Analisis Termodinamis Proses Alir

download Analisis Termodinamis Proses Alir

of 47

Transcript of Analisis Termodinamis Proses Alir

  • 8/17/2019 Analisis Termodinamis Proses Alir

    1/47

      N LISIS TERMODIN MIS PROSES LI

    R

    Flow Processes (Proses-proses alir)

    Ada 2 konsep fundamental untuk analisis proses-proses alir yaitu:

    a. Neraca massa (continuity equation = persamaankontinuitas)

  • 8/17/2019 Analisis Termodinamis Proses Alir

    2/47

    a. Continuity Equation

    Σ. (aliran massa masuk) = Σ (aliran massa

    keluar)  Σ (mi)masuk  = Σ (mi)keluar 

    (m1 + m2 + …)masuk  = (m + m! +

    …)keluar  m = massa"#aktu

    $ila ti%ak a%a percabangan :

     

    m1  = m2 

  • 8/17/2019 Analisis Termodinamis Proses Alir

    3/47

    Σ(m)masuk  = Σ (m)keluar 

    Σ (& ' ρ)masuk = Σ (& ' ρ)keluar 

    uaspenampang ec. &liran

    (pan*ang"#aktu)

    apat massa

    ,ntuk incompressible -ui% : ρ ≅ tetap  Σ (&') masuk = Σ (&') keluar

    uas tampang saluran sama : & ≅ tetap  Σ (ρ') masuk = Σ (ρ') keluar

     

  • 8/17/2019 Analisis Termodinamis Proses Alir

    4/47

    ncompressible -ui% %an luas tampang

    aliran sama  Σ (') masuk = Σ (') keluarb. /ukum 0ermo%inamika (-o# processes)

    ,1+ 11+(mg)1 + 3m'12+456s = ,2+22+

    (mg)2 + 3m'22

     atau7/1 + (mg)1 + 3m'1

    2 + 456s = /2 + (mg)2 +

    3m'22

    &ctual'elocityprole

    u2 u2

    Control'olume

    ;,;/

    u1

  • 8/17/2019 Analisis Termodinamis Proses Alir

    5/47

  • 8/17/2019 Analisis Termodinamis Proses Alir

    6/47

    !e"erapa Alat #teady-Flo$ Proses

  • 8/17/2019 Analisis Termodinamis Proses Alir

    7/47

    V V 2 1>>

    V V 2 1

  • 8/17/2019 Analisis Termodinamis Proses Alir

    8/47

    B

    8ol'ing @or V 2

    V h h V  2 1 2 122= − +( )

    ample *-+

    8team at .D a; FoC; enters an a%iabatic no??le #it9 a lo# 'elocityan% lea'es at .2 a #it9 a quality o@ GH. >in% t9e eAit 'elocity; in m"s.

    ,ontrol Volume 09e no??le

    Property .elation 8team tables

    Process &ssume a%iabatic; stea%y5-o#

    ,onser/ation Principles

    ,onser/ation of mass 

    >or one entrance; one eAit; t9e conser'ation o@ mass becomes

    m m

    m m m

    in out  ∑ ∑== =1 2

  • 8/17/2019 Analisis Termodinamis Proses Alir

    9/47

    G

    ,ontrol Volume 09e turbine.

    Property .elation &ssume air is an i%eal gas an% use i%eal gas relations.

    Process 8tea%y5state; stea%y5-o#; a%iabatic process

    ,onser/ation Principles

    ,onser/ation of mass 

    m m

    m m m

    in out  ∑ ∑=

    = =1 2

    ,onser/ation of ener0y 

    &ccor%ing to t9e sketc9e% control 'olume; mass an% #ork cross t9e controlsur@ace. Neglecting kinetic an% potential energies an% noting t9e processis a%iabatic; #e 9a'e

  • 8/17/2019 Analisis Termodinamis Proses Alir

    10/47

    1

    ,onser/ation of ener0y

    &ccor%ing to t9e sketc9e% control 'olume; mass crosses t9e controlsur@ace; but no #ork or 9eat trans@er crosses t9e control [email protected] t9e potential energies; #e 9a'e

    glecting t9e inlet kinetic energy; t9e eAit 'elocity isV h h2 1 22= −( )

    #; #e nee% to n% t9e ent9alpies @rom t9e steam tables.

    1 1 2 2

    1 2

    Superheated   Saturated Mix.

    300 3067.1 0.2

    0.4 0.90

    o   kJ T C h P MPa hkg 

     P MPa x

     

      = = = = =  

    t .2 a hf  = D. kI"kg an% hfg = 221.! kI"kg.

