Box Culvert Chesirimion

download Box Culvert Chesirimion

of 26

Transcript of Box Culvert Chesirimion

  • 8/2/2019 Box Culvert Chesirimion

    1/26

    1 In side diamentions 1.50 m x 1.50 m

    2 Super imposed load 12000 N/m3

    3 Live load 60000 N/m2

    4 Wieght of soil 18000 N/m2

    5 Angle of repose 25 Degree

    6 Nominal cover top / bottom 50 mm Nominal cover side 50 mm

    6 Cocrete M- 25 wt. of concrete 24000 kg/m3

    scbc 7 N/m2 m 13

    7 Steel 415 ater side sst 150 N/m2 sst 190 N/m2

    8 Thickess of side wall 300 mm thickness of side wall is OK

    Thickness of top slab 300 mm O.K.

    Thickness of bottom slab 230 mm

    9 Reinforcement

    Top slab Main 16 mm F @ 230 mm c/c

    Distribution 12 mmF

    @ 310 mm c/cAt supports 16 mm F @ 200 mm c/c

    Bottom slab Main 16 mm F @ 200 mm c/c

    Distribution 12 mm F @ 370 mm c/c

    At supports 12 mm F @ -580 mm c/c Through out slab at bottom

    Vertical 20 mm F @ 300 mm c/c Both side O.K.

    Distribution 12 mm F @ 310 mm c/c

    16 mm F@ 460 mm c/c

    12 mm F@ 200 mm C/C

    16 mm F@ 310 mm C/c

    300 16 mm F@

    20 mm F@ 230 mm C/C

    300 mm C/C

    1.50

    12 mm F@

    310 mm C/C

    16 mmF

    @200 mm c/c

    16 mm F@ 12 mm F

    @ 16 mm F

    @

    400 mm c/c 200 mm C/C 310 mm C/c

    300 1.50 300

    [email protected]

    DESIGN OF BOX TYPE CULVERT

    300

    230

    Side vertical wall

    mailto:[email protected]:[email protected]
  • 8/2/2019 Box Culvert Chesirimion

    2/26

  • 8/2/2019 Box Culvert Chesirimion

    3/26

    1 1/2

    1+1/2 1+1/2

    wL2 #### x 1.8 2=

    12

    wL2 #### x 1.8

    2=

    12

    pL2 WL Where W is the total tringular earth pressure.

    12 15

    29266 x 1.82

    + #### x 1.8 1.815

    pL2 WL

    12 15

    29266 x 1.8 2-- #### x 1.8 1.8

    10

    The Moment distribution is carried out as illustrate in table

    Fixed End Moments

    Member

    The moment distribution carried out as per table 1 for case 1

    Joint

    Member

    Distribution factore

    Fix end moment A A

    Balance

    Carry over

    balance 1.8 m

    Carry over

    balance

    Carry over D D

    balance 35960

    Carry over

    balanceCarry over

    balance

    Carry over

    balance

    Carry over

    balance

    Final moment

    For horizontal slab AB, carrying UDL @ N/m2.

    Vertical reactionat a and B = 0.5 x x 1.8 = N/m2

    Similarly, for the Bottom slab DC carrying U.D.L.loads @ #### N/m2

    Vertical reaction at D and C = 0.5 x x 1.80 = N

    The body diagram for various members, including loading, B.M. And reactions are shown in fig.2

    For the vertical member AD, the horizontal reaction at A is found by taking moments at D.Thus

    ( -ha x 1.80 ) + 14959 - #### + #### x 1.80 x 1.80 x 1/2

    + x x 1.80 x 1.80 x 1/3

    -ha x 1.80 + + +

    From which, ha =

    Hence , hd =( 29266 + #### )x 1.80 - #### = N

    [email protected] 2

    79200 71280

    71280

    14959

    18052

    1986

    19856

    17117

    84240

    71280

    -2 5

    1/2

    14959 -14959

    -14

    -18052

    6

    -4

    -7

    DA

    -10035

    AD

    9325

    35960

    13170

    0.9

    14959

    29266

    0.9

    -63

    -149

    18052

    -7

    -17 -33

    21

    188

    50

    21

    5099

    -5079 -10158

    4020

    -2680

    1693

    447-564

    -1340

    Distribution factore for AD and DA= = 2/3 = 1/3Distribution factore for AB and DC=

