Bessel- Legendre de 1(Beamer)

download Bessel- Legendre de 1(Beamer)

of 84

Transcript of Bessel- Legendre de 1(Beamer)

  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    1/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Special Functions: Bessel functions and Legendre

    Polynomials

    March 01 , 2013

    1 / 3 8

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    2/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Outline of Topics

    1 Power seriesReal Analytic FunctionsSingular points

    The Indicial equationComplete solutionMethod of reduction of order

    2 Examples

    3 Exercise

    4 Answers

    5 References

    2 / 3 8

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    3/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Introduction

    A power series is an infinite series of the form

    m=0

    am(x x0)m = a0 + a1(x x0) + a2(x x0)

    2 + ...,

    where the variable x, center x0, and the co-efficients a0, a1, ... arereal.

    3 / 3 8

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    4/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    The power series method is the standard basic method for solvinglinear differential equations with variable co-efficients. It givessolutions in the form of power series.

    4 / 3 8

    O li

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    5/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    5 / 3 8

    O tli

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    6/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    A real function p(x) is called analytic at a point x = x0 if it can berepresented by a power series in powers of (x x0) with radius ofconvergence R > 0.

    5 / 3 8

    Outline

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    7/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Existence of power series solution

    Theorem 2.1

    If p(x), q(x) and r(x) are analytic at x = x0, then every solution of

    y

    + p(x)y

    + q(x)y = r(x)

    is analytic at x = x0 and can thus be represented by a power series

    in powers of (x x0) with radius of convergence R > 0.

    6 / 3 8

    Outline

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    8/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Ordinary and singular points

    y

    + p(x)y

    + q(x)y = 0 (1)A point x0

    is said to be a regular(ordinary) point of the D.E. (1) if bothp(x) and q(x) are analytic at x = x0.

    7 / 3 8

    Outline

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    9/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Ordinary and singular points

    y

    + p(x)y

    + q(x)y = 0 (1)A point x0

    is said to be a regular(ordinary) point of the D.E. (1) if bothp(x) and q(x) are analytic at x = x0.

    is said to be a singular point of the D.E. (1) if either p(x) orq(x) or both are not analytic at x = x0.

    7 / 3 8

    Outline

    http://find/http://goback/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    10/84

    OutlinePower series

    ExamplesExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Classification of singular points:

    regular(removable) singular points.

    8 / 3 8

    Outline

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    11/84

    O tPower series

    ExamplesExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Classification of singular points:

    regular(removable) singular points.

    irregular singular points.

    8 / 3 8

    Outline

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    12/84

    Power seriesExamples

    ExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Classification of singular points:

    regular(removable) singular points.

    irregular singular points.

    A singular point x0 is called a regular singular point if both(x x0)p(x) and (x x0)

    2q(x) are analytic.

    8 / 3 8

    Outline

    http://find/http://goback/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    13/84

    Power seriesExamples

    ExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Classification of singular points:

    regular(removable) singular points.

    irregular singular points.

    A singular point x0 is called a regular singular point if both(x x0)p(x) and (x x0)

    2q(x) are analytic.On the other hand, if either (x x0)p(x) or (x x0)

    2q(x) or both

    are not analytic at x0, then x = x0 is called an irregular singularpoint.

    8 / 3 8

    Outline

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    14/84

    Power seriesExamples

    ExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Examples:

    Any real number is a regular point of

    y

    + (x2 + 1)y

    + (x3 + 2x2 + 3x)y = 0.

    9 / 3 8

    OutlineP i R l A l i F i

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    15/84

    Power seriesExamples

    ExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Examples:

    Any real number is a regular point of

    y

    + (x2 + 1)y

    + (x3 + 2x2 + 3x)y = 0.

    1 are the only singular points of

    (1 x2)y

    + 2y

    + (x3 3)y = 0.