  • 8/17/2019 Analisis Termodinamis Proses Alir

    11/47

    11

    2 2= +

    = 504.7 + (0.90)(2201.6) = 2486.1

     f fg h h x h

    kJ 

    kg 

    2 2

    2 1000 /2(3067.1 2486.1)/

    1078.0

    kJ m sV kg kJ kg  

    m

     s

    = −

    =

    r

    Tur"ines

    (pander) 

    @ #e neglect t9e c9anges in kinetic an% potential energies as -ui% -o#st9roug9 an a%iabatic turbine 9a'ing one entrance an% one eAit; t9econser'ation o@ mass an% t9e stea%y5state; stea%y5-o# rst la# becomes

  • 8/17/2019 Analisis Termodinamis Proses Alir

    12/47

    12

    ample *-*

    /ig9 pressure air at 1F -o#s into an aircra@t gas turbine an%un%ergoes a stea%y5state; stea%y5-o#; a%iabatic process to t9e turbineeAit at !! . Calculate t9e #ork %one per unit mass o@ air -o#ingt9roug9 t9e turbine #9en

    (a) 0emperature5%epen%ent %ata are use%.(b) C p;a'e at t9e a'erage temperature is use%.

    (c) Cp at F is use%.

  • 8/17/2019 Analisis Termodinamis Proses Alir

    13/47

    1F

    ,ontrol Volume 09e turbine.

    Property .elation &ssume air is an i%eal gas an% use i%eal gas relations.

    Process 8tea%y5state; stea%y5-o#; a%iabatic process

    ,onser/ation Principles

    ,onser/ation of mass 

    m m

    m m m

    in out  ∑ ∑=

    = =1 2

    ,onser/ation of ener0y 

    &ccor%ing to t9e sketc9e% control 'olume; mass an% #ork cross t9e controlsur@ace. Neglecting kinetic an% potential energies an% noting t9e processis a%iabatic; #e 9a'e

  • 8/17/2019 Analisis Termodinamis Proses Alir

    14/47

    1D

    0 1 1 2 2

    1 2

    + = +

    = −

       

       ( )

    m h W m h

    W m h h

    out 

    out 

    9e #ork %one by t9e air per unit mass -o# is

    w   W m

    h hout out = = −

      1 2

    Notice t9at t9e #ork %one by a -ui% -o#ing t9roug9 a turbine is equal tot9e ent9alpy %ecrease o@ t9e -ui%.

    (a) ,sing t9e air tablesat T 1 = 1F ; h1 = 1FG.G kI"kg

    at T 2 = !! ; h2 = !.D kI"kg

    w h h

    kJ 

    kg kJ 

    kg 

    out  = −

    = −

    =

    1 2

    1395 97 670 47

    7255

    ( . . )

    .

  • 8/17/2019 Analisis Termodinamis Proses Alir

    15/47

    1

    b) ,sing 0able &52(c) at T a'e = GB ; C p, ave = 1.1FB kI"kg⋅

    w h h C T T  

    kJ 

    kg K 

     K 

    kJ 

    kg 

    out p ave= − = −

    =

      −

    =

    1 2 1 2

    1138 1300 660

    7283

    ,   ( )

    . ( )

    .

    c) ,sing 0able &52(a) at T  = F ; Cp = 1. kI"kg ⋅ 

    w h h C T T  

    kJ 

    kg K  K 

    kJ 

    kg 

    out p= − = −

    =⋅

    =

    1 2 1 2

    1005 1300 660

    6432

    ( )

    . ( )

    .

    mpressors and fans 

  • 8/17/2019 Analisis Termodinamis Proses Alir

    16/47

    1!

    Compressors an% @ans are essentially t9e same %e'ices. /o#e'er;compressors operate o'er larger pressure ratios t9an @ans. @ #e neglectt9e c9anges in kinetic an% potential energies as -ui% -o#s t9roug9 ana%iabatic compressor 9a'ing one entrance an% one eAit; t9e stea%y5state;stea%y5-o# rst la# or t9e conser'ation o@ energy equation becomes

    ample *-1 

    Nitrogen gas is compresse% in a stea%y5state; stea%y5-o#; a%iabaticprocess @rom .1 a; 2oC. Juring t9e compression process t9etemperature becomes 12oC. @ t9e mass -o# rate is .2 kg"s; %eterminet9e #ork %one on t9e nitrogen; in k6.

    l l 9 ( 9 k 9 % b )