    Fix end moments will be as under : =

    Mfdc= + =

    -21384 N - mMFAB=

    N-m=

    12

    1225272 N - m

    x

    MFAD = +

    MFAD = + 9325

    +

    25272

    MFDA = - -

    12 2

    2MFDA = -

    12

    0.33

    25272

    D

    DC

    A

    DC

    AB

    0.67

    -10035

    DA

    = -10035-2133-7902=x

    AD

    -1129

    447

    -298

    188

    -125

    0.67

    9325

    8039

    -5079

    3386

    -1340

    893

    -564

    376

    -149

    -63

    42

    -17

    79200

    11

    2

    47410.6

    35960

    7111.59

    1693

    93600

    42435

    84240

    93600 84240

    Fig 26

    AB

    -21384 28572

    4020

    -21384

    28572

    13170

    -3093

    28572

    79200

    0.33

    18052

    1495914959

    mailto:[email protected]:[email protected]
  • 8/2/2019 Box Culvert Chesirimion

    4/26

    x 1.80 2=

    8

    Net B.M. at E = - =

    x 1.80 2=

    8

    Net B.M. at F = - =

    For vertical member AD , Simply supported B.M. At mid span

    x 1.80

    8+

    2

    3 Case 2 : Dead load and live load from out side and water pressure from inside.

    In this case , water pressure having an intensity of zero at A and 9800 x 1.80 = N/m2

    w = 79200 N/m2

    Itensity = 29266 A E B

    And = 42435 - 17640

    = 24795

    D F C

    24795

    w = 93600 N/m2

    Fig 3

    wL2 = #### x 1.80 2=

    12

    wL2 #### x 1.8

    2=

    12

    pL2 WL Where W is the total tringular earth pressure.

    12 10

    24795 x 1.8 2+ 4470 x 1.8 1.8

    10

    pL2 WL

    12 15

    24795 x 1.8 2- 4470 x 1.8 1.8

    15

    Fixed End Moments

    Member

    The moment distribution carried out as per table 1 for case 1

    JointMember

    Distribution factore 23412

    Fix end moment A A

    Balance

    Carry over

    balance 1.8

    Carry over

    balance

    Carry over D D

    1.80

    29265.82278

    4368

    0.9

    517 -670 24795

    -670 -1340 1034 517 16743

    4021 2010

    2010 -1552

    13887

    -1552 -3103

    0.9

    4655 -6031

    25272 -7178 7419 -21384

    -6031 -12063 9310 4655

    138870.33 0.67 0.67 0.33 29266 18189

    DC

    D A 71280 71280DC DA AD AB

    25272 -7178 7419 -21384 23412

    DA AD 13887

    The moment distribution is carrired out as illustred in table.

    AB 13887

    MFDA = - x =12 2

    -7178 N -m

    = 7419 N-m12 2

    MFDA = - -

    MFAD = + +

    MFAD = +

    Mfdc= = 25272 N - m12

    At D, is acting, in addition to the pressure

    considered in case 1. The various pressures

    are marked in fig 3 .The vertical walls will thus

    be subjected to a net latral pressure of

    N/m2At the Top

    N/m2at the bottom

    Fix end moments will be as under : MFAB=

    Similarly, free B.M. at F =

    79200

    N-m

    -

    9360037908

    18052 14959

    79200Free B.M. at mid point E = 32076 N-m

    32076 14959 17117

    Netlatralpressurediagram

    N -m

    37908 18052 19856 N-m

    29265.8228####

    4470.38

    N-mNet B.M. = = 16506

    imply supporetd at mid sapn

    #### =

    1/16 x x 1.80 2=2+

    14520

    1.80

    42435.44

    17640

    1986

    -21384 N - m12

    x

    42435.443

    29265.823 29265.82

  • 8/2/2019 Box Culvert Chesirimion

    5/26

    balance

    Carry over

    balance

    Carry over

    balance

    Carry over

    balance

    Carry over

    balanceFinal moment

    For horizontal slab AB, carrying UDL @ N/m2.

    Vertical reactionat a and B = 0.5 x x 1.8 = N/m2

    Similarly, for the Bottom slab DC carrying U.D.L.loads @ #### N/m2

    Vertical reaction at D and C = 0.5 x x 1.80 = N

    The body diagram for various members, including loading, B.M. And reactions are shown in fig.3

    For the vertical member AD, the horizontal reaction at A is found by taking moments at D.Thus

    ( -ha x 1.80 ) + 13887 - #### + #### x 1.80 x 1.80 x 1/2

    + x x 1.80 x 1.80 x 2/3

    -ha x 1.80 + + +

    From which, ha =

    Hence , hd =( 24795 + #### )x 1.80 - #### = N

    2

    x 1.80 2=

    8

    Net B.M. at E = - =

    x 1.80 2=

    8

    Net B.M. at F = - =

    For vertical member AD , Simply supported B.M. At mid span

    x 1.80

    8+

    2

    4 Case 3 : Dead load and live load on top water pressure from inside no live load on side.

    in this case, it is assume that there is no latral oressure due to live load . As before .