    9 / 3 8

    OutlineP i R l A l ti F ti

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    16/84

    Power seriesExamples

    ExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Examples:

    Any real number is a regular point of

    y

    + (x2 + 1)y

    + (x3 + 2x2 + 3x)y = 0.

    1 are the only singular points of

    (1 x2)y

    + 2y

    + (x3 3)y = 0.

    9 / 3 8

    OutlinePower series Real Analytic Functions

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    17/84

    Power seriesExamples

    ExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Examples:

    Any real number is a regular point of

    y

    + (x2 + 1)y

    + (x3 + 2x2 + 3x)y = 0.

    1 are the only singular points of

    (1 x2)y

    + 2y

    + (x3 3)y = 0.

    Both 1 are regular singular points.

    9 / 3 8

    OutlinePower series Real Analytic Functions

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    18/84

    Power seriesExamples

    ExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Examples:

    The only singular points of

    x3(x 1)y

    + 2(x 1)y

    + 5xy = 0

    are

    10/38

    OutlinePower series Real Analytic Functions

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    19/84

    Power seriesExamples

    ExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Examples:

    The only singular points of

    x3(x 1)y

    + 2(x 1)y

    + 5xy = 0

    are 0 and 1.

    1 is an

    10/38

    OutlinePower series Real Analytic Functions

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    20/84

    Power seriesExamples

    ExerciseAnswers

    References

    Real Analytic FunctionsSingular pointsComplete solutionMethod of reduction of order

    Examples:

    The only singular points of

    x3(x 1)y

    + 2(x 1)y

    + 5xy = 0

    are 0 and 1.

    1 is an regular singular point.

    0 is an

    10/38

    OutlinePower series Real Analytic Functions

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    21/84

    ExamplesExerciseAnswers

    References

    ySingular pointsComplete solutionMethod of reduction of order

    Examples:

    The only singular points of

    x3(x 1)y

    + 2(x 1)y

    + 5xy = 0

    are 0 and 1.

    1 is an regular singular point.

    0 is an irregular singular point.

    10/38

    OutlinePower series Real Analytic Functions

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    22/84

    ExamplesExerciseAnswers

    References

    ySingular pointsComplete solutionMethod of reduction of order

    Exercise: Classify the singular points of

    1

    x(x 1)y

    + y

    + (x2 1)y = 0.

    11/38

    OutlinePower series Real Analytic Functions

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    23/84

    ExamplesExerciseAnswers

    References

    Singular pointsComplete solutionMethod of reduction of order

    Exercise: Classify the singular points of

    1

    x(x 1)y

    + y

    + (x2 1)y = 0.

    2 Legendres equation with n=1:

    (1 x2)y

    2xy

    + 2y = 0.

    11/38

    OutlinePower series Real Analytic Functions

    S

    http://find/http://goback/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    24/84

    ExamplesExerciseAnswers

    References

    Singular pointsComplete solutionMethod of reduction of order

    Exercise: Classify the singular points of

    1

    x(x 1)y

    + y

    + (x2 1)y = 0.

    2 Legendres equation with n=1:

    (1 x2)y

    2xy

    + 2y = 0.

    3

    (x2 4)y

    (2x 8)y = 0.

    11/38

    OutlinePower series

    E lReal Analytic FunctionsSi l i

    http://find/http://goback/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    25/84

    ExamplesExerciseAnswers

    References

    Singular pointsComplete solutionMethod of reduction of order

    The Form of the solution:

    If x0 is a regular singular point of (1), then (1) admits at least one

    nontrivial series solution of the form

    y1(x) = (x x0)r

    m=0

    am(x x0)m

    ,

    where r is a constant.

    12/38

    OutlinePower series

    E lReal Analytic FunctionsSi l i t

    http://find/http://goback/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    26/84

    ExamplesExerciseAnswers

    References

    Singular pointsComplete solutionMethod of reduction of order

    In fact r is a root of the quadratic equation obtained by equatingto zero the co-efficient of least power of x in the D.E. (1).