  • 8/17/2019 Analisis Termodinamis Proses Alir

    17/47

    1

    ,ontrol Volume 09e compressor (see t9e compressor sketc9e% abo'e)

    Property .elation &ssume nitrogen is an i%eal gas an% use i%eal gasrelations

    Process &%iabatic; stea%y5-o#

    ,onser/ation Principles

    ,onser/ation of mass 

    m m

    m m m

    in out  ∑ ∑=

    = =1 2

    ,onser/ation of ener0y 

    &ccor%ing to t9e sketc9e% control 'olume; mass an% #ork cross t9e controlsur@ace. Neglecting kinetic an% potential energies an% noting t9e processis a%iabatic; #e 9a'e @or one entrance an% one eAit

    0 0 0 0 01 1 2 2

    2 1

    + + + = − + + +

    = −

      ( ) (     )     ( )

       ( )

    m h W m h

    W m h h

    in

    in

    09 k % t9 it i l t % t t9 t9 l i @ t9

  • 8/17/2019 Analisis Termodinamis Proses Alir

    18/47

    1B

     09e #ork %one on t9e nitrogen is relate% to t9e ent9alpy rise o@ t9enitrogen as it -o#s t9roug9 t9e compressor. 09e #ork %one on t9enitrogen per unit mass -o# is

    w  W 

    mh hin

    in= = −

    2 1

    &ssuming constant specic 9eats at F @rom 0able &52(a); #e #rite t9e#ork as

    w C T T  

    kJ 

    kg K  K 

    kJ kg 

    in p= −

    =⋅

      −

    =

    ( )

    . ( )

    .

    2 1

    1 039 125 25

    1039

  • 8/17/2019 Analisis Termodinamis Proses Alir

    19/47

    1G

    hrottlin0 de/ices

    Consi%er -ui% -o#ing t9roug9 a one5entrance; one5eAit porous plug. 09e-ui% eAperiences a pressure %rop as it -o#s t9roug9 t9e plug. No net #orkis %one by t9e -ui%. &ssume t9e process is a%iabatic an% t9at t9e kinetic

    an% potential energies are neglecte%7 t9en t9e conser'ation o@ mass an%energy equations become

  • 8/17/2019 Analisis Termodinamis Proses Alir

    20/47

    2

     09is process is calle% a t9rottling process. 69at 9appens #9en an i%ealgas is t9rottle%K

    69en t9rottling an i%eal gas; t9e temperature %oes not c9ange. 6e #illsee later in C9apter 11 t9at t9e t9rottling process is an important processin t9e re@rigeration cycle.

    & t9rottling %e'ice may be use% to %etermine t9e ent9alpy o@ saturate%steam. 09e steam is t9rottle% @rom t9e pressure in t9e pipe to ambientpressure in t9e calorimeter. 09e pressure %rop is suLcient to super9eatt9e steam in t9e calorimeter. 09us; t9e temperature an% pressure in t9ecalorimeter #ill speci@y t9e ent9alpy o@ t9e steam in t9e pipe.

    l *

  • 8/17/2019 Analisis Termodinamis Proses Alir

    21/47

    21

    ample *-

    Mne #ay to %etermine t9e quality o@ saturate% steam is to t9rottle t9esteam to a lo# enoug9 pressure t9at it eAists as a super9eate% 'apor.8aturate% steam at .D a is t9rottle% to .1 a; 1oC. Jetermine t9e

    quality o@ t9e steam at .D a.

    1 2

     09rottling orice

    Control8ur@ace

    ,ontrol Volume 09e t9rottle

    Property .elation 09e steam tables

    Process 8tea%y5state; stea%y5-o#; no #ork; no 9eat trans@er; neglectkinetic an% potential energies; one entrance; one eAit

    ,onser/ation Principles

    ,onser/ation of mass 

    m m

    m m m

    in out  ∑ ∑== =1 2

  • 8/17/2019 Analisis Termodinamis Proses Alir

    22/47

    22

    ,onser/ation of ener0y 

    &ccor%ing to t9e sketc9e% control 'olume; mass crosses t9e controlsur@ace. Neglecting kinetic an% potential energies an% noting t9e processis a%iabatic #it9 no #ork; #e 9a'e @or one entrance an% one eAit

    0 0 0 0 0 01 1 2 2

    1 1 2 2

    1 2

    + + + = + + +

    =

    =

      ( )     ( )

    m h m h

    m h m h

    h h

    22

    2

    1002675.8

    0.1

    oT C    kJ h

    kg  P MPa

    ==

    =  

     09ere@ore;

    ( )1

    1 2

    1 @ 0.4

    2675.8

     f fg   P MPa

    kJ h h

    kg 

    h x h=

    = =

    = +

  • 8/17/2019 Analisis Termodinamis Proses Alir

    23/47

    2F

    1

    1

    2675.8 604.66

    2133.4

    0.971

     f 

     fg 

    h h x

    h

    −=

    −=

    =

    3iin0 cham"ers

     09e miAing o@ t#o -ui%s occurs @requently in engineering applications. 09esection #9ere t9e miAing process takes place is calle% a miAing c9amber.

