Legendre Function

164
Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn(x) Rodrigue’s Formula Recurrence Relations for Pn(x) Legendre’s Function N. B. Vyas Department of Mathematics Atmiya Institute of Technology and Science Department of Mathematics N. B. Vyas Legendre’s Function

description

Legendre Function

Transcript of Legendre Function

Page 1: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Legendre’s Function

N. B. Vyas

Department of MathematicsAtmiya Institute of Technology and Science

Department of Mathematics

N. B. Vyas Legendre’s Function

Page 2: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

The differential equation

(1− x2)y′′− 2xy′+ n(n+ 1)y = 0is called Legendre’s differential equation,n is real constant

N. B. Vyas Legendre’s Function

Page 3: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

The differential equation

(1− x2)y′′− 2xy′+ n(n+ 1)y = 0

is called Legendre’s differential equation,n is real constant

N. B. Vyas Legendre’s Function

Page 4: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

The differential equation

(1− x2)y′′− 2xy′+ n(n+ 1)y = 0is called Legendre’s differential equation,n is real constant

N. B. Vyas Legendre’s Function

Page 5: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Legendre’s Polynomials:

⇒ P0(x) = 1

⇒ P1(x) = x

⇒ P2(x) =1

2(3x2 − 1)

⇒ P3(x) =1

2(5x3 − 3x)

⇒ P4(x) =1

8(35x3 − 30x2 + 3)

⇒ P5(x) =1

8(63x5 − 70x3 + 15x)

N. B. Vyas Legendre’s Function

Page 6: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Legendre’s Polynomials:

⇒ P0(x) = 1

⇒ P1(x) = x

⇒ P2(x) =1

2(3x2 − 1)

⇒ P3(x) =1

2(5x3 − 3x)

⇒ P4(x) =1

8(35x3 − 30x2 + 3)

⇒ P5(x) =1

8(63x5 − 70x3 + 15x)

N. B. Vyas Legendre’s Function

Page 7: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Legendre’s Polynomials:

⇒ P0(x) = 1

⇒ P1(x) = x

⇒ P2(x) =1

2(3x2 − 1)

⇒ P3(x) =1

2(5x3 − 3x)

⇒ P4(x) =1

8(35x3 − 30x2 + 3)

⇒ P5(x) =1

8(63x5 − 70x3 + 15x)

N. B. Vyas Legendre’s Function

Page 8: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Legendre’s Polynomials:

⇒ P0(x) = 1

⇒ P1(x) = x

⇒ P2(x) =1

2(3x2 − 1)

⇒ P3(x) =1

2(5x3 − 3x)

⇒ P4(x) =1

8(35x3 − 30x2 + 3)

⇒ P5(x) =1

8(63x5 − 70x3 + 15x)

N. B. Vyas Legendre’s Function

Page 9: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Legendre’s Polynomials:

⇒ P0(x) = 1

⇒ P1(x) = x

⇒ P2(x) =1

2(3x2 − 1)

⇒ P3(x) =1

2(5x3 − 3x)

⇒ P4(x) =1

8(35x3 − 30x2 + 3)

⇒ P5(x) =1

8(63x5 − 70x3 + 15x)

N. B. Vyas Legendre’s Function

Page 10: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Legendre’s Polynomials:

⇒ P0(x) = 1

⇒ P1(x) = x

⇒ P2(x) =1

2(3x2 − 1)

⇒ P3(x) =1

2(5x3 − 3x)

⇒ P4(x) =1

8(35x3 − 30x2 + 3)

⇒ P5(x) =1

8(63x5 − 70x3 + 15x)

N. B. Vyas Legendre’s Function

Page 11: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Ex.1 Express f (x) in terms ofLegendre’s polynomials wheref (x) = x3 + 2x2 − x− 3.

N. B. Vyas Legendre’s Function

Page 12: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

⇒ P0(x) = 1∴ 1 = P0(x)

⇒ P1(x) = x∴ x = P1(x)

⇒ P3(x) =1

2(5x3 − 3x)

∴ 2P3(x) = (5x3 − 3x)

∴ 2P3(x) + 3x = 5x3

∴ 2P3(x) + 3P1(x) = 5x3 {∵ x = P1(x)}

∴ x3 =2

5P3(x) +

3

5P1(x)

N. B. Vyas Legendre’s Function

Page 13: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

⇒ P0(x) = 1∴ 1 = P0(x)

⇒ P1(x) = x∴ x = P1(x)

⇒ P3(x) =1

2(5x3 − 3x)

∴ 2P3(x) = (5x3 − 3x)

∴ 2P3(x) + 3x = 5x3

∴ 2P3(x) + 3P1(x) = 5x3 {∵ x = P1(x)}

∴ x3 =2

5P3(x) +

3

5P1(x)

N. B. Vyas Legendre’s Function

Page 14: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

⇒ P0(x) = 1∴ 1 = P0(x)

⇒ P1(x) = x∴ x = P1(x)

⇒ P3(x) =1

2(5x3 − 3x)

∴ 2P3(x) = (5x3 − 3x)

∴ 2P3(x) + 3x = 5x3

∴ 2P3(x) + 3P1(x) = 5x3 {∵ x = P1(x)}

∴ x3 =2

5P3(x) +

3

5P1(x)

N. B. Vyas Legendre’s Function

Page 15: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

⇒ P0(x) = 1∴ 1 = P0(x)

⇒ P1(x) = x∴ x = P1(x)

⇒ P3(x) =1

2(5x3 − 3x)

∴ 2P3(x) = (5x3 − 3x)

∴ 2P3(x) + 3x = 5x3

∴ 2P3(x) + 3P1(x) = 5x3 {∵ x = P1(x)}

∴ x3 =2

5P3(x) +

3

5P1(x)

N. B. Vyas Legendre’s Function

Page 16: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

⇒ P0(x) = 1∴ 1 = P0(x)

⇒ P1(x) = x∴ x = P1(x)

⇒ P3(x) =1

2(5x3 − 3x)

∴ 2P3(x) = (5x3 − 3x)

∴ 2P3(x) + 3x = 5x3

∴ 2P3(x) + 3P1(x) = 5x3 {∵ x = P1(x)}

∴ x3 =2

5P3(x) +

3

5P1(x)

N. B. Vyas Legendre’s Function

Page 17: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

⇒ P0(x) = 1∴ 1 = P0(x)

⇒ P1(x) = x∴ x = P1(x)

⇒ P3(x) =1

2(5x3 − 3x)

∴ 2P3(x) = (5x3 − 3x)

∴ 2P3(x) + 3x = 5x3

∴ 2P3(x) + 3P1(x) = 5x3 {∵ x = P1(x)}

∴ x3 =2

5P3(x) +

3

5P1(x)

N. B. Vyas Legendre’s Function

Page 18: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

⇒ P0(x) = 1∴ 1 = P0(x)

⇒ P1(x) = x∴ x = P1(x)