    N/m2

    and the bottom slab is subjected to a load w = 79200 N/m2

    Itensity = 93600 N/m2

    A E B

    1/3 x 12000 = N/m2

    1/3 x 18000 = 6000 N/m2

    4000 + 6000 h D F C

    Earth pressure intensity at top = 4000 17640 w= 93600 N/ 17640

    Fig 5

    Earth pressure intensity at Bottom= 4000 + 6000 x 1.80 = N/m2

    In addition to these, the vertical wall lslab subjectednto water pressure of intensity ZERO at top an

    N/m2 at Bottom, acting from inside . The lateral pressure on vertical walls Is shown in fig 5 and 6

    [email protected]

    N/m2

    14800

    17640

    25244

    Netlatralpressurediagram

    4470.379747

    The top slab is subjected to a load of '=

    1.80

    79200

    Lateral pressure due to dead load =

    4000

    Lateral pressure due to soil =

    Net B.M. =16743

    15315

    Hence earth pressure at depth h is =

    4368 N-m

    4000 4000

    2= 10947

    13887= - #### =

    N-m

    imply supporetd at mid sapn24795.443 2+

    1/16 x 4470 x 1.80

    Similarly, free B.M. at F =93600

    37908 N -m

    37908 16743 21165

    25244

    Free B.M. at mid point E =79200

    32076 N-m

    32076 13887 18189 N-m

    1/2 4470

    -2856 40168.6 4828.01

    23412

    79200

    79200 71280

    93600 84240

    16743 -16743 13887 -13887

    6 -8

    -2 -4 6 3

    93600

    -8 -17 13 6 Fig 4

    25 -19

    -19 -38 50 25

    57 -74 25244

    -74 -149 115 57 84240 84240

    21165

    223 -172

    -172 -345 447 22316743

    4000

    1.80

    14800 14800

    mailto:[email protected]:[email protected]
  • 8/2/2019 Box Culvert Chesirimion

    6/26

    wL2 #### x 1.80 2=

    12

    wL2 #### x 1.8

    2=

    12

    pL2 WL Where W is the total tringular earth pressure.

    12 15

    4000 x 1.8 2- 4470 x 1.8 1.8

    15

    pL2

    WL 1080 - 48312 10

    4000 x 1.8 2- 4470 x 1.8 1.8

    10

    Fixed End Moments

    Member

    The moment distribution carried out as per table 1 for case 1

    Joint

    Member

    Distribution factore

    Fix end moment A A

    Balance

    Carry over

    balance 1.8

    Carry over

    balance

    Carry over D D

    balance

    Carry over

    balance

    Carry over

    balanceCarry over

    balance

    Carry over

    balance

    Final moment

    For horizontal slab AB, carrying UDL @ N/m2.

    Vertical reactionat a and B = 0.5 x x 1.8 = N

    Similarly, for the Bottom slab DC carrying U.D.L.loads @ #### N/m2

    Vertical reaction at D and C = 0.5 x x 1.80 = N

    The body diagram for various members, including loading, B.M. And reactions are shown in fig.6

    For the vertical member AD, the horizontal reaction at A is found by taking moments at D.Thus

    ( ha x 1.80 ) + 10477 - #### + 4000 x 1.80 x 1.80 x 1/2

    - x x 1.80 x 1.80 x 1/3

    -ha x 1.80 + + -

    From which, ha =

    Hence , hd =( 4470 x 1.80 )- 4000 x 1.80 - -673 =

    2

    x 1.80 2=

    8Free B.M. at mid point E =

    7920032076 N-m

    1/2 4470

    -2855 6480 2414

    -673

    79200

    79200 71280

    93600 84240

    13332 -13332 10477 -10477

    10 -11

    -3 -6 8 4

    93600

    -11 -23 19 10 Fig 4

    34 -29-29 -57 68 34

    86 -103 -673

    -103 -205 171 86 84240 84240

    24576

    308 -257

    -257 -513 615 308 447013332

    0.9

    770 -923 0

    -923 -1846 1540 770 13332

    5537 2768

    2768 -2310

    10477 0.9

    6929 -830511190

    -2310 -4619

    25272 -356 598 -21384

    -8305 -16611 13857 6929

    104770.33 0.67 0.67 0.33 4000 21599

    D A 71280 71280

    DC DA AD AB

    79200 10477

    25272 -356 598 -21384 =

    The moment distribution is carrired out as illustred in table.