     09e or%inary s9o#er is an eAample o@ a miAing c9amber.

  • 8/17/2019 Analisis Termodinamis Proses Alir

    24/47

    2D

    ample *-4

    8team at .2 a; FoC; enters a miAing c9amber an% is miAe% #it9 col%#ater at 2oC; .2 a; to pro%uce 2 kg"s o@ saturate% liqui% #ater at .2a. 69at are t9e require% steam an% col% #ater -o# ratesK

    8team 1

    Col% #ater2

    8aturate% #aterF

    Controlsur@ace

    Mixi!

    chambe

    r

    ,ontrol Volume 09e miAing c9amber

    Property .elation 8team tables 

    Process &ssume stea%y5-o#; a%iabatic miAing; #it9 no #ork

    ,onser/ation Principles

    ,onser/ation of mass

    m m

    m m m

    m m m

    in out  ∑ ∑=+ =

    = −1 2 3

    2 3 1

  • 8/17/2019 Analisis Termodinamis Proses Alir

    25/47

    2

    ,onser/ation of ener0y 

    &ccor%ing to t9e sketc9e% control 'olume; mass crosses t9e controlsur@ace. Neglecting kinetic an% potential energies an% noting t9e processis a%iabatic #it9 no #ork; #e 9a'e @or t#o entrances an% one eAit

      (     )  

      ( )     ( )

    m h m h m h

    m h m m h m h

    m h h m h h

    1 1 2 2 3 3

    1 1 3 1 2 3 3

    1 1 2 3 3 2

    + =

    + − =

    − = −

      ( )

    ( )m m

      h h

    h h1 3

    3 2

    1 2

    =  −

    o#; #e use t9e steam tables to n% t9e ent9alpies:

    11

    1

    3003072.1

    0.2

    oT C    kJ h

    kg  P MPa

    ==

    =  

  • 8/17/2019 Analisis Termodinamis Proses Alir

    26/47

    2!

    2

    2 @ 202

    2083.91

    0.2  o

    o

     f C 

    T C    kJ h h

    kg  P MPa

    =≈ =

    =  

    3 21 3

    1 2

    ( )( )

    (504.7 83.91) /20

    (3072.1 83.91) /

    2.82

    h hm mh h

    kg kJ kg  

     s kJ kg 

    kg 

     s

    −=−

    −=

    =

    N N

    ( . )

    .

    m m m

    kg 

     s

    kg  s

    2 3 1

    20 2 82

    1718

    = −

    = −

    =

  • 8/17/2019 Analisis Termodinamis Proses Alir

    27/47

    2

    Heat echan0ers

    /eat eAc9angers are normally #ell5insulate% %e'ices t9at allo# energyeAc9ange bet#een 9ot an% col% -ui%s #it9out miAing t9e -ui%s. 09epumps; @ans; an% blo#ers causing t9e -ui%s to -o# across t9e control

    sur@ace are normally locate% outsi%e t9e control sur@ace.

    ample *-5

  • 8/17/2019 Analisis Termodinamis Proses Alir

    28/47

    2B

    ample *-5

    &ir is 9eate% in a 9eat eAc9anger by 9ot #ater. 09e #ater enters t9e 9eateAc9anger at DoC an% eAperiences a 2oC %rop in temperature. &s t9eair passes t9roug9 t9e 9eat eAc9anger; its temperature is increase% by

    2oC. Jetermine t9e ratio o@ mass -o# rate o@ t9e air to mass -o# rate o@t9e #ater.1&irinlet

    26atereAit2

    &ir eAit

     

    16aterinlet

    Controlsur@ace

    ntrol Volume 09e 9eat eAc9anger

    operty .elation  &ir: i%eal gas relations6ater: steam tables or incompressible liqui% results

    ocess  &ssume a%iabatic; stea%y5-o#

  • 8/17/2019 Analisis Termodinamis Proses Alir

    29/47

    2G

    ,onser/ation Principles ,onser/ation of mass

      ( / )m m m kg sin out system− = ∆(stea%y)

    r t#o entrances; t#o eAits; t9e conser'ation o@ mass becomes

    , , , ,

    m m

    m m m m

    in out  

    air w air w

    =

    + = +1 1 2 2

    >or t#o -ui% streams t9at eAc9ange energy but %o not miA; it is better toconser'e t9e mass @or t9e -ui% streams separately.