    13/38

    OutlinePower series

    ExamplesReal Analytic FunctionsSingular points

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    27/84

    ExamplesExerciseAnswers

    References

    Singular pointsComplete solutionMethod of reduction of order

    In fact r is a root of the quadratic equation obtained by equatingto zero the co-efficient of least power of x in the D.E. (1).

    The quadratic equation is called the indicial equation associatedwith the differential equation(1).

    13/38

    OutlinePower series

    ExamplesReal Analytic FunctionsSingular points

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    28/84

    ExamplesExerciseAnswers

    References

    Singular pointsComplete solutionMethod of reduction of order

    In fact r is a root of the quadratic equation obtained by equatingto zero the co-efficient of least power of x in the D.E. (1).

    The quadratic equation is called the indicial equation associatedwith the differential equation(1).

    Remark: If x0 is an ordinary point , then r=0

    13/38

    OutlinePower series

    ExamplesReal Analytic FunctionsSingular points

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    29/84

    ExamplesExerciseAnswers

    References

    Singular pointsComplete solutionMethod of reduction of order

    A second linearly independent solution y2(x) may be obtainedusing the method of reduction of order.

    14/38

    OutlinePower series

    ExamplesReal Analytic FunctionsSingular points

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    30/84

    ExamplesExerciseAnswers

    References

    Singular pointsComplete solutionMethod of reduction of order

    Working rule:

    Given a solution y1(x), let y2(x) be of the form

    y2(x) = y1(x)v(x).

    Substituting in

    y

    + p(x)y

    + q(x)y = 0,

    we get

    15/38

    OutlinePower series

    ExamplesReal Analytic FunctionsSingular points

    http://find/http://goback/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    31/84

    pExerciseAnswers

    References

    g pComplete solutionMethod of reduction of order

    Working rule:

    Given a solution y1(x), let y2(x) be of the form

    y2(x) = y1(x)v(x).

    Substituting in

    y

    + p(x)y

    + q(x)y = 0,

    we get

    u

    + u

    2

    y

    1

    y1+ p(x)

    = 0, where u = v

    ,

    -a first order differential equation(reduced order).

    15/38

    OutlinePower series

    ExamplesReal Analytic FunctionsSingular points

    http://find/http://goback/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    32/84

    pExerciseAnswers

    References

    g pComplete solutionMethod of reduction of order

    Working rule:

    Given a solution y1(x), let y2(x) be of the form

    y2(x) = y1(x)v(x).

    Substituting in

    y

    + p(x)y

    + q(x)y = 0,

    we get

    u

    + u

    2

    y

    1

    y1+ p(x)

    = 0, where u = v

    ,

    -a first order differential equation(reduced order).Separating the variables and integrating, we get

    15/38

    OutlinePower series

    ExamplesReal Analytic FunctionsSingular points

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    33/84

    ExerciseAnswers

    References

    Complete solutionMethod of reduction of order

    Working rule:

    Given a solution y1(x), let y2(x) be of the form

    y2(x) = y1(x)v(x).

    Substituting in

    y

    + p(x)y

    + q(x)y = 0,

    we get

    u

    + u

    2

    y

    1

    y1+ p(x)

    = 0, where u = v

    ,

    -a first order differential equation(reduced order).Separating the variables and integrating, we get

    v(x) =

    1y21

    e

    p(x)dxdx.

    15/38

    OutlinePower series

    ExamplesE i

    Real Analytic FunctionsSingular pointsC l l i

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    34/84

    ExerciseAnswers

    References

    Complete solutionMethod of reduction of order

    Working rule:

    Given a solution y1(x), let y2(x) be of the form

    y2(x) = y1(x)v(x).

    Substituting in

    y

    + p(x)y

    + q(x)y = 0,

    we get

    u

    + u

    2

    y

    1

    y1+ p(x)

    = 0, where u = v

    ,

    -a first order differential equation(reduced order).Separating the variables and integrating, we get

    v(x) =

    1y21

    e

    p(x)dxdx.

