Beta Distribution

8
Search Go Statlect The Digital Textbook Index > Probability distributions Beta distribution The Beta distribution is a continuous probability distribution having two parameters. One of its most common uses is to model one's uncertainty about the probability of success of an experiment. Suppose a probabilistic experiment can have only two outcomes, either success, with probability , or failure, with probability . Suppose also that is unknown and all its possible values are deemed equally likely. This uncertainty can be described by assigning to a uniform distribution on the interval . This is appropriate because , being a probability, can take only values between and ; furthermore, the uniform distribution assigns equal probability density to all points in the interval, which reflects the fact that no possible value of is, a priori, deemed more likely than all the others. Now, suppose that we perform independent repetitions of the experiment and we observe successes and failures. After performing the experiments, we naturally want to know how we should revise the distribution initially assigned to , in order to properly take into account the information provided by the observed outcomes. In other words, we want to calculate the conditional distribution of , conditional on the number of successes and failures we have observed. The result of this calculation is a Beta distribution. In particular, the conditional distribution of , conditional on having observed successes out of trials, is a Beta distribution with parameters and . Definition The Beta distribution is characterized as follows. Definition Let be an absolutely continuous random variable. Let its support be the unit interval: Let . We say that has a Beta distribution with shape parameters and if its probability density function is where is the Beta function. A random variable having a Beta distribution is also called a Beta random variable. The following is a proof that is a legitimate probability density function. Proof Nonnegativity descends from the facts that is nonnegative when and , and that is strictly positive (it is a ratio of Gamma functions, which are strictly positive when their arguments are strictly positive see the lecture entitled Gamma function). That the integral of over equals is proved as follows:

description

Beta distribution

Transcript of Beta Distribution

  • Search GoStatlect TheDigitalTextbookIndex>Probabilitydistributions

    BetadistributionTheBetadistributionisacontinuousprobabilitydistributionhavingtwoparameters.Oneofitsmostcommonusesistomodelone'suncertaintyabouttheprobabilityofsuccessofanexperiment.

    Supposeaprobabilisticexperimentcanhaveonlytwooutcomes,eithersuccess,withprobability ,orfailure,withprobability .Supposealsothat isunknownandallitspossiblevaluesaredeemedequallylikely.Thisuncertaintycanbedescribedbyassigningto auniformdistributionontheinterval .Thisisappropriatebecause ,beingaprobability,cantakeonlyvaluesbetween and furthermore,theuniformdistributionassignsequalprobabilitydensitytoallpointsintheinterval,whichreflectsthefactthatnopossiblevalueof is,apriori,deemedmorelikelythanalltheothers.Now,supposethatweperform independentrepetitionsoftheexperimentandweobserve successesand failures.Afterperformingtheexperiments,wenaturallywanttoknowhowweshouldrevisethedistributioninitiallyassignedto ,inordertoproperlytakeintoaccounttheinformationprovidedbytheobservedoutcomes.Inotherwords,wewanttocalculatetheconditionaldistributionof ,conditionalonthenumberofsuccessesandfailureswehaveobserved.TheresultofthiscalculationisaBetadistribution.Inparticular,theconditionaldistributionof ,conditionalonhavingobserved successesoutof trials,isaBetadistributionwithparameters and .

    DefinitionTheBetadistributionischaracterizedasfollows.

    Definition Let beanabsolutelycontinuousrandomvariable.Letitssupportbetheunitinterval:

    Let .Wesaythat hasaBetadistributionwithshapeparameters and ifitsprobabilitydensityfunctionis

    where istheBetafunction.

    ArandomvariablehavingaBetadistributionisalsocalledaBetarandomvariable.

    Thefollowingisaproofthat isalegitimateprobabilitydensityfunction.

    Proof

    Nonnegativitydescendsfromthefactsthat isnonnegativewhen and ,andthat isstrictlypositive(itisaratioofGammafunctions,whicharestrictlypositivewhentheirargumentsarestrictlypositiveseethelectureentitledGammafunction).Thattheintegralof over equals isprovedasfollows:

  • wherewehaveusedtheintegralrepresentation

    aproofofwhichcanbefoundinthelectureentitledBetafunction.

    ExpectedvalueTheexpectedvalueofaBetarandomvariable is

    Proof

    Itcanbederivedasfollows:

    VarianceThevarianceofaBetarandomvariable is

    Proof

    Itcanbederivedthankstotheusualvarianceformula( ):

  • HighermomentsThe thmomentofaBetarandomvariable is

    Proof

    Bythedefinitionofmoment,wehave:

  • whereinstep wehaveusedrecursivelythefactthat .