    , ,

    , ,

    m m m

    m m m

    air air air  

    w w w

    1 2

    1 2

    = =

    = =

    ,onser/ation of ener0y

    &ccor%ing to t9e sketc9e% control 'olume; mass crosses t9e controlsur@ace; but no #ork or 9eat trans@er crosses t9e control [email protected] t9e kinetic an% potential energies; #e 9a'e @or stea%y5-o

  • 8/17/2019 Analisis Termodinamis Proses Alir

    30/47

    F

     E E E kW in out system− =

    "ate #$ et eer!% tra&$er  '% heat, #r, ad *a&&

    "ate ha!e i itera, ieti,  p#tetia, et., eer!ie&

      ( )  

    ∆(stea%y)

    ( )   ( )

    , , , , , , , ,

    , , , ,

     E E m h m h m h m h

    m h h m h h

    in out  

    air air w w air air w w

    air air air w w w

    =+ = +

    − = −

    1 1 1 1 2 2 2 2

    1 2 2 1

    ( )

    ( )

    , ,

    , ,

    m

    m

    h h

    h h

    air 

    w

    w w

    air air  

    =  −

    2 1

    1 2

    6e assume t9at t9e air 9as constant specic 9eats at F ; 0able &52(a)(#e %onOt kno# t9e actual temperatures; *ust t9e temperature %iPerence).$ecause #e kno# t9e initial an% nal temperatures @or t9e #ater; #e canuse eit9er t9e incompressible -ui% result or t9e steam tables @or itsproperties.

    ,sing t9e incompressible -ui% approac9 @or t9e #ater; 0able &5F;C p, w = D.1B kI"kg⋅.

  • 8/17/2019 Analisis Termodinamis Proses Alir

    31/47

    F1

    ( )

    ( )

    , , 2 ,1

    , ,1 , 2

    ( )

    ( )

    4.18 20

    1.005 25

    /3.33

    /

     p w w wair 

    w p air air air  

    w

    air 

    air 

    w

    C T T m

    m C T T  

    kJ  K 

    kg K kJ 

     K kg K 

    kg s

    kg s

    −=

    ⋅=−

    =

    N

    N

    & secon% solution to t9is problem is obtaine% by %etermining t9e 9eattrans@er rate @rom t9e 9ot #ater an% noting t9at t9is is t9e 9eat trans@errate to t9e air. Consi%ering eac9 -ui% separately @or stea%y5-o#; oneentrance; an% one eAit; an% neglecting t9e kinetic an% potential energies;t9e rst la#; or conser'ation o@ energy; equations become

    ,1 ,1 , , 2 , 2

    ,1 ,1 , , 2 , 2

    , ,

    -

    -

    in out  

    air air in air air air  

    w w out w w w

    in air out w

     E E 

    air m h Q m h

    water m h Q m h

    Q Q

    =+ =

    = +

    =

    N N

    NN N

    NN N

    N N

    pe an uc o$

  • 8/17/2019 Analisis Termodinamis Proses Alir

    32/47

    F2

    p

     09e -o# o@ -ui%s t9roug9 pipes an% %ucts is o@ten a stea%y5state; stea%y5-o# process. 6e normally neglect t9e kinetic an% potential energies79o#e'er; %epen%ing on t9e -o# situation; t9e #ork an% 9eat trans@er mayor may not be ?ero.

    ample *-78

    n a simple steam po#er plant; steam lea'es a boiler at F a; !oC; an%enters a turbine at 2 a; oC. Jetermine t9e in5line 9eat trans@er @romt9e steam per kilogram mass -o#ing in t9e pipe bet#een t9e boiler an%t9e turbine.

    Controlsur@ace

      18team@romboiler

    8teamtoturbine2

    ,ontrol Volume ipe section in #9ic9 t9e 9eat loss occurs.