    Thus

    y2(x) = y1(x)

    1

    y21

    e

    p(x)dx

    dx.

    15/38

    OutlinePower seriesExamples

    E i

    Real Analytic FunctionsSingular pointsC l t l ti

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    35/84

    ExerciseAnswers

    References

    Complete solutionMethod of reduction of order

    Example1

    y1(x) = cosx is a solution of

    y

    + y = 0.

    y2(x) = cosx v(x) v(x) =

    16/38

    OutlinePower seriesExamples

    Exercise

    Real Analytic FunctionsSingular pointsComplete solution

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    36/84

    ExerciseAnswers

    References

    Complete solutionMethod of reduction of order

    Example1

    y1(x) = cosx is a solution of

    y

    + y = 0.

    y2(x) = cosx v(x) v(x) =

    1cos2(x)

    e

    0dxdx = tanx

    y2(x) = sinx.

    16/38

    OutlinePower seriesExamples

    Exercise

    Real Analytic FunctionsSingular pointsComplete solution

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    37/84

    ExerciseAnswers

    References

    Complete solutionMethod of reduction of order

    Example1

    y1(x) = cosx is a solution of

    y

    + y = 0.

    y2(x) = cosx v(x) v(x) =

    1cos2(x)

    e

    0dxdx = tanx

    y2(x) = sinx.

    Thus the complete solution is

    c1cosx + c2sinx, where c1 and c2

    are

    16/38

    OutlinePower seriesExamples

    Exercise

    Real Analytic FunctionsSingular pointsComplete solution

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    38/84

    ExerciseAnswers

    References

    Complete solutionMethod of reduction of order

    Example1

    y1(x) = cosx is a solution of

    y

    + y = 0.

    y2(x) = cosx v(x) v(x) =

    1cos2(x)

    e

    0dxdx = tanx

    y2(x) = sinx.

    Thus the complete solution is

    c1cosx + c2sinx, where c1 and c2

    are arbitrary constants.

    16/38

    OutlinePower seriesExamples

    Exercise

    Real Analytic FunctionsSingular pointsComplete solution

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    39/84

    ExerciseAnswers

    References

    Complete solutionMethod of reduction of order

    Example 2

    y1(t) = 1 + t is a solution of

    y

    +2(t + 1)

    t(t + 2)y

    2

    t(t + 2)y = 0.

    Now y2(t) = (1 + t)v(t)

    v(t) =

    17/38

    OutlinePower seriesExamples

    Exercise

    Real Analytic FunctionsSingular pointsComplete solution

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    40/84

    ExerciseAnswers

    References

    Complete solutionMethod of reduction of order

    Example 2

    y1(t) = 1 + t is a solution of

    y

    +2(t + 1)

    t(t + 2)y

    2

    t(t + 2)y = 0.

    Now y2(t) = (1 + t)v(t)

    v(t) =

    1

    (1 + t)2e

    (

    dt

    t+

    dt

    t + 2)dt

    =

    1

    (1 + t)21

    t(t + 2)dt

    =1

    2ln

    t

    t + 2

    +

    1

    t + 1.

    17/38

    OutlinePower seriesExamples

    Exercise

    Real Analytic FunctionsSingular pointsComplete solution

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    41/84

    AnswersReferences

    pMethod of reduction of order

    Complete solution:

    The general solution of the differential equation

    y

    + p(x)y

    + q(x)y = 0

    isy(x) = c1y1(x) + c2y2(x), where c1 and c2

    are arbitrary constants.

    18/38

    OutlinePower seriesExamples

    Exercise

    http://find/http://goback/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    42/84

    AnswersReferences

    Example1:

    Obtain the general solution of

    y

    + y = 0

    in powers of (x-0).