⇒ P3(x) =1

2(5x3 − 3x)

∴ 2P3(x) = (5x3 − 3x)

∴ 2P3(x) + 3x = 5x3

∴ 2P3(x) + 3P1(x) = 5x3 {∵ x = P1(x)}

∴ x3 =2

5P3(x) +

3

5P1(x)

N. B. Vyas Legendre’s Function

Page 19: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

⇒ P0(x) = 1∴ 1 = P0(x)

⇒ P1(x) = x∴ x = P1(x)

⇒ P3(x) =1

2(5x3 − 3x)

∴ 2P3(x) = (5x3 − 3x)

∴ 2P3(x) + 3x = 5x3

∴ 2P3(x) + 3P1(x) = 5x3 {∵ x = P1(x)}

∴ x3 =2

5P3(x) +

3

5P1(x)

N. B. Vyas Legendre’s Function

Page 20: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

⇒ P2(x) =1

2(3x2 − 1)

∴ 2P2(x) = (3x2 − 1)

∴ 2P2(x) + 1 = 3x2

∴ 2P2(x) + P0(x) = 3x2 {∵ 1 = P0(x)}

∴ x2 =2

3P2(x) +

1

3P0(x)

Now, f(x) = x3 + 2x2 − x− 3

f(x) = x3 + 2x2 − x− 3

=2

5P3(x) +

3

5P1(x) +

4

3P2(x) +

2

3P0(x)− P1(x)− 3P0(x)

N. B. Vyas Legendre’s Function

Page 21: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

⇒ P2(x) =1

2(3x2 − 1)

∴ 2P2(x) = (3x2 − 1)

∴ 2P2(x) + 1 = 3x2

∴ 2P2(x) + P0(x) = 3x2 {∵ 1 = P0(x)}

∴ x2 =2

3P2(x) +

1

3P0(x)

Now, f(x) = x3 + 2x2 − x− 3

f(x) = x3 + 2x2 − x− 3

=2

5P3(x) +

3

5P1(x) +

4

3P2(x) +

2

3P0(x)− P1(x)− 3P0(x)

N. B. Vyas Legendre’s Function

Page 22: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

⇒ P2(x) =1

2(3x2 − 1)

∴ 2P2(x) = (3x2 − 1)

∴ 2P2(x) + 1 = 3x2

∴ 2P2(x) + P0(x) = 3x2 {∵ 1 = P0(x)}

∴ x2 =2

3P2(x) +

1

3P0(x)

Now, f(x) = x3 + 2x2 − x− 3

f(x) = x3 + 2x2 − x− 3

=2

5P3(x) +

3

5P1(x) +

4

3P2(x) +

2

3P0(x)− P1(x)− 3P0(x)

N. B. Vyas Legendre’s Function

Page 23: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

⇒ P2(x) =1

2(3x2 − 1)

∴ 2P2(x) = (3x2 − 1)

∴ 2P2(x) + 1 = 3x2

∴ 2P2(x) + P0(x) = 3x2 {∵ 1 = P0(x)}

∴ x2 =2

3P2(x) +

1

3P0(x)

Now, f(x) = x3 + 2x2 − x− 3

f(x) = x3 + 2x2 − x− 3

=2

5P3(x) +

3

5P1(x) +

4

3P2(x) +

2

3P0(x)− P1(x)− 3P0(x)

N. B. Vyas Legendre’s Function

Page 24: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

⇒ P2(x) =1

2(3x2 − 1)

∴ 2P2(x) = (3x2 − 1)

∴ 2P2(x) + 1 = 3x2

∴ 2P2(x) + P0(x) = 3x2 {∵ 1 = P0(x)}

∴ x2 =2

3P2(x) +

1

3P0(x)

Now, f(x) = x3 + 2x2 − x− 3

f(x) = x3 + 2x2 − x− 3

=2

5P3(x) +

3

5P1(x) +

4

3P2(x) +

2

3P0(x)− P1(x)− 3P0(x)

N. B. Vyas Legendre’s Function

Page 25: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

⇒ P2(x) =1

2(3x2 − 1)

∴ 2P2(x) = (3x2 − 1)

∴ 2P2(x) + 1 = 3x2

∴ 2P2(x) + P0(x) = 3x2 {∵ 1 = P0(x)}

∴ x2 =2

3P2(x) +

1

3P0(x)

Now, f(x) = x3 + 2x2 − x− 3

f(x) = x3 + 2x2 − x− 3

=2

5P3(x) +

3

5P1(x) +

4

3P2(x) +

2

3P0(x)− P1(x)− 3P0(x)

N. B. Vyas Legendre’s Function

Page 26: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

⇒ P2(x) =1

2(3x2 − 1)

∴ 2P2(x) = (3x2 − 1)

∴ 2P2(x) + 1 = 3x2

∴ 2P2(x) + P0(x) = 3x2 {∵ 1 = P0(x)}

∴ x2 =2

3P2(x) +

1

3P0(x)

Now, f(x) = x3 + 2x2 − x− 3

f(x) = x3 + 2x2 − x− 3

=2

5P3(x) +

3

5P1(x) +

4

3P2(x) +

2

3P0(x)− P1(x)− 3P0(x)

N. B. Vyas Legendre’s Function

Page 27: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Ex.2 Express x3 − 5x2 + 6x + 1 interms of Legendre’s polynomial.

N. B. Vyas Legendre’s Function

Page 28: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Ex.3 Express 4x3 − 2x2 − 3x + 8 interms of Legendre’s polynomial.

N. B. Vyas Legendre’s Function

Page 29: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Generating Function for Pn(x)∞∑n=0

Pn(x)tn =

1√1− 2xt + t2

= (1− 2xt + t2)−12

N. B. Vyas Legendre’s Function

Page 30: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

The function (1− 2xt + t2)−12 is

called Generating function ofLegendre’s polynomial Pn(x)

N. B. Vyas Legendre’s Function

Page 31: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Ex Show that

(i)Pn(1) = 1

(ii)Pn(−1) = (−1)n

(iii)Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 32: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Ex Show that

(i)Pn(1) = 1

(ii)Pn(−1) = (−1)n

(iii)Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 33: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Ex Show that

(i)Pn(1) = 1

(ii)Pn(−1) = (−1)n

(iii)Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 34: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Ex Show that

(i)Pn(1) = 1

(ii)Pn(−1) = (−1)n

(iii)Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 35: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

(i) We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−12

Putting x = 1 in eq(1), we get

∞∑n=0

Pn(1)tn = (1− 2t + t2)−12 = (1− t)−1

∴∞∑n=0

Pn(1)tn =1

1− t= 1 + t + t2 + t3 + ...

∴∞∑n=0

Pn(1)tn =∞∑n=0

tn

Comparing the coefficient of tn both the sides, we get

Pn(1) = 1

N. B. Vyas Legendre’s Function

Page 36: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

(i) We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−12

Putting x = 1 in eq(1), we get∞∑n=0

Pn(1)tn = (1− 2t + t2)−12 = (1− t)−1

∴∞∑n=0

Pn(1)tn =1

1− t= 1 + t + t2 + t3 + ...