    Property .elation 8team tables

    Process 8tea%y5-o#

    ,onser/ation Principles 

    Qout 

    , i f

  • 8/17/2019 Analisis Termodinamis Proses Alir

    33/47

    FF

    ,onser/ation of mass

    ( / )in out systemm m m kg s− = ∆(stea%y)

    r one entrance; one eAit; t9e conser'ation o@ mass becomes

        

        

    m mm m m

    in out  == =1 2

    ,onser/ation of ener0y

    &ccor%ing to t9e sketc9e% control 'olume; 9eat trans@er an% mass cross

    t9e control sur@ace; but no #ork crosses t9e control sur@ace. Neglectingt9e kinetic an% potential energies; #e 9a'e @or stea%y5-o#

    "ate #$ et eer!% tra&$er  "ate ha!e i itera, ieti, '% heat, #r, ad *a&&   p#tetia, et., eer!ie&

      ( )in out system E E E kW − = ∆ 1 D 2 DF 1D2 DF

    (stea%y)

     %etermine t9e 9eat trans@er rate per unit mass o@ -o#ing steam as  

       ( )

    m h m h Q

    Q m h h

    q

      Q

    m h h

    out 

    out 

    out 

    out 

    1 1 2 2

    1 2

    1 2

    = +

    = −

    = = −

    t9 t t bl t % t i t9 t9 l i t t9 t t t

  • 8/17/2019 Analisis Termodinamis Proses Alir

    34/47

    FD

     use t9e steam tables to %etermine t9e ent9alpies at t9e t#o states as

    11

    1

    6003682.8

    3

    oT C    kJ h

    kg  P MPa

    ==

    =  

    2

    22

    5003468.3

    2

    oT C    kJ h

    kg  P MPa

    ==

    =  

    1 2

    (3682.8 3468.3)

    214.5

    out q h h

    kJ 

    kg 

    kJ kg 

    = −

    = −

    =

    ample *-77

    &ir at 1oC; .1 a; D m"s; -o#s t9roug9 a con'erging %uct #it9 amass -o# rate o@ .2 kg"s. 09e air lea'es t9e %uct at .1 a; 11F.! m"s. 09e eAit5to5inlet %uct area ratio is .. >in% t9e require% rate o@ 9eattrans@er to t9e air #9en no #ork is %one by t9e air.

  • 8/17/2019 Analisis Termodinamis Proses Alir

    35/47

    F

    Controlsur@ace

      1&ir inlet

    &ir eAit2

    Qin

    ,ontrol Volume 09e con'erging %uct

    Property .elation &ssume air is an i%eal gas an% use i%eal gas relations

    Process 8tea%y5-o#

    ,onser/ation Principles

    ,onser/ation of mass

      ( / )m m m kg sin out system− = ∆(stea%y)

    r one entrance; one eAit; t9e conser'ation o@ mass becomes

    m m

    m m m

    in out  =

    = =1 2

    ,onser/ation of ener0y

  • 8/17/2019 Analisis Termodinamis Proses Alir

    36/47

    F!

    n t9e rst la# equation; t9e @ollo#ing are kno#n: P1; T 

    1 (an%

    h1); ; ; ; an% A2" A1. 09e unkno#ns are ; an% h2 (or T 2). 6e use

    t9e rst la# an% t9e conser'ation o@ mass equation to sol'e @or t9e t#ounkno#ns.

    ,onser/ation of ener0y

    &ccor%ing to t9e sketc9e% control 'olume; 9eat trans@er an% mass crosst9e control sur@ace; but no #ork crosses t9e control sur@ace. /ere keep t9ekinetic energy an% still neglect t9e potential energies; #e 9a'e @or stea%y5

    state; stea%y5-o# process

    "ate #$ et eer!% tra&$er  "ate ha!e i itera, ieti, '% heat, #r, ad *a&&   p#tetia, et., eer!ie&

      ( )in out system E E E kW − = ∆ 1 D2 DF 1D2 DF

    (stea%y)

    1V    V 2   mN

    Qin

    ( / )m m kg s=N N

  • 8/17/2019 Analisis Termodinamis Proses Alir

    37/47

    F

    1 2

    1 1 2 2

    1 2

    1 2

    1 1 2 21 2

    ( / )

    1 1

    m m kg s

    V A V Av v

     P P 

    V A V A T T 

    =

    =

    =

    N N

    r r

    r r

    8ol'ing @or T 2

    ssuming C p = constant; h2 5 h1 = C p(T 2 5 T 1)

    ooks like #e ma%e t9e #rong assumption @or t9e %irection o@ t9e 9eat

  • 8/17/2019 Analisis Termodinamis Proses Alir

    38/47

    FB

    g ptrans@er. 09e 9eat is really lea'ing t9e -o# %uct. (69at type o@ %e'ice ist9is any#ayK)