    Solution:

    Note that x=0 is a

    19/38

    OutlinePower seriesExamples

    Exercise

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    43/84

    AnswersReferences

    Example1:

    Obtain the general solution of

    y

    + y = 0

    in powers of (x-0).

    Solution:

    Note that x=0 is a regular point .

    19/38

    OutlinePower seriesExamples

    ExerciseA

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    44/84

    AnswersReferences

    Example1:

    Obtain the general solution of

    y

    + y = 0

    in powers of (x-0).

    Solution:

    Note that x=0 is a regular point . the differential equation admits a series solution of the form

    19/38

    OutlinePower seriesExamples

    ExerciseA

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    45/84

    AnswersReferences

    Example1:

    Obtain the general solution of

    y

    + y = 0

    in powers of (x-0).

    Solution:

    Note that x=0 is a regular point . the differential equation admits a series solution of the form say

    y(x) =

    m=0

    am(x 0)m+r

    .

    19/38

    OutlinePower seriesExamples

    ExerciseAnswers

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    46/84

    AnswersReferences

    Substituting and simplifying,

    20/38

    OutlinePower seriesExamples

    ExerciseAnswers

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    47/84

    AnswersReferences

    Substituting and simplifying,we get r=0 as a root of the indicial equation .

    20/38

    OutlinePower seriesExamples

    ExerciseAnswers

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    48/84

    AnswersReferences

    Anda2m+1 =

    a2m1

    (2m + 1)(2m)

    ,

    a2m+2 = a2m

    (2m + 2)(2m + 1)

    21/38

    OutlinePower seriesExamples

    ExerciseAnswers

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    49/84

    AnswersReferences

    Therefore

    y(x) = a0

    1

    x2

    2! +

    x4

    4! ...

    + a1

    x

    x3

    3!

    x5

    5!

    22/38

    OutlinePower series

    ExamplesExerciseAnswers

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    50/84

    References

    Therefore

    y(x) = a0

    1

    x2

    2! +

    x4

    4! ...

    + a1

    x

    x3

    3!

    x5

    5!

    i.e., y(x) = a0cosx + a1sinx, where a0 and a1 are arbitrary.

    22/38

    OutlinePower series

    ExamplesExerciseAnswers

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    51/84

    References

    Example2:

    Obtain the general solution of

    x2y

    + (x2 3x)y

    + 3y = 0

    in powers of (x-0).

    Solution:

    Note that x=0 is a

    23/38

    OutlinePower series

    ExamplesExerciseAnswers

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    52/84

    References

    Example2:

    Obtain the general solution of

    x2y

    + (x2 3x)y

    + 3y = 0

    in powers of (x-0).

    Solution:

    Note that x=0 is a regular singular point .

    23/38

    OutlinePower series

    ExamplesExerciseAnswers

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    53/84

    References

    Example2:

    Obtain the general solution of

    x2y

    + (x2 3x)y

    + 3y = 0

    in powers of (x-0).

    Solution:

    Note that x=0 is a regular singular point . the differential equation admits a series solution of the form

    23/38

    OutlinePower series

    ExamplesExerciseAnswers

    R f

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    54/84

    References

    Example2:

    Obtain the general solution of

    x2y

    + (x2 3x)y

    + 3y = 0

    in powers of (x-0).

    Solution:

    Note that x=0 is a regular singular point . the differential equation admits a series solution of the form say

    y(x) =

    m=1

    am(x 0)m+r

    .