∴∞∑n=0

Pn(1)tn =∞∑n=0

tn

Comparing the coefficient of tn both the sides, we get

Pn(1) = 1

N. B. Vyas Legendre’s Function

Page 37: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

(i) We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−12

Putting x = 1 in eq(1), we get∞∑n=0

Pn(1)tn = (1− 2t + t2)−12 = (1− t)−1

∴∞∑n=0

Pn(1)tn =1

1− t= 1 + t + t2 + t3 + ...

∴∞∑n=0

Pn(1)tn =∞∑n=0

tn

Comparing the coefficient of tn both the sides, we get

Pn(1) = 1

N. B. Vyas Legendre’s Function

Page 38: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

(i) We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−12

Putting x = 1 in eq(1), we get∞∑n=0

Pn(1)tn = (1− 2t + t2)−12 = (1− t)−1

∴∞∑n=0

Pn(1)tn =1

1− t= 1 + t + t2 + t3 + ...

∴∞∑n=0

Pn(1)tn =

∞∑n=0

tn

Comparing the coefficient of tn both the sides, we get

Pn(1) = 1

N. B. Vyas Legendre’s Function

Page 39: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

(i) We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−12

Putting x = 1 in eq(1), we get∞∑n=0

Pn(1)tn = (1− 2t + t2)−12 = (1− t)−1

∴∞∑n=0

Pn(1)tn =1

1− t= 1 + t + t2 + t3 + ...

∴∞∑n=0

Pn(1)tn =

∞∑n=0

tn

Comparing the coefficient of tn both the sides, we get

Pn(1) = 1

N. B. Vyas Legendre’s Function

Page 40: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Solution:

(i) We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−12

Putting x = 1 in eq(1), we get∞∑n=0

Pn(1)tn = (1− 2t + t2)−12 = (1− t)−1

∴∞∑n=0

Pn(1)tn =1

1− t= 1 + t + t2 + t3 + ...

∴∞∑n=0

Pn(1)tn =

∞∑n=0

tn

Comparing the coefficient of tn both the sides, we get

Pn(1) = 1

N. B. Vyas Legendre’s Function

Page 41: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(ii) Putting x = −1 in eq(1), we get

∞∑n=0

Pn(−1)tn = (1 + 2t + t2)−12 = (1 + t)−1

∴∞∑n=0

Pn(−1)tn =1

1 + t= 1− t + t2 − t3 + ...

∴∞∑n=0

Pn(−1)tn =∞∑n=0

(−1)ntn

Comparing coefficients of tn, we get

Pn(−1) = (−1)n

N. B. Vyas Legendre’s Function

Page 42: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(ii) Putting x = −1 in eq(1), we get∞∑n=0

Pn(−1)tn = (1 + 2t + t2)−12 = (1 + t)−1

∴∞∑n=0

Pn(−1)tn =1

1 + t= 1− t + t2 − t3 + ...

∴∞∑n=0

Pn(−1)tn =∞∑n=0

(−1)ntn

Comparing coefficients of tn, we get

Pn(−1) = (−1)n

N. B. Vyas Legendre’s Function

Page 43: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(ii) Putting x = −1 in eq(1), we get∞∑n=0

Pn(−1)tn = (1 + 2t + t2)−12 = (1 + t)−1

∴∞∑n=0

Pn(−1)tn =1

1 + t= 1− t + t2 − t3 + ...

∴∞∑n=0

Pn(−1)tn =∞∑n=0

(−1)ntn

Comparing coefficients of tn, we get

Pn(−1) = (−1)n

N. B. Vyas Legendre’s Function

Page 44: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(ii) Putting x = −1 in eq(1), we get∞∑n=0

Pn(−1)tn = (1 + 2t + t2)−12 = (1 + t)−1

∴∞∑n=0

Pn(−1)tn =1

1 + t= 1− t + t2 − t3 + ...

∴∞∑n=0

Pn(−1)tn =

∞∑n=0

(−1)ntn

Comparing coefficients of tn, we get

Pn(−1) = (−1)n

N. B. Vyas Legendre’s Function

Page 45: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(ii) Putting x = −1 in eq(1), we get∞∑n=0

Pn(−1)tn = (1 + 2t + t2)−12 = (1 + t)−1

∴∞∑n=0

Pn(−1)tn =1

1 + t= 1− t + t2 − t3 + ...

∴∞∑n=0

Pn(−1)tn =

∞∑n=0

(−1)ntn

Comparing coefficients of tn, we get

Pn(−1) = (−1)n

N. B. Vyas Legendre’s Function

Page 46: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(ii) Putting x = −1 in eq(1), we get∞∑n=0

Pn(−1)tn = (1 + 2t + t2)−12 = (1 + t)−1

∴∞∑n=0

Pn(−1)tn =1

1 + t= 1− t + t2 − t3 + ...

∴∞∑n=0

Pn(−1)tn =

∞∑n=0

(−1)ntn

Comparing coefficients of tn, we get

Pn(−1) = (−1)n

N. B. Vyas Legendre’s Function

Page 47: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(iii) Now replacing x by −x in eq(1), we get

∞∑n=0

Pn(−x)tn = (1 + 2xt + t2)−12 —(a)

Now, replacing t by −t in eq(1), we get∞∑n=0

Pn(x)(−t)n = (1 + 2xt + t2)−12 —(b)

from equation (a) and (b)∞∑n=0

Pn(−x)(t)n =

∞∑n=0

Pn(x)(−1)n(t)n

Comparing the coefficients of tn , both sides, we get

Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 48: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(iii) Now replacing x by −x in eq(1), we get∞∑n=0

Pn(−x)tn = (1 + 2xt + t2)−12 —(a)

Now, replacing t by −t in eq(1), we get∞∑n=0

Pn(x)(−t)n = (1 + 2xt + t2)−12 —(b)

from equation (a) and (b)∞∑n=0

Pn(−x)(t)n =

∞∑n=0

Pn(x)(−1)n(t)n

Comparing the coefficients of tn , both sides, we get

Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 49: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(iii) Now replacing x by −x in eq(1), we get∞∑n=0

Pn(−x)tn = (1 + 2xt + t2)−12 —(a)

Now, replacing t by −t in eq(1), we get

∞∑n=0

Pn(x)(−t)n = (1 + 2xt + t2)−12 —(b)

from equation (a) and (b)∞∑n=0

Pn(−x)(t)n =

∞∑n=0

Pn(x)(−1)n(t)n

Comparing the coefficients of tn , both sides, we get

Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 50: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(iii) Now replacing x by −x in eq(1), we get∞∑n=0

Pn(−x)tn = (1 + 2xt + t2)−12 —(a)