    DC DA AD AB 10477

    = -356 N -m12 2

    MFDA = - +

    MFDA = - x

    x = 598 N-m12 2

    MFAD = + -

    MFAD = +

    12

    Mfdc= = 25272 N - m12

    -2504

    Fix end moments will be as under : MFAB= = -21384 N - m

  • 8/2/2019 Box Culvert Chesirimion

    7/26

    Net B.M. at E = - =

    x 1.80 2=

    8

    Net B.M. at F = - =

    For vertical member AD , Simply supported B.M. At mid span

    x 1.80

    8

    +

    2

    5 Design of top slab :

    Mid section

    The top slab is subjected to following values of B.M. and direct force

    The section will be design for maximum B.M. = N -m

    for water side force

    sst = = 150 N/mm2 = #### N/m3

    scbc = = 7 N/mm2 = 9800 N/mm2

    m = 13 for water side forcex

    13 x 7 + 150

    j=1-k/3 = 1 - 0.378 / 3 = J =

    R=1/2xc x j x k = 0.5 x 7 x 0.87 x 0.378 = R =

    = 300 mm so effective thicknesss = 250 mm

    Mr = R . B .D2

    = 1.155 x 1000 x 2502= > O.K.

    = 872 mm2

    150 x 0.874 x 250

    3.14xdia2

    3.14 x 16 x 164 x100 4

    Spacing of Bars = x1000/Ast 201 x 1000 / 872 = 231 say = mm

    mm F Bars @ mm c/c

    1000 x 201 / 230 = 874 mm2

    Bend half bars up near support at distance of L/5 = 1.80 / 5 = 0.40 m

    0.1 x( 300 - 100 %

    450 - 100

    Ast = 0.24 x 300 x 10 = 729 mm2

    area on each face= # mm2

    3.14xdia2 3.14 x 12 x 12

    4 x100 4

    Spacing of Bars = 113 x 1000 / 365 = 310 say = mm

    Hence Provided # mm c/c on each face

    Section at supports :-

    Maximum B.M.= N-m. There is direct compression of N also.

    But it effect is not considered because the slab is actually reinforced both at top and bottom .

    Since steel is at top sst = 190 N/mm2 concrete M 20

    k = 0.324 J = 0.89 R = 1.01

    190 x 0.892 x 250

    [email protected]

    Provide over all thickness

    72202327 28572000

    230230

    = 0.24

    201 mm2mm F bars A = =

    Ast = BMx100/sstxjxD=28572000

    using 16

    Ax1000/Ast =

    16

    using 12 mm F bars

    0.874 0.874

    1.155 1.155

    =

    Area of distributionn steel = 0.3 -

    Acual Ast provided

    Hence Provided

    = 0.378 K = 0.378m*c+sst

    Case B.M. at ends (A)

    28572

    wt. of concrete

    wt of water

    B.M. at Center (E) Direct force (ha)

    17117 2857214959

    k=m*c

    =13 7

    18189

    (i)

    1047721599

    23412

    -673

    (II)

    (II)

    13887

    Simply supporetd at mid sapn =4000 2+

    1/16 x 4470 1.80

    11190 N-m=

    N-m

    N-m

    x 2= -714.7

    Net B.M. =13332 10477

    = 11905 + -715

    Similarly, free B.M. at F =93600

    37908 N -m

    37908 13332 24576

    32076 10477 21599

    230

    mm2

    310

    310mm F Bars @

    == 113

    = 354 mm2

    = =A

    14959 28572

    \ Ast =14959000

    mailto:[email protected]:[email protected]
  • 8/2/2019 Box Culvert Chesirimion

    8/26

    Area available from the bars bentup from the middle section = / 2 = 437 mm2

    354 < 436.9

    6 Design of bottom slab:

    The bottom slab has the following value of B.M. and direct force.

    The section will be design for maximum B.M. = N -m

    for water side force

    sst = = 150 N/mm2 = #### N/m3

    scbc = = 7 N/mm2 = 9800 N/mm2

    m = 13 for water side force

    x

    13 x 7 + 150

    j=1-k/3 = 1 - 0.378 / 3 = J =

    R=1/2xc x j x k = 0.5 x 7 x 0.87 x 0.378 = R =

    1000 x 1.155

    230 mm so that d = mm

    = 1524 mm2

    150 x 0.874 x 180

    3.14xdia2 3.14 x 20 x 20

    4 x100 4

    Spacing of Bars = x1000/Ast 314 x 1000 / 1524 = 206 say = mm

    mm F Bars @ mm c/c

    1000 x 314 / 200 = 1570 mm2

    Bend half bars up near support at distance of L/5 = 1.80 / 5 = 0.40 m

    0.1 x( 230 - 100

    450 - 100Ast = 0.26 x 230 x 10 = 605 mm

    2area on each face= mm

    2

    3.14xdia2 3.14 x 12 x 12

    4 x100 4

    Spacing of Bars = 113 x 1000 / 303 = 373 say = mm

    Hence Provided # mm c/c on each face

    Section at supports :-

    Maximum B.M.= N-m. There is direct compression of N also.