      .Q Q kW  out in= − = 2 87

    9i:uid pumps 

     09e #ork require% #9en pumping an incompressible liqui% in an a%iabaticstea%y5state; stea%y5-o# process is gi'en by

    9e ent9alpy %iPerence can be #ritten as

    h h u u Pv Pv2 1 2 1 2 1− = − + −( ) ( ) ( )

    >or incompressible liqui%s #e assume t9at t9e %ensity an% specic 'olume

  • 8/17/2019 Analisis Termodinamis Proses Alir

    39/47

    FG

    >or incompressible liqui%s #e assume t9at t9e %ensity an% specic 'olumeare constant. 09e pumping process @or an incompressible liqui% isessentially isot9ermal; an% t9e internal energy c9ange is approAimately?ero (#e #ill see t9is more clearly a@ter intro%ucing t9e secon% la#). 09us;t9e ent9alpy %iPerence re%uces to t9e %iPerence in t9e pressure5specic

    'olume pro%ucts. 8ince v 2 = v 1 = v  t9e #ork input to t9e pump becomes

    ,W W in pump= −  is t9e net #ork %one by t9e control 'olume; an% it is note% t9at #ork isinput to t9e pump7 so; .

    e neglect t9e c9anges in kinetic an% potential energies; t9e pump #ork becom

    − − = −

    = −

    (     )     ( ) ( )

        ( )

    ,

    ,

    W m v P P kW  

    W m v P P  

    in pump

    in pump

    2 1

    2 1

    6e use t9is result to calculate t9e #ork supplie% to boiler @ee%#aterpumps in steam po#er plants.

    @ #e apply t9e abo'e energy balance to a pipe section t9at 9as no pump (); #e obtain.

    0W  =N

    2 2V V

  • 8/17/2019 Analisis Termodinamis Proses Alir

    40/47

    D

    2 12 1 2 1

    2 2

    2 12 1 2 1

    2 2

    2 2 1 12 1

    ( ) ( ) ( )2

    0 ( ) ( )2

    1

    2 2

    V V W m v P P g ! ! kW  

    V V m v P P g ! !  

    v

     P V P V  ! ! 

     g g 

     ρ 

     ρ ρ 

    −− = − + + −

    −= − + + −

    =

    + + = + +

    N   N

    r r

    N

    r r

     09is last equation is t9e @amous $ernoulliQs equation @or @rictionless;

    incompressible -ui% -o# t9roug9 a pipe.

    ;niform-#tate< ;niform-Flo$ Pro"lems

    Juring unstea%y energy trans@er to or @rom open systems or control'olumes; t9e system may 9a'e a c9ange in t9e store% energy an% mass.

    8e'eral unstea%y t9ermo%ynamic problems may be treate% as uni@orm5state; uni@orm5-o# problems. 09e assumptions @or uni@orm5state; uni@orm5-o# are

    •09e process takes place o'er a specie% time perio%

  • 8/17/2019 Analisis Termodinamis Proses Alir

    41/47

    D1

    • 09e process takes place o'er a specie% time perio%.• 09e state o@ t9e mass #it9in t9e control 'olume is uni@orm at any instanto@ time but may 'ary #it9 time.• 09e state o@ mass crossing t9e control sur@ace is uni@orm an% stea%y. 09emass -o# may be %iPerent at %iPerent control sur@ace locations.

     0o n% t9e amount o@ mass crossing t9e control sur@ace at a gi'en location;#e integrate t9e mass -o# rate o'er t9e time perio%.

    e c9ange in mass o@ t9e control 'olume in t9e time perio% is

    e uni@orm5state; uni@orm5-o# conser'ation o@ mass becomes

    m m m mi e CV  − = −∑∑   ( )2 1 c9ange in internal energy @or t9e control 'olume %uring t9e time perio% is

    energy crossing t9e control sur@ace #it9 t9e mass in t9e time perio% is

  • 8/17/2019 Analisis Termodinamis Proses Alir

    42/47

    D2

     energy crossing t9e control sur@ace #it9 t9e mass in t9e time perio% is

    9ere

     * =i; @or inletse; @or eAits

    9e rst la# @or uni@orm5state; uni@orm5-o# becomes

    69en t9e kinetic an% potential energy c9anges associate% #it9 t9e control'olume an% t9e -ui% streams are negligible; it simplies to

    ample *-72

  • 8/17/2019 Analisis Termodinamis Proses Alir

    43/47

    DF

    ample *-72

    Consi%er an e'acuate%; insulate%; rigi% tank connecte% t9roug9 a close%'al'e to a 9ig95pressure line. 09e 'al'e is opene% an% t9e tank is lle%#it9 t9e -ui% in t9e line. @ t9e -ui% is an i%eal gas; %etermine t9e nal

    temperature in t9e tank #9en t9e tank pressure equals t9at o@ t9e line.