Now, replacing t by −t in eq(1), we get∞∑n=0

Pn(x)(−t)n = (1 + 2xt + t2)−12 —(b)

from equation (a) and (b)∞∑n=0

Pn(−x)(t)n =

∞∑n=0

Pn(x)(−1)n(t)n

Comparing the coefficients of tn , both sides, we get

Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 51: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(iii) Now replacing x by −x in eq(1), we get∞∑n=0

Pn(−x)tn = (1 + 2xt + t2)−12 —(a)

Now, replacing t by −t in eq(1), we get∞∑n=0

Pn(x)(−t)n = (1 + 2xt + t2)−12 —(b)

from equation (a) and (b)

∞∑n=0

Pn(−x)(t)n =

∞∑n=0

Pn(x)(−1)n(t)n

Comparing the coefficients of tn , both sides, we get

Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 52: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(iii) Now replacing x by −x in eq(1), we get∞∑n=0

Pn(−x)tn = (1 + 2xt + t2)−12 —(a)

Now, replacing t by −t in eq(1), we get∞∑n=0

Pn(x)(−t)n = (1 + 2xt + t2)−12 —(b)

from equation (a) and (b)∞∑n=0

Pn(−x)(t)n =

∞∑n=0

Pn(x)(−1)n(t)n

Comparing the coefficients of tn , both sides, we get

Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 53: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(iii) Now replacing x by −x in eq(1), we get∞∑n=0

Pn(−x)tn = (1 + 2xt + t2)−12 —(a)

Now, replacing t by −t in eq(1), we get∞∑n=0

Pn(x)(−t)n = (1 + 2xt + t2)−12 —(b)

from equation (a) and (b)∞∑n=0

Pn(−x)(t)n =

∞∑n=0

Pn(x)(−1)n(t)n

Comparing the coefficients of tn , both sides, we get

Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 54: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(iii) Now replacing x by −x in eq(1), we get∞∑n=0

Pn(−x)tn = (1 + 2xt + t2)−12 —(a)

Now, replacing t by −t in eq(1), we get∞∑n=0

Pn(x)(−t)n = (1 + 2xt + t2)−12 —(b)

from equation (a) and (b)∞∑n=0

Pn(−x)(t)n =

∞∑n=0

Pn(x)(−1)n(t)n

Comparing the coefficients of tn , both sides, we get

Pn(−x) = (−1)nPn(x)

N. B. Vyas Legendre’s Function

Page 55: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Rodrigue’s Formula

Pn(x) =1

2nn!

dn

dxn[(x2 − 1)n]

N. B. Vyas Legendre’s Function

Page 56: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Proof:

Let y = (x2 − 1)n

Differentiating wit respect to x

∴ y1 = n(x2 − 1)n−1(2x)

∴ y1 =2nx(x2 − 1)n

(x2 − 1)=

2nxy

x2 − 1

∴ (x2 − 1)y1 = 2nxy

Differentiating with respect to x,

(x2 − 1)y2 +2xy1 = 2nxy1 + 2ny

N. B. Vyas Legendre’s Function

Page 57: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Proof:

Let y = (x2 − 1)n

Differentiating wit respect to x

∴ y1 = n(x2 − 1)n−1(2x)

∴ y1 =2nx(x2 − 1)n

(x2 − 1)=

2nxy

x2 − 1

∴ (x2 − 1)y1 = 2nxy

Differentiating with respect to x,

(x2 − 1)y2 +2xy1 = 2nxy1 + 2ny

N. B. Vyas Legendre’s Function

Page 58: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Proof:

Let y = (x2 − 1)n

Differentiating wit respect to x

∴ y1 = n(x2 − 1)n−1(2x)

∴ y1 =2nx(x2 − 1)n

(x2 − 1)=

2nxy

x2 − 1

∴ (x2 − 1)y1 = 2nxy

Differentiating with respect to x,

(x2 − 1)y2 +2xy1 = 2nxy1 + 2ny

N. B. Vyas Legendre’s Function

Page 59: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Proof:

Let y = (x2 − 1)n

Differentiating wit respect to x

∴ y1 = n(x2 − 1)n−1(2x)

∴ y1 =2nx(x2 − 1)n

(x2 − 1)=

2nxy

x2 − 1

∴ (x2 − 1)y1 = 2nxy

Differentiating with respect to x,

(x2 − 1)y2 +2xy1 = 2nxy1 + 2ny

N. B. Vyas Legendre’s Function

Page 60: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Proof:

Let y = (x2 − 1)n

Differentiating wit respect to x

∴ y1 = n(x2 − 1)n−1(2x)

∴ y1 =2nx(x2 − 1)n

(x2 − 1)=

2nxy

x2 − 1

∴ (x2 − 1)y1 = 2nxy

Differentiating with respect to x,

(x2 − 1)y2 +2xy1 = 2nxy1 + 2ny

N. B. Vyas Legendre’s Function

Page 61: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Proof:

Let y = (x2 − 1)n

Differentiating wit respect to x

∴ y1 = n(x2 − 1)n−1(2x)

∴ y1 =2nx(x2 − 1)n

(x2 − 1)=

2nxy

x2 − 1

∴ (x2 − 1)y1 = 2nxy

Differentiating with respect to x,

(x2 − 1)y2 +2xy1 = 2nxy1 + 2ny

N. B. Vyas Legendre’s Function

Page 62: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Proof:

Let y = (x2 − 1)n

Differentiating wit respect to x

∴ y1 = n(x2 − 1)n−1(2x)

∴ y1 =2nx(x2 − 1)n

(x2 − 1)=

2nxy

x2 − 1

∴ (x2 − 1)y1 = 2nxy

Differentiating with respect to x,

(x2 − 1)y2 +2xy1 = 2nxy1 + 2ny

N. B. Vyas Legendre’s Function

Page 63: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

{dn

dxn(UV ) = nC0UVn + nC1U1Vn−1 + ... + nCnUnV

}

→ dn

dxn((x2−1)y2) = nC0(x

2−1)yn+2+nC1(2x)yn+1+nC2(2)yn

→ dn

dxn(2xy1) = nC0(2x)yn+1 + nC1(2)yn

→ dn

dxn(2nxy1) = nC0(2nx)yn+1 + nC1(2n)yn

→ dn

dxn(2ny) = 2nyn

Also nC0 = 1, nC1 = n, nC2 =n(n− 1)

2!

N. B. Vyas Legendre’s Function

Page 64: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

{dn

dxn(UV ) = nC0UVn + nC1U1Vn−1 + ... + nCnUnV

}→ dn

dxn((x2−1)y2) = nC0(x

2−1)yn+2+nC1(2x)yn+1+nC2(2)yn

→ dn

dxn(2xy1) = nC0(2x)yn+1 + nC1(2)yn

→ dn

dxn(2nxy1) = nC0(2nx)yn+1 + nC1(2n)yn

→ dn

dxn(2ny) = 2nyn

Also nC0 = 1, nC1 = n, nC2 =n(n− 1)

2!