    But it effect is not considered because the slab is actually reinforced both at top and bottom .

    Since steel is at top sst = 190 N/mm2 concrete M 20

    k = 0.324 J = 0.89 R = 1.01

    190 x 0.892 x 180

    Area available from the bars bentup from the middle section = / 2 = 785 mm2

    Additional reinforcemet required = -193 mm2

    3.14xdia2 3.14 x 12 x 12

    4 x100 4

    Spacing of Bars = 113 x 1000 / -193 = -586 say = mm

    Hence Provided # mm F Bars @ -580 mm c/c throught out the slab, at its bottom.

    Provide thickness of bottom slab D=

    mm2

    Ax1000/Ast = -580

    using 12 mm bars A = = = 113

    874874

    Hence these bars will serve the purpose. However, provide 8 mm dia.

    Additional bars @ 200 mm c/c

    Case B.M. at Center (F) B.M. at ends (D) Direct force (ha)

    (i) 19856 18052 35960

    (II) 21165 16743 25244

    (II) 24576 13332 -2504

    35960

    wt. of concrete

    wt of water

    k=m*c

    =13 7

    = 0.378 K = 0.378m*c+sst

    0.874 0.874

    1.155 1.155

    227 mmD =

    180

    20 200

    Ast = BMx100/sstxjxD=35960000

    using 20 mm bars A =

    = 0.26

    = = 314 mm2

    200

    %

    303

    using 12 mm bars A = = = 113

    \ Ast =

    18052000

    = 592 mm2

    18052

    Acual Ast provided

    \ d =35960000

    =

    Area of distributionn steel = 0.3 -

    Hence Provided

    177 mm

    1570

    Hence these bars will serve the purpose. However, provide 8 mm dia.

    Additional bars @ 200 mm c/c

    mm2

    370

    370

    Ax1000/Ast =

    mm F Bars @

    35960

    785

  • 8/2/2019 Box Culvert Chesirimion

    9/26

  • 8/2/2019 Box Culvert Chesirimion

    10/26

    or 56572 + 111 x 63.14 - 120 x =

    m c' 13 x 1.79

    n

    = 28.11 N/mm2 < 190 N/mm2 O.K.

    [email protected]

    =\ c'84240

    47124

    47124136.86

    113.14 )

    Stress in steel is less than permissiable Hence section is O.K.