    ,ontrol Volume 09e tank

    Property .elation %eal gas relations

    Process &ssume uni@orm5state; uni@orm5-o#

    ,onser/ation Principles

  • 8/17/2019 Analisis Termodinamis Proses Alir

    44/47

    DD

    m m m mi e CV  − = −∑∑   ( )2 1

    ; @or one entrance; no eAit; an% initial mass o@ ?ero; t9is becomesm mi CV = ( )2

    ,onser/ation of ener0y

    >or an insulate% tank Q is ?ero an% @or a rigi% tank #it9 no s9a@t #ork W  is?ero. >or a one5inlet mass stream an% no5eAit mass stream an% neglectingc9anges in kinetic an% potential energies; t9e uni@orm5state; uni@orm5-o#conser'ation o@ energy re%uces to

    or

    m h m u

    h u

    u Pv u

    u u Pv

    C T T Pv

    i i CV  

    i

    i i i

    i i i

    v i i i

    =

    =

    + =

    − =

    − =

    ( )

    ( )

    2 2

    2

    2

    2

    2

    ,onser/ation Principles

    ,onser/ation of mass

    C T T T( )

  • 8/17/2019 Analisis Termodinamis Proses Alir

    45/47

    D

    C T T T  

    T   C

    C T 

    C T 

    kT 

    v i i

    v

    v

    i

     p

    v

    i

    i

    ( )2

    2

    − =

    =  +

    =

    =

    @ t9e -ui% is air; k  = 1.D an% t9e absolute temperature in t9e tank at t9enal state is D percent 9ig9er t9an t9e -ui% absolute temperature in t9esupply line. 09e internal energy in t9e @ull tank %iPers @rom t9e internalenergy o@ t9e supply line by t9e amount o@ -o# #ork %one to pus9 t9e-ui% @rom t9e line into t9e tank.tra Assi0nment

    e#ork t9e abo'e problem @or a 1 mF tank initially open to t9eatmosp9ere at 2oC an% being lle% @rom an air supply line at G psig;2oC; until t9e pressure insi%e t9e tank is psig.

  • 8/17/2019 Analisis Termodinamis Proses Alir

    46/47

    Pum,'

    • Li/ui' *re u'u*ll0 move -0 ,um,'1 The '*me e/u*$ion' *,,l0 $o *i*-*$i# ,um,' *' $o *i*-*$i# #om,re''or'1

    • 2or *n i'en$ro,i# ,ro#e''.

    • &i$h

    • 2or li/ui3

     –   –  

     –  

    ( ) ∫ =∆=  2

    1

    )(  P  P 

    "  s   V#P  $ isentropi%W 

    ( )   )()( 12   P  P V  $ isentropi%W  "  s   −=∆=

    #P T V #T C #$   P    )1(   β −+=   V#P T 

    #T C #"   P    β −=

     P T V T C  $   P    ∆−+∆=∆   )1(   β 

     P V 

    T C "   P    ∆−=∆   β 

    1

    2

    ater at 45 ad 10 a eter& a adia'ati pu*p ad i& di&har!ed

  • 8/17/2019 Analisis Termodinamis Proses Alir

    47/47

    ater at 45 ad 10 a eter& a adia'ati pu*p ad i& di&har!ed

    at a pre&&ure #$ 8600 a. &&u*e the pu*p e$$iie% t# 'e 0.75.

    auate the #r #$ the pu*p, the te*perature ha!e #$ the ater,

    ad the etr#p% ha!e #$ ater.

    kg 

    %mV 

    3

    1010=he &aturated iuid ater at 45- K 

    110425   6−×=β 

     K kg 

    kJ C  P 

    ⋅=   178.4

    ( )   )()( 12   P  P V  $ isentropi%W  "  s   −=∆=

    kg 

    kJ 

    kg 

    %mkPaisentropi%W  s   676.810676.8)108600(1010)(

    36 =×=−×=

    kg 

    kJ  $ 

    isentropi%W W    s s   57.11

    )(=∆==

    η   P T V T C  $   P    ∆−+∆=∆   )1(   β 

     K T  97.0=∆

     P V T 

    T C "   P    ∆−=∆   β 

    1

    2

    kJ