N. B. Vyas Legendre’s Function

Page 65: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

{dn

dxn(UV ) = nC0UVn + nC1U1Vn−1 + ... + nCnUnV

}→ dn

dxn((x2−1)y2) = nC0(x

2−1)yn+2+nC1(2x)yn+1+nC2(2)yn

→ dn

dxn(2xy1) = nC0(2x)yn+1 + nC1(2)yn

→ dn

dxn(2nxy1) = nC0(2nx)yn+1 + nC1(2n)yn

→ dn

dxn(2ny) = 2nyn

Also nC0 = 1, nC1 = n, nC2 =n(n− 1)

2!

N. B. Vyas Legendre’s Function

Page 66: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

{dn

dxn(UV ) = nC0UVn + nC1U1Vn−1 + ... + nCnUnV

}→ dn

dxn((x2−1)y2) = nC0(x

2−1)yn+2+nC1(2x)yn+1+nC2(2)yn

→ dn

dxn(2xy1) = nC0(2x)yn+1 + nC1(2)yn

→ dn

dxn(2nxy1) = nC0(2nx)yn+1 + nC1(2n)yn

→ dn

dxn(2ny) = 2nyn

Also nC0 = 1, nC1 = n, nC2 =n(n− 1)

2!

N. B. Vyas Legendre’s Function

Page 67: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

{dn

dxn(UV ) = nC0UVn + nC1U1Vn−1 + ... + nCnUnV

}→ dn

dxn((x2−1)y2) = nC0(x

2−1)yn+2+nC1(2x)yn+1+nC2(2)yn

→ dn

dxn(2xy1) = nC0(2x)yn+1 + nC1(2)yn

→ dn

dxn(2nxy1) = nC0(2nx)yn+1 + nC1(2n)yn

→ dn

dxn(2ny) = 2nyn

Also nC0 = 1, nC1 = n, nC2 =n(n− 1)

2!

N. B. Vyas Legendre’s Function

Page 68: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

{dn

dxn(UV ) = nC0UVn + nC1U1Vn−1 + ... + nCnUnV

}→ dn

dxn((x2−1)y2) = nC0(x

2−1)yn+2+nC1(2x)yn+1+nC2(2)yn

→ dn

dxn(2xy1) = nC0(2x)yn+1 + nC1(2)yn

→ dn

dxn(2nxy1) = nC0(2nx)yn+1 + nC1(2n)yn

→ dn

dxn(2ny) = 2nyn

Also nC0 = 1, nC1 = n, nC2 =n(n− 1)

2!

N. B. Vyas Legendre’s Function

Page 69: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 70: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 71: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 72: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 73: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 74: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 75: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 76: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 77: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 78: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n− 1)yn+2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn

∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n− 2n2 − 2n)yn = 0

∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0

∴ (1− x2)yn+2 − 2xyn+1 + n(n + 1)yn = 0

Let v = yn =dny

dxn

∴ (1− x2)v2 − 2xv1 + n(n + 1)v = 0 ——(2)

Equation (2) is a Legendre’s equation in variables v and x

⇒ Pn(x) is a solution of equation (2)

Also, v = f(x) is a solution of equation (2)

Pn = cv where c is constant

N. B. Vyas Legendre’s Function

Page 79: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ Pn(x) = cdny

dxn= c

dn

dxn(x2 − 1)n ——(3)

Now y = (x2 − 1)n

= (x + 1)n(x− 1)n

∴dny

dxn= (x + 1)n

dn

dxn((x− 1)n)

+n(x + 1)n−1dn−1

dxn−1((x− 1)n)

+...

+dn((x + 1)n)

dxn(x− 1)n

N. B. Vyas Legendre’s Function

Page 80: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ Pn(x) = cdny

dxn= c

dn

dxn(x2 − 1)n ——(3)

Now y = (x2 − 1)n

= (x + 1)n(x− 1)n

∴dny

dxn= (x + 1)n

dn

dxn((x− 1)n)

+n(x + 1)n−1dn−1

dxn−1((x− 1)n)

+...

+dn((x + 1)n)

dxn(x− 1)n

N. B. Vyas Legendre’s Function

Page 81: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ Pn(x) = cdny

dxn= c

dn

dxn(x2 − 1)n ——(3)

Now y = (x2 − 1)n

= (x + 1)n(x− 1)n

∴dny

dxn= (x + 1)n

dn

dxn((x− 1)n)

+n(x + 1)n−1dn−1

dxn−1((x− 1)n)

+...

+dn((x + 1)n)

dxn(x− 1)n

N. B. Vyas Legendre’s Function

Page 82: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ Pn(x) = cdny

dxn= c

dn

dxn(x2 − 1)n ——(3)

Now y = (x2 − 1)n

= (x + 1)n(x− 1)n

∴dny

dxn= (x + 1)n

dn

dxn((x− 1)n)

+n(x + 1)n−1dn−1

dxn−1((x− 1)n)

+...

+dn((x + 1)n)

dxn(x− 1)n

N. B. Vyas Legendre’s Function

Page 83: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ Pn(x) = cdny

dxn= c

dn

dxn(x2 − 1)n ——(3)

Now y = (x2 − 1)n

= (x + 1)n(x− 1)n

∴dny

dxn= (x + 1)n

dn

dxn((x− 1)n)

+n(x + 1)n−1dn−1

dxn−1((x− 1)n)

+...

+dn((x + 1)n)

dxn(x− 1)n

N. B. Vyas Legendre’s Function

Page 84: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ Pn(x) = cdny

dxn= c

dn

dxn(x2 − 1)n ——(3)

Now y = (x2 − 1)n

= (x + 1)n(x− 1)n

∴dny

dxn= (x + 1)n

dn

dxn((x− 1)n)

+n(x + 1)n−1dn−1

dxn−1((x− 1)n)

+...

+dn((x + 1)n)

dxn(x− 1)n

N. B. Vyas Legendre’s Function

Page 85: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ Pn(x) = cdny

dxn= c

dn

dxn(x2 − 1)n ——(3)

Now y = (x2 − 1)n

= (x + 1)n(x− 1)n

∴dny

dxn= (x + 1)n

dn

dxn((x− 1)n)

+n(x + 1)n−1dn−1

dxn−1((x− 1)n)

+...