    113.14x ( 300 - 50 -

    = 1.79 7< Stress is less than permissiable

    Also stress in steel t = (D-dc-n) =

    N/mm2

    mailto:[email protected]:[email protected]
  • 8/2/2019 Box Culvert Chesirimion

    11/26

    16 m F 460 mm c/c

    12 mm F@ 200 mm C/C

    16 mm F@ 310 mm C/c

    300 16 mm F@

    20 mm F@ 230 mm C/C

    300 mm C/C

    1.50

    12 mm F@

    310 mm C/C

    16 mm F@

    200 mm c/c

    16 m F 12 mm F

    @ 16 mm F

    @

    400 mm c/c 200 mm C/C 310 mm C/c

    300 1.50 300

    300

    230

    Box culverts

  • 8/2/2019 Box Culvert Chesirimion

    12/26

    Grade of co M-10 M-15 M-20 M-25 M-30 M-35 M-40

    (N/mm2) Kg/m2 (N/mm2) Kg/m

    2 (N/mm2) in kg/m2

    M 10 3.0 300 2.5 250 -- --

    M 15 5.0 500 4.0 400 0.6 60

    M 20 7.0 700 5.0 500 0.8 80

    M 25 8.5 850 6.0 600 0.9 90

    M 30 10.0 1000 8.0 800 1.0 100

    M 35 11.5 1150 9.0 900 1.1 110M 40 13.0 1300 10.0 1000 1.2 120

    M 45 14.5 1450 11.0 1100 1.3 130

    M 50 16.0 1600 12.0 1200 1.4 140

    Grade of co M-10 M-15 M-20 M-25 M-30 M-35 M-40

    Modular ra

    Grade of concrete M-15 M-20 M-25 M-30 M-35 M-40

    Modular Ratio 18.67 13.33 10.98 9.33 8.11 7.18 Grad

    scbc N/mm2 5 7 8.5 10 11.5 13 t

    m scbc 93.33 93.33 93.33 93.33 93.33 93.33

    kc 0.4 0.4 0.4 0.4 0.4 0.4

    jc 0.867 0.867 0.867 0.867 0.867 0.867

    Rc 0.867 1.214 1.474 1.734 1.994 2.254

    Pc (%) 0.714 1 1.214 1.429 1.643 1.857

    kc 0.329 0.329 0.329 0.329 0.329 0.329

    jc 0.89 0.89 0.89 0.89 0.89 0.89

    Rc 0.732 1.025 1.244 1.464 1.684 1.903

    Pc (%) 0.433 0.606 0.736 0.866 0.997 1.127

    kc 0.289 0.289 0.289 0.289 0.289 0.289

    jc 0.904 0.904 0.904 0.904 0.904 0.904

    Rc 0.653 0.914 1.11 1.306 1.502 1.698

    Pc (%) 0.314 0.44 0.534 0.628 0.722 0.816

    Table 1.15. PERMISSIBLE DIRECT TENSILE STRESS

    Tensilestress 1.2 2.0 2.8 3.2 3.6 4.0 4.4

    Table 1.16.. Permissible stress in concrete (IS : 456-2000)

    Grade of

    concrete

    Permission stress in compression (N/mm2) Permissible stress in bond (Average) for

    plain bars in tention (N/mm2)Bending acbc Direct (acc)

    Table 1.18. MODULAR RATIO

    31

    (31.11)

    19

    (18.67)

    13

    (13.33)

    11

    (10.98)

    9

    (9.33)

    8

    (8.11)

    7

    (7.18)

    Table 2.1. VALUES OF DESIGN CONSTANTS

    (a) sst =

    140

    N/mm2

    (Fe 250)

    (b) sst =

    190N/mm2

    (c ) sst =

    230

    N/mm2

    (Fe 415)