    23/38

    OutlinePower series

    ExamplesExerciseAnswers

    R f

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    55/84

    References

    Substituting and simplifying, we get

    24/38

    OutlinePower series

    ExamplesExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    56/84

    References

    Substituting and simplifying, we get

    (r(r 1) 3r + 3)a0xr

    +

    m=1

    {[(m + r)(m + r 1) 3(m + r) + 3]am + [m + r 1]} am1xm+

    The indicial equation is

    24/38

    OutlinePower series

    ExamplesExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    57/84

    References

    Substituting and simplifying, we get

    (r(r 1) 3r + 3)a0xr

    +

    m=1

    {[(m + r)(m + r 1) 3(m + r) + 3]am + [m + r 1]} am1xm+

    The indicial equation is

    r2 4r + 3 = 0, ( as a0 = 0)

    24/38

    OutlinePower series

    ExamplesExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    58/84

    References

    Substituting and simplifying, we get

    (r(r 1) 3r + 3)a0xr

    +

    m=1

    {[(m + r)(m + r 1) 3(m + r) + 3]am + [m + r 1]} am1xm+

    The indicial equation is

    r2 4r + 3 = 0, ( as a0 = 0)

    The roots are

    24/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    59/84

    References

    Substituting and simplifying, we get

    (r(r 1) 3r + 3)a0xr

    +

    m=1

    {[(m + r)(m + r 1) 3(m + r) + 3]am + [m + r 1]} am1xm+

    The indicial equation is

    r2 4r + 3 = 0, ( as a0 = 0)

    The roots are r=3 and 1.

    24/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    60/84

    Substituting r=3 and equating the co-efficients of xm+r on eithersides, we get the following recurrence relation:

    25/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    61/84

    Substituting r=3 and equating the co-efficients of xm+r on eithersides, we get the following recurrence relation:

    am =(m + 2)am1

    (m + 3)(m 1) + 3

    , m 1.

    25/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    62/84

    Substituting r=3 and equating the co-efficients of xm+r on eithersides, we get the following recurrence relation:

    am =(m + 2)am1

    (m + 3)(m 1) + 3

    , m 1.

    Thus

    a1 = a0 , a2 =

    25/38

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    63/84

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    64/84

    Substituting r=3 and equating the co-efficients of xm+r on eithersides, we get the following recurrence relation:

    am =(m + 2)am1

    (m

    + 3)(m 1) + 3

    , m 1.

    Thus

    a1 = a0 , a2 =1

    2a0 , a3 =

    a03

    , a4 =a0

    4, ....

    y1(x) = a0x3

    ex

    .

    25/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    65/84

    To find y2(x), apply the method of reduction of order with a0 = 1.

    Lety2 = y1v.

    Then

    v(x) =

    ex

    x3dx.

    26/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    66/84

    To find y2(x), apply the method of reduction of order with a0 = 1.

    Lety2 = y1v.

    Then

    v(x) =

    ex

    x3dx.

    i.e., v =1

    2x2

    1

    x+

    1

    2lnx +

    1

    6x +

    1

    48x2 + ....

    26/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    67/84

    To find y2(x), apply the method of reduction of order with a0 = 1.

    Lety2 = y1v.

    Then

    v(x) =

    ex

    x3dx.

    i.e., v =1

    2x2

    1

    x+

    1

    2lnx +

    1

    6x +

    1

    48x2 + ....

    y2(x) = (1

    2x

    1

    2x2 +

    3

    4x3 ...) +

    1

    2x3exlnx.

    26/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    68/84

    To find y2(x), apply the method of reduction of order with a0 = 1.

    Lety2 = y1v.

    Then

    v(x) =

    ex

    x3dx.

    i.e., v =1

    2x2

    1

    x+

    1

    2lnx +

    1

    6x +

    1

    48x2 + ....

    y2(x) = (1

    2x

    1

    2x2 +

    3

    4x3 ...) +

    1

    2x3exlnx.

    Thusy(x) = c1y1(x) + c2y2(x), where c1 and c2

    are arbitrary constants.

    26/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    69/84

    Have some Patience?

    27/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    70/84

    Have some Patience?

    yes...1 Obtain the general solution of

    x(x + 1)y

    (2x + 1)y = 0

    in powers of (x-0).2 Obtain the general solution of

    (1 x2)y

    2xy

    + 2y = 0

    in powers of (x-0).3 Obtain a series solution of

    (8x2)y

    + 10xy

    (1 + x)y = 0

    about 0.27/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    71/84

    Still Have Patience?