+dn((x + 1)n)

dxn(x− 1)n

N. B. Vyas Legendre’s Function

Page 86: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

Recurrence Relations for Pn(x) : −

N. B. Vyas Legendre’s Function

Page 87: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(1) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Proof: We have∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

= (1− 2xt + t2)−1(1− 2xt + t2)−12 (x− t)

=(1− 2xt + t2)−

12

(1− 2xt + t2)(x− t)

from (i)

(1− 2xt + t2)

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

Pn(x)tn

N. B. Vyas Legendre’s Function

Page 88: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(1) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Proof: We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

= (1− 2xt + t2)−1(1− 2xt + t2)−12 (x− t)

=(1− 2xt + t2)−

12

(1− 2xt + t2)(x− t)

from (i)

(1− 2xt + t2)

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

Pn(x)tn

N. B. Vyas Legendre’s Function

Page 89: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(1) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Proof: We have∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

= (1− 2xt + t2)−1(1− 2xt + t2)−12 (x− t)

=(1− 2xt + t2)−

12

(1− 2xt + t2)(x− t)

from (i)

(1− 2xt + t2)

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

Pn(x)tn

N. B. Vyas Legendre’s Function

Page 90: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(1) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Proof: We have∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to t, weget

∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

= (1− 2xt + t2)−1(1− 2xt + t2)−12 (x− t)

=(1− 2xt + t2)−

12

(1− 2xt + t2)(x− t)

from (i)

(1− 2xt + t2)

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

Pn(x)tn

N. B. Vyas Legendre’s Function

Page 91: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(1) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Proof: We have∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

= (1− 2xt + t2)−1(1− 2xt + t2)−12 (x− t)

=(1− 2xt + t2)−

12

(1− 2xt + t2)(x− t)

from (i)

(1− 2xt + t2)

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

Pn(x)tn

N. B. Vyas Legendre’s Function

Page 92: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(1) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Proof: We have∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

= (1− 2xt + t2)−1(1− 2xt + t2)−12 (x− t)

=(1− 2xt + t2)−

12

(1− 2xt + t2)(x− t)

from (i)

(1− 2xt + t2)

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

Pn(x)tn

N. B. Vyas Legendre’s Function

Page 93: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(1) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Proof: We have∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

= (1− 2xt + t2)−1(1− 2xt + t2)−12 (x− t)

=(1− 2xt + t2)−

12

(1− 2xt + t2)(x− t)

from (i)

(1− 2xt + t2)

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

Pn(x)tn

N. B. Vyas Legendre’s Function

Page 94: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(1) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Proof: We have∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

= (1− 2xt + t2)−1(1− 2xt + t2)−12 (x− t)

=(1− 2xt + t2)−

12

(1− 2xt + t2)(x− t)

from (i)

(1− 2xt + t2)

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

Pn(x)tn

N. B. Vyas Legendre’s Function

Page 95: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(1) (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

Proof: We have∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

= (1− 2xt + t2)−1(1− 2xt + t2)−12 (x− t)

=(1− 2xt + t2)−

12

(1− 2xt + t2)(x− t)

from (i)

(1− 2xt + t2)

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

Pn(x)tn

N. B. Vyas Legendre’s Function

Page 96: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴∞∑n=1

nPn(x)tn−1 − 2x

∞∑n=1

nPn(x)tn +

∞∑n=1

nPn(x)tn+1 =

x

∞∑n=0

Pn(x)tn −∞∑n=0

Pn(x)tn+1

replacing n by n+1 in 1st term, n by n-1 in 3rd term inL.H.S.

replacing n by n-1 in 2nd term in R.H.S∞∑n=0

(n + 1)Pn+1(x)tn − 2x∞∑n=1

nPn(x)tn +∞∑n=2

(n−

1)Pn−1(x)tn = x

∞∑n=0

Pn(x)tn −∞∑n=1

Pn−1(x)tn

comparing the coefficients of tn on both the sides

N. B. Vyas Legendre’s Function

Page 97: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴∞∑n=1

nPn(x)tn−1 − 2x

∞∑n=1

nPn(x)tn +

∞∑n=1

nPn(x)tn+1 =

x

∞∑n=0

Pn(x)tn −∞∑n=0

Pn(x)tn+1

replacing n by n+1 in 1st term, n by n-1 in 3rd term inL.H.S.

replacing n by n-1 in 2nd term in R.H.S∞∑n=0

(n + 1)Pn+1(x)tn − 2x∞∑n=1

nPn(x)tn +∞∑n=2

(n−

1)Pn−1(x)tn = x

∞∑n=0

Pn(x)tn −∞∑n=1

Pn−1(x)tn

comparing the coefficients of tn on both the sides

N. B. Vyas Legendre’s Function

Page 98: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴∞∑n=1

nPn(x)tn−1 − 2x

∞∑n=1

nPn(x)tn +

∞∑n=1

nPn(x)tn+1 =

x

∞∑n=0

Pn(x)tn −∞∑n=0

Pn(x)tn+1

replacing n by n+1 in 1st term, n by n-1 in 3rd term inL.H.S.

replacing n by n-1 in 2nd term in R.H.S

∞∑n=0

(n + 1)Pn+1(x)tn − 2x∞∑n=1

nPn(x)tn +∞∑n=2

(n−

1)Pn−1(x)tn = x

∞∑n=0

Pn(x)tn −∞∑n=1

Pn−1(x)tn

comparing the coefficients of tn on both the sides

N. B. Vyas Legendre’s Function

Page 99: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴∞∑n=1

nPn(x)tn−1 − 2x

∞∑n=1

nPn(x)tn +

∞∑n=1

nPn(x)tn+1 =

x

∞∑n=0

Pn(x)tn −∞∑n=0

Pn(x)tn+1

replacing n by n+1 in 1st term, n by n-1 in 3rd term inL.H.S.

replacing n by n-1 in 2nd term in R.H.S∞∑n=0

(n + 1)Pn+1(x)tn − 2x

∞∑n=1

nPn(x)tn +

∞∑n=2

(n−

1)Pn−1(x)tn = x

∞∑n=0

Pn(x)tn −∞∑n=1

Pn−1(x)tn

comparing the coefficients of tn on both the sides

N. B. Vyas Legendre’s Function

Page 100: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴∞∑n=1

nPn(x)tn−1 − 2x

∞∑n=1

nPn(x)tn +

∞∑n=1

nPn(x)tn+1 =

x

∞∑n=0

Pn(x)tn −∞∑n=0

Pn(x)tn+1

replacing n by n+1 in 1st term, n by n-1 in 3rd term inL.H.S.

replacing n by n-1 in 2nd term in R.H.S∞∑n=0

(n + 1)Pn+1(x)tn − 2x

∞∑n=1

nPn(x)tn +

∞∑n=2

(n−

1)Pn−1(x)tn = x

∞∑n=0

Pn(x)tn −∞∑n=1

Pn−1(x)tn

comparing the coefficients of tn on both the sides

N. B. Vyas Legendre’s Function

Page 101: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (n + 1)Pn+1(x)− 2xnPn(x) + (n− 1)Pn−1(x) =xPn(x)− Pn−1(x)

∴ (n + 1)Pn+1(x) = (2n + 1)xPn(x)− (n− 1 + 1)Pn−1(x)

∴ (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

N. B. Vyas Legendre’s Function

Page 102: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (n + 1)Pn+1(x)− 2xnPn(x) + (n− 1)Pn−1(x) =xPn(x)− Pn−1(x)

∴ (n + 1)Pn+1(x) = (2n + 1)xPn(x)− (n− 1 + 1)Pn−1(x)