  • 8/2/2019 Box Culvert Chesirimion

    13/26

    100As 100As Degree sin cos tan

    bd bd 10 0.17 0.98 0.18

    0.15 0.18 0.18 0.15 11 0.19 0.98 0.19

    0.16 0.18 0.19 0.18 12 0.21 0.98 0.21

    0.17 0.18 0.2 0.21 13 0.23 0.97 0.23

    0.18 0.19 0.21 0.24 14 0.24 0.97 0.25

    0.19 0.19 0.22 0.27 15 0.26 0.97 0.27

    0.2 0.19 0.23 0.3 16 0.28 0.96 0.29

    0.21 0.2 0.24 0.32 17 0.29 0.96 0.31

    0.22 0.2 0.25 0.35 18 0.31 0.95 0.32

    0.23 0.2 0.26 0.38 19 0.33 0.95 0.340.24 0.21 0.27 0.41 20 0.34 0.94 0.36

    0.25 0.21 0.28 0.44 21 0.36 0.93 0.38

    0.26 0.21 0.29 0.47 22 0.37 0.93 0.40

    0.27 0.22 0.30 0.5 23 0.39 0.92 0.42

    0.28 0.22 0.31 0.55 24 0.41 0.92 0.45

    0.29 0.22 0.32 0.6 25 0.42 0.91 0.47

    0.3 0.23 0.33 0.65 30 0.50 0.87 0.58

    0.31 0.23 0.34 0.7 35 0.57 0.82 0.70

    0.32 0.24 0.35 0.75 40 0.64 0.77 0.84

    0.33 0.24 0.36 0.82 45 0.71 0.71 1.00

    0.34 0.24 0.37 0.88 50 0.77 0.64 1.19

    0.35 0.25 0.38 0.94 55 0.82 0.57 1.43

    0.36 0.25 0.39 1.00 60 0.87 0.50 1.73

    0.37 0.25 0.4 1.08 65 0.91 0.42 2.14

    0.38 0.26 0.41 1.16

    0.39 0.26 0.42 1.25

    0.4 0.26 0.43 1.33

    0.41 0.27 0.44 1.41

    0.42 0.27 0.45 1.50

    0.43 0.27 0.46 1.63

    0.44 0.28 0.46 1.64

    0.45 0.28 0.47 1.75

    0.46 0.28 0.48 1.88

    0.47 0.29 0.49 2.00

    0.48 0.29 0.50 2.130.49 0.29 0.51 2.25

    0.5 0.30

    0.51 0.30

    0.52 0.30

    0.53 0.30

    0.54 0.30

    0.55 0.31

    0.56 0.31

    Shear stress tc Reiforcement %

    M-20 M-20

    Value of angle

  • 8/2/2019 Box Culvert Chesirimion

    14/26

    0.57 0.31

    0.58 0.31

    0.59 0.31

    0.6 0.32

    0.61 0.32

    0.62 0.32

    0.63 0.320.64 0.32

    0.65 0.33

    0.66 0.33

    0.67 0.33

    0.68 0.33

    0.69 0.33

    0.7 0.34

    0.71 0.34

    0.72 0.34

    0.73 0.34

    0.74 0.34

    0.75 0.350.76 0.35

    0.77 0.35

    0.78 0.35

    0.79 0.35

    0.8 0.35

    0.81 0.35

    0.82 0.36

    0.83 0.36

    0.84 0.36

    0.85 0.36

    0.86 0.36

    0.87 0.36

    0.88 0.370.89 0.37

    0.9 0.37

    0.91 0.37

    0.92 0.37

    0.93 0.37

    0.94 0.38

    0.95 0.38

    0.96 0.38

    0.97 0.38

    0.98 0.38

    0.99 0.38

    1.00 0.391.01 0.39

    1.02 0.39

    1.03 0.39

    1.04 0.39

    1.05 0.39

    1.06 0.39

    1.07 0.39

    1.08 0.4

  • 8/2/2019 Box Culvert Chesirimion

    15/26

    1.09 0.4

    1.10 0.4

    1.11 0.4

    1.12 0.4

    1.13 0.4

    1.14 0.4

    1.15 0.41.16 0.41

    1.17 0.41

    1.18 0.41

    1.19 0.41

    1.20 0.41

    1.21 0.41

    1.22 0.41

    1.23 0.41

    1.24 0.41

    1.25 0.42

    1.26 0.42

    1.27 0.421.28 0.42

    1.29 0.42

    1.30 0.42

    1.31 0.42

    1.32 0.42

    1.33 0.43

    1.34 0.43

    1.35 0.43

    1.36 0.43

    1.37 0.43

    1.38 0.43

    1.39 0.43

    1.40 0.431.41 0.44

    1.42 0.44

    1.43 0.44

    1.44 0.44

    1.45 0.44

    1.46 0.44

    1.47 0.44

    1.48 0.44

    1.49 0.44

    1.50 0.45

    1.51 0.45

    1.52 0.451.53 0.45

    1.54 0.45

    1.55 0.45

    1.56 0.45

    1.57 0.45

    1.58 0.45

    1.59 0.45

    1.60 0.45

  • 8/2/2019 Box Culvert Chesirimion

    16/26

    1.61 0.45

    1.62 0.45

    1.63 0.46

    1.64 0.46

    1.65 0.46

    1.66 0.46

    1.67 0.461.68 0.46

    1.69 0.46

    1.70 0.46

    1.71 0.46

    1.72 0.46

    1.73 0.46

    1.74 0.46

    1.75 0.47

    1.76 0.47

    1.77 0.47

    1.78 0.47

    1.79 0.471.80 0.47

    1.81 0.47

    1.82 0.47

    1.83 0.47

    1.84 0.47

    1.85 0.47

    1.86 0.47

    1.87 0.47

    1.88 0.48

    1.89 0.48

    1.90 0.48

    1.91 0.48

    1.92 0.481.93 0.48

    1.94 0.48

    1.95 0.48

    1.96 0.48

    1.97 0.48

    1.98 0.48

    1.99 0.48

    2.00 0.49

    2.01 0.49

    2.02 0.49

    2.03 0.49

    2.04 0.492.05 0.49

    2.06 0.49

    2.07 0.49

    2.08 0.49

    2.09 0.49

    2.10 0.49

    2.11 0.49

    2.12 0.49

  • 8/2/2019 Box Culvert Chesirimion

    17/26

    2.13 0.50

    2.14 0.50

    2.15 0.50

    2.16 0.50

    2.17 0.50

    2.18 0.50