    MomentgeneratingfunctionThemomentgeneratingfunctionofaBetarandomvariable isdefinedforany anditis

    Proof

    Byusingthedefinitionofmomentgeneratingfunction,weobtain

  • Notethatthemomentgeneratingfunctionexistsandiswelldefinedforany becausetheintegral

    isguaranteedtoexistandbefinite,sincetheintegrand

    iscontinuousin overtheboundedinterval .

    Theaboveformulaforthemomentgeneratingfunctionmightseemimpracticaltocompute,becauseitinvolvesaninfinitesumaswellasproductswhosenumberoftermsincreaseindefinitely.However,thefunction

    isafunction,calledConfluenthypergeometricfunctionofthefirstkind,thathasbeenextensivelystudiedinmanybranchesofmathematics.Itspropertiesarewellknownandefficientalgorithmsforitscomputationareavailableinmostsoftwarepackagesforscientificcomputation.

    CharacteristicfunctionThecharacteristicfunctionofaBetarandomvariable is

    Proof

  • Thederivationofthecharacteristicfunctionisalmostidenticaltothederivationofthemomentgeneratingfunction(justreplace with inthatproof).

    Commentsmadeaboutthemomentgeneratingfunction,includingthoseaboutthecomputationoftheConfluenthypergeometricfunction,applyalsotothecharacteristicfunction,whichisidenticaltothemgfexceptforthefactthatisreplacedwith .

    DistributionfunctionThedistributionfunctionofaBetarandomvariable is

    wherethefunction

    iscalledincompleteBetafunctionandisusuallycomputedbymeansofspecializedcomputeralgorithms.

    Proof

    For , ,because cannotbesmallerthan .For , ,because isalwayssmallerthanorequalto .For ,

    MoredetailsInthefollowingsubsectionsyoucanfindmoredetailsabouttheBetadistribution.

    Relationtotheuniformdistribution

    ThefollowingpropositionstatestherelationbetweentheBetaandtheuniformdistributions.

    Proposition ABetadistributionwithparameters and isauniformdistributionontheinterval .

    Proof

    When and ,wehavethat

  • Therefore,theprobabilitydensityfunctionofaBetadistributionwithparameters and canbewrittenas

    Butthelatteristheprobabilitydensityfunctionofauniformdistributionontheinterval .

    Relationtothebinomialdistribution

    ThefollowingpropositionstatestherelationbetweentheBetaandthebinomialdistributions.

    Proposition Suppose isarandomvariablehavingaBetadistributionwithparameters and .Let beanotherrandomvariablesuchthatitsdistributionconditionalon isabinomialdistributionwithparametersand .Then,theconditionaldistributionof given isaBetadistributionwithparameters and

    .

    Proof

    Bycombiningthispropositionandthepreviousone,weobtainthefollowingcorollary.

    Proposition Suppose isarandomvariablehavingauniformdistribution.Let beanotherrandomvariablesuchthatitsdistributionconditionalon isabinomialdistributionwithparameters and .Then,theconditionaldistributionof given isaBetadistributionwithparameters and .

    ThispropositionconstitutesaformalstatementofwhatwesaidintheintroductionofthislectureinordertomotivatetheBetadistribution.Rememberthatthenumberofsuccessesobtainedin independentrepetitionsofarandomexperimenthavingprobabilityofsuccess isabinomialrandomvariablewithparameters and .Accordingtothepropositionabove,whentheprobabilityofsuccess isaprioriunknownandallpossiblevaluesof aredeemedequallylikely(theyhaveauniformdistribution),observingtheoutcomeofthe experimentsleadsustorevisethedistributionassignedto ,andtheresultofthisrevisionisaBetadistribution.

    SolvedexercisesBelowyoucanfindsomeexerciseswithexplainedsolutions:

    1. Exerciseset1

  • FeaturedpagesMultivariatenormaldistributionHypothesistestingDeltamethodBernoullidistributionBayesruleIndependentevents

    ExploreCentralLimitTheoremConvergenceindistributionMultinomialdistributionFdistribution

    MainsectionsMathematicaltoolsFundamentalsofprobabilityAdditionaltopicsinprobabilityProbabilitydistributionsAsymptotictheoryFundamentalsofstatistics

    AboutAboutStatlectContactsPrivacypolicyandtermsofuseWebsitemap

    0

    GlossaryentriesCriticalvaluePrecisionmatrixMeansquarederrorJenseninequalityTypeIIerrorFactorial

    Share

    ThebookMostlearningmaterialsfoundonthiswebsitearenowavailableinatraditionaltextbookformat.

    Learnmore

    13

    Like