∴ (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

N. B. Vyas Legendre’s Function

Page 103: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (n + 1)Pn+1(x)− 2xnPn(x) + (n− 1)Pn−1(x) =xPn(x)− Pn−1(x)

∴ (n + 1)Pn+1(x) = (2n + 1)xPn(x)− (n− 1 + 1)Pn−1(x)

∴ (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

N. B. Vyas Legendre’s Function

Page 104: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(2) nPn(x) = xP ′n(x)− P ′n−1(x)

Proof: We have∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to x, weget∞∑n=0

P ′n(x)tn = −1

2(1− 2xt + t2)−

32 (−2t)

∴∞∑n=0

P ′n(x)tn =t(1− 2xt + t2)−

12

(1− 2xt + t2)————-(ii)

⇒ Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

∞∑n=1

nPn(x)tn−1 =(x− t)(1− 2xt + t2)−

12

(1− 2xt + t2)

N. B. Vyas Legendre’s Function

Page 105: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(2) nPn(x) = xP ′n(x)− P ′n−1(x)Proof: We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to x, weget∞∑n=0

P ′n(x)tn = −1

2(1− 2xt + t2)−

32 (−2t)

∴∞∑n=0

P ′n(x)tn =t(1− 2xt + t2)−

12

(1− 2xt + t2)————-(ii)

⇒ Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

∞∑n=1

nPn(x)tn−1 =(x− t)(1− 2xt + t2)−

12

(1− 2xt + t2)

N. B. Vyas Legendre’s Function

Page 106: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(2) nPn(x) = xP ′n(x)− P ′n−1(x)Proof: We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to x, weget∞∑n=0

P ′n(x)tn = −1

2(1− 2xt + t2)−

32 (−2t)

∴∞∑n=0

P ′n(x)tn =t(1− 2xt + t2)−

12

(1− 2xt + t2)————-(ii)

⇒ Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

∞∑n=1

nPn(x)tn−1 =(x− t)(1− 2xt + t2)−

12

(1− 2xt + t2)

N. B. Vyas Legendre’s Function

Page 107: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(2) nPn(x) = xP ′n(x)− P ′n−1(x)Proof: We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to x, weget

∞∑n=0

P ′n(x)tn = −1

2(1− 2xt + t2)−

32 (−2t)

∴∞∑n=0

P ′n(x)tn =t(1− 2xt + t2)−

12

(1− 2xt + t2)————-(ii)

⇒ Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

∞∑n=1

nPn(x)tn−1 =(x− t)(1− 2xt + t2)−

12

(1− 2xt + t2)

N. B. Vyas Legendre’s Function

Page 108: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(2) nPn(x) = xP ′n(x)− P ′n−1(x)Proof: We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to x, weget∞∑n=0

P ′n(x)tn = −1

2(1− 2xt + t2)−

32 (−2t)

∴∞∑n=0

P ′n(x)tn =t(1− 2xt + t2)−

12

(1− 2xt + t2)————-(ii)

⇒ Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

∞∑n=1

nPn(x)tn−1 =(x− t)(1− 2xt + t2)−

12

(1− 2xt + t2)

N. B. Vyas Legendre’s Function

Page 109: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(2) nPn(x) = xP ′n(x)− P ′n−1(x)Proof: We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to x, weget∞∑n=0

P ′n(x)tn = −1

2(1− 2xt + t2)−

32 (−2t)

∴∞∑n=0

P ′n(x)tn =t(1− 2xt + t2)−

12

(1− 2xt + t2)————-(ii)

⇒ Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

∞∑n=1

nPn(x)tn−1 =(x− t)(1− 2xt + t2)−

12

(1− 2xt + t2)

N. B. Vyas Legendre’s Function

Page 110: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(2) nPn(x) = xP ′n(x)− P ′n−1(x)Proof: We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to x, weget∞∑n=0

P ′n(x)tn = −1

2(1− 2xt + t2)−

32 (−2t)

∴∞∑n=0

P ′n(x)tn =t(1− 2xt + t2)−

12

(1− 2xt + t2)————-(ii)

⇒ Differentiating equation (i) partially with respect to t, weget

∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

∞∑n=1

nPn(x)tn−1 =(x− t)(1− 2xt + t2)−

12

(1− 2xt + t2)

N. B. Vyas Legendre’s Function

Page 111: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(2) nPn(x) = xP ′n(x)− P ′n−1(x)Proof: We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to x, weget∞∑n=0

P ′n(x)tn = −1

2(1− 2xt + t2)−

32 (−2t)

∴∞∑n=0

P ′n(x)tn =t(1− 2xt + t2)−

12

(1− 2xt + t2)————-(ii)

⇒ Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

∞∑n=1

nPn(x)tn−1 =(x− t)(1− 2xt + t2)−

12

(1− 2xt + t2)

N. B. Vyas Legendre’s Function

Page 112: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(2) nPn(x) = xP ′n(x)− P ′n−1(x)Proof: We have

∞∑n=0

Pn(x)tn = (1− 2xt + t2)−

1

2 ——–(i)

Differentiating equation (i) partially with respect to x, weget∞∑n=0

P ′n(x)tn = −1

2(1− 2xt + t2)−

32 (−2t)

∴∞∑n=0

P ′n(x)tn =t(1− 2xt + t2)−

12

(1− 2xt + t2)————-(ii)

⇒ Differentiating equation (i) partially with respect to t, weget∞∑n=1

nPn(x)tn−1 = −1

2(1− 2xt + t2)−

32 (−2x + 2t)

∞∑n=1

nPn(x)tn−1 =(x− t)(1− 2xt + t2)−

12

(1− 2xt + t2)N. B. Vyas Legendre’s Function

Page 113: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∞∑n=1

nPn(x)tn−1 =(x− t)

t

∞∑n=0

P ′n(x)tn {by eq. (ii)

∴ t∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

P ′n(x)tn

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=0

P ′n(x)tn+1

Replacing n by n-1 in 2nd term in R.H.S.

∴∞∑n=1

nPn(x)tn = x∞∑n=0

P ′n(x)tn −∞∑n=1

P ′n−1(x)tn

comparing the coefficients of tn on both sides, we get

nPn(x) = xP ′n(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 114: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∞∑n=1

nPn(x)tn−1 =(x− t)

t

∞∑n=0

P ′n(x)tn {by eq. (ii)

∴ t

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

P ′n(x)tn

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=0

P ′n(x)tn+1

Replacing n by n-1 in 2nd term in R.H.S.

∴∞∑n=1

nPn(x)tn = x∞∑n=0

P ′n(x)tn −∞∑n=1

P ′n−1(x)tn

comparing the coefficients of tn on both sides, we get

nPn(x) = xP ′n(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 115: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∞∑n=1

nPn(x)tn−1 =(x− t)

t

∞∑n=0

P ′n(x)tn {by eq. (ii)

∴ t

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

P ′n(x)tn

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=0

P ′n(x)tn+1

Replacing n by n-1 in 2nd term in R.H.S.