    2.19 0.502.20 0.50

    2.21 0.50

    2.22 0.50

    2.23 0.50

    2.24 0.50

    2.25 0.51

    2.26 0.51

    2.27 0.51

    2.28 0.51

    2.29 0.51

    2.30 0.51

    2.31 0.512.32 0.51

    2.33 0.51

    2.34 0.51

    2.35 0.51

    2.36 0.51

    2.37 0.51

    2.38 0.51

    2.39 0.51

    2.40 0.51

    2.41 0.51

    2.42 0.51

    2.43 0.51

    2.44 0.512.45 0.51

    2.46 0.51

    2.47 0.51

    2.48 0.51

    2.49 0.51

    2.50 0.51

    2.51 0.51

    2.52 0.51

    2.53 0.51

    2.54 0.51

    2.55 0.51

    2.56 0.512.57 0.51

    2.58 0.51

    2.59 0.51

    2.60 0.51

    2.61 0.51

    2.62 0.51

    2.63 0.51

    2.64 0.51

  • 8/2/2019 Box Culvert Chesirimion

    18/26

    2.65 0.51

    2.66 0.51

    2.67 0.51

    2.68 0.51

    2.69 0.51

    2.70 0.51

    2.71 0.512.72 0.51

    2.73 0.51

    2.74 0.51

    2.75 0.51

    2.76 0.51

    2.77 0.51

    2.78 0.51

    2.79 0.51

    2.80 0.51

    2.81 0.51

    2.82 0.51

    2.83 0.512.84 0.51

    2.85 0.51

    2.86 0.51

    2.87 0.51

    2.88 0.51

    2.89 0.51

    2.90 0.51

    2.91 0.51

    2.92 0.51

    2.93 0.51

    2.94 0.51

    2.95 0.51

    2.96 0.512.97 0.51

    2.98 0.51

    2.99 0.51

    3.00 0.51

    3.01 0.51

    3.02 0.51

    3.03 0.51

    3.04 0.51

    3.05 0.51

    3.06 0.51

    3.07 0.51

    3.08 0.513.09 0.51

    3.10 0.51

    3.11 0.51

    3.12 0.51

    3.13 0.51

    3.14 0.51

    3.15 0.51

  • 8/2/2019 Box Culvert Chesirimion

    19/26

    M-15 M-20 M-25 M-30 M-35 M-40

    0.18 0.18 0.19 0.2 0.2 0.20.22 0.22 0.23 0.23 0.23 0.23

    0.29 0.30 0.31 0.31 0.31 0.32

    0.34 0.35 0.36 0.37 0.37 0.38

    0.37 0.39 0.40 0.41 0.42 0.42

    0.40 0.42 0.44 0.45 0.45 0.46

    0.42 0.45 0.46 0.48 0.49 0.49

    0.44 0.47 0.49 0.50 0.52 0.52

    0.44 0.49 0.51 0.53 0.54 0.55

    0.44 0.51 0.53 0.55 0.56 0.57

    0.44 0.51 0.55 0.57 0.58 0.60

    0.44 0.51 0.56 0.58 0.60 0.62

    0.44 0.51 0.57 0.6 0.62 0.63

    300 or more 275 250 225 200 175 150 or less

    1.00 1.05 1.10 1.15 1.20 1.25 1.30

    M-15 M-20 M-25 M-30 M-35 M-40

    1.6 1.8 1.9 2.2 2.3 2.5

    e of concre 10 15 20 25 30 35 40 45

    d (N / mm -- 0.6 0.8 0.9 1 1.1 1.2 1.3

    tbd (N / mm2) kd = LdF

    M 15 60

    M 20 45

    M 25 40

    M 30 36

    M 35 33

    M 40 30

    M 45 28

    M 50 26

    Table 3.1. Permissible shear stress Table tc in concrete (IS : 456-2000)100As Permissible shear stress in concrete tc N/mm

    2

    bd

    < 0.150.25

    0.50

    0.75

    1.00

    1.25

    1.50

    1.75

    2.00

    2.25

    2.50

    2.75

    3.00 and above

    Table 3.2. Facor k

    Over all depth of slab

    k

    Table 3.3. Maximum shear stress tc.max in concrete (IS : 456-2000)

    Grade of concrete

    tc.max

    1.44

    Table 3.4. Permissible Bond stress Table tbd in concrete (IS : 456-2000

    Table 3.5. Development Length in tension

    Grade of

    concrete

    Plain M.S. Bars H.Y.S.D. Bars

    kd = LdF tbd (N / mm2)

    1.92

    0.6 58 0.96

    0.8 44 1.28

    0.9 39

    2.08

    1.4 25 2.24

    1 35 1.6

    1.1 32 1.76

    1.3 27

    1.2 29

  • 8/2/2019 Box Culvert Chesirimion

    20/26

    tan Degree sin cos

    0.18 10 0.17 0.98

    0.19 11 0.19 0.98

    0.21 12 0.21 0.98

    0.23 13 0.23 0.97

    0.25 14 0.24 0.97

    0.27 15 0.26 0.97

    0.29 16 0.28 0.96

    0.31 17 0.29 0.96

    0.32 18 0.31 0.95

    0.34 19 0.33 0.950.36 20 0.34 0.94

    0.38 21 0.36 0.93

    0.40 22 0.37 0.93

    0.42 23 0.39 0.92

    0.45 24 0.41 0.92

    0.47 25 0.42 0.91

    0.58 30 0.50 0.87

    0.70 35 0.57 0.82

    0.84 40 0.64 0.77

    1.00 45 0.71 0.71

    1.19 50 0.77 0.64

    1.43 55 0.82 0.57

    1.73 60 0.87 0.50

    2.14 65 0.91 0.42

    Value of angle

  • 8/2/2019 Box Culvert Chesirimion

    21/26

  • 8/2/2019 Box Culvert Chesirimion

    22/26

  • 8/2/2019 Box Culvert Chesirimion

    23/26

  • 8/2/2019 Box Culvert Chesirimion

    24/26

  • 8/2/2019 Box Culvert Chesirimion

    25/26

  • 8/2/2019 Box Culvert Chesirimion

    26/26