Download - Beta Distribution

Transcript
  • Search GoStatlect TheDigitalTextbookIndex>Probabilitydistributions

    BetadistributionTheBetadistributionisacontinuousprobabilitydistributionhavingtwoparameters.Oneofitsmostcommonusesistomodelone'suncertaintyabouttheprobabilityofsuccessofanexperiment.

    Supposeaprobabilisticexperimentcanhaveonlytwooutcomes,eithersuccess,withprobability ,orfailure,withprobability .Supposealsothat isunknownandallitspossiblevaluesaredeemedequallylikely.Thisuncertaintycanbedescribedbyassigningto auniformdistributionontheinterval .Thisisappropriatebecause ,beingaprobability,cantakeonlyvaluesbetween and furthermore,theuniformdistributionassignsequalprobabilitydensitytoallpointsintheinterval,whichreflectsthefactthatnopossiblevalueof is,apriori,deemedmorelikelythanalltheothers.Now,supposethatweperform independentrepetitionsoftheexperimentandweobserve successesand failures.Afterperformingtheexperiments,wenaturallywanttoknowhowweshouldrevisethedistributioninitiallyassignedto ,inordertoproperlytakeintoaccounttheinformationprovidedbytheobservedoutcomes.Inotherwords,wewanttocalculatetheconditionaldistributionof ,conditionalonthenumberofsuccessesandfailureswehaveobserved.TheresultofthiscalculationisaBetadistribution.Inparticular,theconditionaldistributionof ,conditionalonhavingobserved successesoutof trials,isaBetadistributionwithparameters and .

    DefinitionTheBetadistributionischaracterizedasfollows.

    Definition Let beanabsolutelycontinuousrandomvariable.Letitssupportbetheunitinterval:

    Let .Wesaythat hasaBetadistributionwithshapeparameters and ifitsprobabilitydensityfunctionis

    where istheBetafunction.

    ArandomvariablehavingaBetadistributionisalsocalledaBetarandomvariable.

    Thefollowingisaproofthat isalegitimateprobabilitydensityfunction.

    Proof

    Nonnegativitydescendsfromthefactsthat isnonnegativewhen and ,andthat isstrictlypositive(itisaratioofGammafunctions,whicharestrictlypositivewhentheirargumentsarestrictlypositiveseethelectureentitledGammafunction).Thattheintegralof over equals isprovedasfollows:

  • wherewehaveusedtheintegralrepresentation

    aproofofwhichcanbefoundinthelectureentitledBetafunction.

    ExpectedvalueTheexpectedvalueofaBetarandomvariable is

    Proof

    Itcanbederivedasfollows:

    VarianceThevarianceofaBetarandomvariable is

    Proof

    Itcanbederivedthankstotheusualvarianceformula( ):

  • HighermomentsThe thmomentofaBetarandomvariable is

    Proof

    Bythedefinitionofmoment,wehave:

  • whereinstep wehaveusedrecursivelythefactthat .

    MomentgeneratingfunctionThemomentgeneratingfunctionofaBetarandomvariable isdefinedforany anditis

    Proof

    Byusingthedefinitionofmomentgeneratingfunction,weobtain

  • Notethatthemomentgeneratingfunctionexistsandiswelldefinedforany becausetheintegral

    isguaranteedtoexistandbefinite,sincetheintegrand

    iscontinuousin overtheboundedinterval .

    Theaboveformulaforthemomentgeneratingfunctionmightseemimpracticaltocompute,becauseitinvolvesaninfinitesumaswellasproductswhosenumberoftermsincreaseindefinitely.However,thefunction

    isafunction,calledConfluenthypergeometricfunctionofthefirstkind,thathasbeenextensivelystudiedinmanybranchesofmathematics.Itspropertiesarewellknownandefficientalgorithmsforitscomputationareavailableinmostsoftwarepackagesforscientificcomputation.

    CharacteristicfunctionThecharacteristicfunctionofaBetarandomvariable is

    Proof

  • Thederivationofthecharacteristicfunctionisalmostidenticaltothederivationofthemomentgeneratingfunction(justreplace with inthatproof).

    Commentsmadeaboutthemomentgeneratingfunction,includingthoseaboutthecomputationoftheConfluenthypergeometricfunction,applyalsotothecharacteristicfunction,whichisidenticaltothemgfexceptforthefactthatisreplacedwith .

    DistributionfunctionThedistributionfunctionofaBetarandomvariable is

    wherethefunction

    iscalledincompleteBetafunctionandisusuallycomputedbymeansofspecializedcomputeralgorithms.

    Proof

    For , ,because cannotbesmallerthan .For , ,because isalwayssmallerthanorequalto .For ,

    MoredetailsInthefollowingsubsectionsyoucanfindmoredetailsabouttheBetadistribution.

    Relationtotheuniformdistribution

    ThefollowingpropositionstatestherelationbetweentheBetaandtheuniformdistributions.

    Proposition ABetadistributionwithparameters and isauniformdistributionontheinterval .

    Proof

    When and ,wehavethat

  • Therefore,theprobabilitydensityfunctionofaBetadistributionwithparameters and canbewrittenas

    Butthelatteristheprobabilitydensityfunctionofauniformdistributionontheinterval .

    Relationtothebinomialdistribution

    ThefollowingpropositionstatestherelationbetweentheBetaandthebinomialdistributions.

    Proposition Suppose isarandomvariablehavingaBetadistributionwithparameters and .Let beanotherrandomvariablesuchthatitsdistributionconditionalon isabinomialdistributionwithparametersand .Then,theconditionaldistributionof given isaBetadistributionwithparameters and

    .

    Proof

    Bycombiningthispropositionandthepreviousone,weobtainthefollowingcorollary.

    Proposition Suppose isarandomvariablehavingauniformdistribution.Let beanotherrandomvariablesuchthatitsdistributionconditionalon isabinomialdistributionwithparameters and .Then,theconditionaldistributionof given isaBetadistributionwithparameters and .

    ThispropositionconstitutesaformalstatementofwhatwesaidintheintroductionofthislectureinordertomotivatetheBetadistribution.Rememberthatthenumberofsuccessesobtainedin independentrepetitionsofarandomexperimenthavingprobabilityofsuccess isabinomialrandomvariablewithparameters and .Accordingtothepropositionabove,whentheprobabilityofsuccess isaprioriunknownandallpossiblevaluesof aredeemedequallylikely(theyhaveauniformdistribution),observingtheoutcomeofthe experimentsleadsustorevisethedistributionassignedto ,andtheresultofthisrevisionisaBetadistribution.

    SolvedexercisesBelowyoucanfindsomeexerciseswithexplainedsolutions:

    1. Exerciseset1

  • FeaturedpagesMultivariatenormaldistributionHypothesistestingDeltamethodBernoullidistributionBayesruleIndependentevents

    ExploreCentralLimitTheoremConvergenceindistributionMultinomialdistributionFdistribution

    MainsectionsMathematicaltoolsFundamentalsofprobabilityAdditionaltopicsinprobabilityProbabilitydistributionsAsymptotictheoryFundamentalsofstatistics

    AboutAboutStatlectContactsPrivacypolicyandtermsofuseWebsitemap

    0

    GlossaryentriesCriticalvaluePrecisionmatrixMeansquarederrorJenseninequalityTypeIIerrorFactorial

    Share

    ThebookMostlearningmaterialsfoundonthiswebsitearenowavailableinatraditionaltextbookformat.

    Learnmore

    13

    Like