∴∞∑n=1

nPn(x)tn = x∞∑n=0

P ′n(x)tn −∞∑n=1

P ′n−1(x)tn

comparing the coefficients of tn on both sides, we get

nPn(x) = xP ′n(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 116: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∞∑n=1

nPn(x)tn−1 =(x− t)

t

∞∑n=0

P ′n(x)tn {by eq. (ii)

∴ t

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

P ′n(x)tn

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=0

P ′n(x)tn+1

Replacing n by n-1 in 2nd term in R.H.S.

∴∞∑n=1

nPn(x)tn = x∞∑n=0

P ′n(x)tn −∞∑n=1

P ′n−1(x)tn

comparing the coefficients of tn on both sides, we get

nPn(x) = xP ′n(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 117: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∞∑n=1

nPn(x)tn−1 =(x− t)

t

∞∑n=0

P ′n(x)tn {by eq. (ii)

∴ t

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

P ′n(x)tn

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=0

P ′n(x)tn+1

Replacing n by n-1 in 2nd term in R.H.S.

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=1

P ′n−1(x)tn

comparing the coefficients of tn on both sides, we get

nPn(x) = xP ′n(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 118: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∞∑n=1

nPn(x)tn−1 =(x− t)

t

∞∑n=0

P ′n(x)tn {by eq. (ii)

∴ t

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

P ′n(x)tn

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=0

P ′n(x)tn+1

Replacing n by n-1 in 2nd term in R.H.S.

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=1

P ′n−1(x)tn

comparing the coefficients of tn on both sides, we get

nPn(x) = xP ′n(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 119: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∞∑n=1

nPn(x)tn−1 =(x− t)

t

∞∑n=0

P ′n(x)tn {by eq. (ii)

∴ t

∞∑n=1

nPn(x)tn−1 = (x− t)

∞∑n=0

P ′n(x)tn

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=0

P ′n(x)tn+1

Replacing n by n-1 in 2nd term in R.H.S.

∴∞∑n=1

nPn(x)tn = x

∞∑n=0

P ′n(x)tn −∞∑n=1

P ′n−1(x)tn

comparing the coefficients of tn on both sides, we get

nPn(x) = xP ′n(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 120: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 121: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 122: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 123: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 124: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 125: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 126: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 127: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 128: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 129: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(3) (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)n

Proof: We have ( from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

∴ (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x) — (a)

differentiating equation (a) partially with respect to x, Weget

∴ (2n+1)Pn(x)+(2n+1)xP ′n(x) = (n+1)P ′n+1(x)+nP ′n−1(x)—(b)

Also from relation (2)

nPn(x) = xP ′n(x)− P ′n−1(x)

∴ xP ′n(x) = nPn(x) + P ′n−1(x)—– (c)

Substituting the value of (c) in equation (b), we get

∴ (2n + 1)Pn(x) + (2n + 1)[nPn(x) + P ′n−1(x)] =(n + 1)P ′n+1(x) + nP ′n−1(x)

N. B. Vyas Legendre’s Function

Page 130: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (2n + 1)(n + 1)Pn(x) + (2n + 1)P ′n−1(x) =(n + 1)P ′n+1(x) + nP ′n−1(x)

∴ (2n + 1)(n + 1)Pn(x) = (n + 1)P ′n+1(x)− (n + 1)P ′n−1(x)

∴ dividing by (n + 1), we get

∴ (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 131: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (2n + 1)(n + 1)Pn(x) + (2n + 1)P ′n−1(x) =(n + 1)P ′n+1(x) + nP ′n−1(x)

∴ (2n + 1)(n + 1)Pn(x) = (n + 1)P ′n+1(x)− (n + 1)P ′n−1(x)

∴ dividing by (n + 1), we get

∴ (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 132: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (2n + 1)(n + 1)Pn(x) + (2n + 1)P ′n−1(x) =(n + 1)P ′n+1(x) + nP ′n−1(x)

∴ (2n + 1)(n + 1)Pn(x) = (n + 1)P ′n+1(x)− (n + 1)P ′n−1(x)

∴ dividing by (n + 1), we get

∴ (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 133: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

∴ (2n + 1)(n + 1)Pn(x) + (2n + 1)P ′n−1(x) =(n + 1)P ′n+1(x) + nP ′n−1(x)

∴ (2n + 1)(n + 1)Pn(x) = (n + 1)P ′n+1(x)− (n + 1)P ′n−1(x)

∴ dividing by (n + 1), we get

∴ (2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x)

N. B. Vyas Legendre’s Function

Page 134: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 135: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 136: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 137: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 138: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 139: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 140: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 141: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 142: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 143: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(4) P ′n(x) = xPn−1(x) + nPn−1(x)

Proof: We have (from relation (3) ),

(2n + 1)Pn(x) = P ′n+1(x)− P ′n−1(x) —–(a)

Also we have (from relation (2) ),

∴ nPn(x) = xP ′n(x)− P ′n−1(x) ——(b)

Taking (a) - (b), we get

∴ (n + 1)Pn(x) = P ′n+1(x)− xP ′n(x)

replacing n by n− 1, we get

∴ nPn−1(x) = P ′n(x)− xP ′n−1(x)

∴ P ′n(x) = xP ′n−1(x) + nPn−1(x)

N. B. Vyas Legendre’s Function

Page 144: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 145: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 146: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 147: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 148: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 149: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 150: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 151: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 152: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 153: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(5) (1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

Proof: We have (from relation (4) )

P ′n(x) = xP ′n−1(x) + nPn−1(x) ——- (a)

also we have (from relation (2) )

nPn(x) = xP ′n(x)− P ′n−1(x)

xP ′n(x) = nPn(x) + P ′n−1(x) ——– (b)

taking (a) - x X (b), we get

(1−x2)P ′n(x) = xP ′n−1(x)+nPn−1(x)−nxPn(x)−xP ′n−1(x)

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)]

N. B. Vyas Legendre’s Function

Page 154: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 155: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 156: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 157: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 158: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 159: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 160: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 161: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 162: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 163: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function

Page 164: Legendre Function

Legendre’s PolynomialsExamples of Legendre’s Polynomials

Generating Function for Pn(x)Rodrigue’s Formula

Recurrence Relations for Pn(x)

(6) (1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

Proof: We have (from relation (5) )

(1− x2)P ′n(x) = n[Pn−1(x)− xPn(x)] ——(a)

also we have (from relation (1) )

(n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + nxPn(x)− nPn−1(x)

(n + 1)Pn+1(x) = (n + 1)xPn(x) + n[xPn(x)− Pn−1(x)]

n(Pn−1(x)− xPn(x)) = (n + 1)(xPn(x)− Pn+1(x))

from equation (a),

(1− x2)P ′n(x) = (n + 1)[xPn(x)− Pn+1(x)]

N. B. Vyas Legendre’s Function