    28/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    S ll H P ?

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    72/84

    Still Have Patience?

    Good...4 Obtain a series solution of

    (4x2)y

    + 2x(2 x)y

    (1 + 3x)y = 0

    about 0.5 Obtain the general solution of

    xy

    + 3y

    + 4x3y = 0

    in powers of (x-0).

    6 Obtain the general solution of

    (x 1)2y

    + (x 1)y

    4y = 0

    about x=1. (Hint: put x-1=t)

    28/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    S ill ??

    http://goforward/http://find/http://goback/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    73/84

    Still ??

    29/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    S ill ??

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    74/84

    Still ??

    Very Good...

    7 Obtain the general solution of

    (1 + x)x2y

    (1 + 2x)xy

    + (1 + 2x)y = 0

    about x=0.

    29/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    A

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    75/84

    Answers:

    Try yourself.

    30/38

    Outline

    Power seriesExamples

    ExerciseAnswers

    References

    A

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    76/84

    Answers:

    Try yourself.

    1

    y(x) = a1x + a2x2

    .

    2

    y(x) = a1x + a0

    1 x2

    1

    3x4

    1

    5x6 + ...

    .

    30/38

    Outline

    Power seriesExamplesExerciseAnswers

    References

    Ans ers

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    77/84

    Answers:

    3 r=1/4,-1/2;

    y1(x) =

    m=0

    amxm+

    1

    4 ,

    where am =a0

    2mm!7.11.15....(4m 1)(4m + 3),

    m = 1, 2, ... a0 is arbitrary.

    31/38

    Outline

    Power seriesExamplesExerciseAnswers

    References

    Answers:

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    78/84

    Answers:

    4 r=1/2,-1/2;

    y1(x) =

    m=1

    a0

    2m1(m 1)!x

    m1

    2 , where a0 is a arbitrary constant.

    32/38

    Outline

    Power seriesExamplesExerciseAnswers

    References

    Answers:

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    79/84

    Answers:

    5 r=0,-2;y1(x) = a0x

    2 sin(x2),

    v(x) =cot(x2)

    2; y2(x) =

    x2cos(x2)

    2.

    33/38

    Outline

    Power seriesExamplesExerciseAnswers

    References

    Answers:

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    80/84

    Answers:

    6 r=2,-2;

    y1(t) = a0t2

    ,

    v(t) =t4

    4; y2(x) =

    t2

    4

    y(x) = c1(x 1)2 + c2(x 1)

    2.

    34/38

    Outline

    Power seriesExamplesExerciseAnswers

    References

    Answers:

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    81/84

    Answers:

    7 r=1,1; y1(x) = a0x,

    v(x) = x + ln x; y2(x) = x(x + ln x).

    35/38

    Outline

    Power seriesExamplesExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    82/84

    For more details , you can click on Series Solutions of DifferentialEquations.

    36/38 Outline

    Power seriesExamplesExerciseAnswers

    References

    http://www.math.ualberta.ca/~xinweiyu/334.1.10f/DE_series_sol.pdfhttp://www.math.ualberta.ca/~xinweiyu/334.1.10f/DE_series_sol.pdfhttp://www.math.ualberta.ca/~xinweiyu/334.1.10f/DE_series_sol.pdfhttp://www.math.ualberta.ca/~xinweiyu/334.1.10f/DE_series_sol.pdfhttp://www.math.ualberta.ca/~xinweiyu/334.1.10f/DE_series_sol.pdfhttp://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    83/84

    Erwin Kreyzig., Advanced Engineering Mathematics.

    B.S. Grewal, Higher Engineering Mathematics.

    37/38 Outline

    Power seriesExamplesExerciseAnswers

    References

    http://find/
  • 7/28/2019 Bessel- Legendre de 1(Beamer)

    84/84

    Thank You

    38/38

    http://find/