid masses.

Harmony between the whole structure and its surroundings

•The scale and size of a bridge structure should be relative to its environment.

•For Example, a long bridge crossing a wide valley can be large because the landscape is large. But when a bridge is placed in an urban setting, the size must be reduced.

Page 72: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Order and RhythmOrder and Rhythm

•Repeating similar spans too many times can become boring and monotonous

•It can also become aggravating to be driving down the interstate and seeing the same standard over crossing mile after mile. The first one or two look just fine, but after a while a feeling of frustration takes over the pleasing affect of however the beautiful the construction.

Page 73: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

•There is a place for contrast, as well as harmony in bridge aesthetics.

•All bridges do not have to blend in with their surroundings. “ when a bridge is built in the middle of the country, it should blend in with the country side, but very often, because of its proportions and dynamism, the bridge stands out and dominates the landscape”

•The dominance seems to be specially true in case of Cable-stayed and suspension bridges.

•There can also be contrast between the elements of a bridge to emphasize the slenderness of the girders and the strength of the piers and abutments.

Contrast and TextureContrast and Texture

Page 74: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

•Texture can also be used to soften the hard appearance of concrete and make certain elements less dominant.

•Large bridges seen from a distance must develop contrast through their form and mass, but bridges with smaller spans seen up close can effectively use texture.

Contrast and TextureContrast and Texture

Page 75: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Light and ShadowLight and Shadow

•Designer must be aware of how the shadows occur on the structure throughout the day

•If the bridge is running north and south the shadows will be quite different than if it is running east to west.

•For Example: When sunlight is parallel to the face of a girder or wall, small imperfections in workmanship can cast deep shadows. Construction joints in concrete may appear to be discontinuous and hidden welded stiffeners may no longer be hidden.

•One of the most effective ways to make a bridge girder appear slender is to put it partially or completely in shadow.

Page 76: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

•Creating shadow becomes especially important with the use of solid concrete safety barriers that make the girders look deeper than they actually are.

•Shadows can be accomplished by cantilevering the deck beyond the exterior girder.

•The effect of shadow on a box girder is further improved by sloping the side of the girder inward.

Light and ShadowLight and Shadow

Page 77: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

End of show

• Construction & history of Brooklyn Bridge

• Construction & history of Golden Gate Bridge

Page 78: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 79: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 80: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

GIRDER BRIDGE

Page 81: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

GIRDER BRIDGE

Page 82: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

GIRDER BRIDGE

Page 83: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

GIRDER BRIDGE

Page 84: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 85: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 86: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Bridge Cap and DamperBridge Cap and Damper

Page 87: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 88: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 89: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 90: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 91: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 92: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Truss bridge

Page 93: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Truss Bridge

Page 94: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Truss Bridge

Page 95: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Truss Bridge

Page 96: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Truss Bridge

Page 97: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Truss Bridge

Page 98: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

ARCH BRIDGE

Page 99: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

ARCH BRIDGE

Page 100: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

ARCH BRIDGE

Page 101: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

ARCH BRIDGEARCH BRIDGE

Page 102: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 103: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 104: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Suspension Bridge

Page 105: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Suspension Bridge

Page 106: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.

Suspension BridgeSuspension Bridge

Page 107: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 108: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 109: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 110: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 111: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 112: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 113: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 114: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.
Page 115: CE 5154 Introduction to Bridge Engineering Lecture No. 1 -- Historical Overview and Introduction.