AD in an integrated farming environment

16
1 AD in an integrated farming environment Dr Andrew Salter Anaerobic Digestion and Biogas Association National Exhibition Centre, 07 July 2010 Dr. Andrew Salter ADBA, NEC, 2010 AD 4 RD Integrated Systems for Farm Diversification into Energy Production by Anaerobic Digestion Rural Economy and Land Use (RELU) University of Southampton – School of Civil Engineering & the Environment – School of Biology University of Reading, – Centre for Agricultural Strategy http://www.AD4RD.soton.ac.uk

Transcript of AD in an integrated farming environment

Page 1: AD in an integrated farming environment

1

AD in an integrated farming environment

Dr Andrew Salter

Anaerobic Digestion and Biogas AssociationNational Exhibition Centre, 07 July 2010

Dr. Andrew SalterADBA, NEC, 2010

AD 4 RD

• Integrated Systems for Farm Diversification into Energy Production by Anaerobic Digestion

• Rural Economy and Land Use (RELU)

• University of Southampton

– School of Civil Engineering & the Environment

–School of Biology

• University of Reading,

–Centre for Agricultural Strategy

• http://www.AD4RD.soton.ac.uk

Page 2: AD in an integrated farming environment

2

Dr. Andrew SalterADBA, NEC, 2010

• Research areas include:

–Policy and practice

– Social implications/perspectives

–Economics

–Environmental impacts

–Energy and GHG emissions

AD 4 RD

Crops for AD

Page 3: AD in an integrated farming environment

3

Dr. Andrew SalterADBA, NEC, 2010

• AD creates two products

–Biogas = energy

–Digestate = bio-fertiliser

• Can change the amounts/balance of both of these by changing the materials fed in to the digester

AD - feedstocks and outputs

Dr. Andrew SalterADBA, NEC, 2010

Crops for bio-fuel (energy) production

• for bio-diesel

– oilseed rape

– sunflower

– linseed

– soya

– Peanut

– Jatropha

• for bio-ethanol

– wheat

– sugar beet

– maize

– sugar cane

– lignocellulosic

material

• for biogas

– crops

– agricultural

wastes

– green waste

Page 4: AD in an integrated farming environment

4

Dr. Andrew SalterADBA, NEC, 2010

Potential crops for biogas -

• Barley

• Cabbage

• Carrot

• Cauliflower

• Clover

• Elephant grass

• Flax

• Fodder beet

• Giant knotweed

• Hemp

• Horse bean

• Jerusalem artichoke

• Kale

• Lucerne

• Lupin

• Maize

• Marrow kale

• Meadow foxtail

• Miscanthus

• Mustard

• Nettle

• Oats

• Pea

• Potato

• Oilseed rape

• Reed canary grass

• Rhubarb

• Ryegrass

• Sorghum

• Sugar beet

• Triticale

• Turnip

• Verge cuttings

• Vetch

• Wheat

Dr. Andrew SalterADBA, NEC, 2010

Methane yields

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bar

ley

Cab

bag

e

Car

rot

Cau

liflo

we

r

Clo

ver

Co

cksf

oo

t

Co

mfr

ey

Ele

ph

ant

gras

s

Fab

a b

ean

fie

ld b

ean

s

Flax

Fod

de

r b

ee

t

Gra

ss

gras

s/cl

ove

r

He

mp

Jeru

sale

m …

Kal

e

Luce

rne

Lup

ine

Mai

ze

Mar

row

kal

e

Me

ado

w f

oxt

ail

Mis

can

thu

s

Mu

star

d

Ne

ttle

Oat

s

oils

ee

d r

ape

Po

tato

Re

d c

love

r

Re

ed

can

ary

gras

s

Rh

ub

arb

Rye

Rye

gra

ss

Sorg

hu

m

Sud

angr

ass

Suga

r b

ee

t

Sun

flo

we

r

Trit

ical

e

Ve

tch

Wh

eat

Wh

ite

cab

bag

e

catt

le m

anu

re

Pig

man

ure

Po

ult

ry m

anu

re

me

than

e y

ield

(m

3 C

H4

/ kg

VS

add

ed)

Page 5: AD in an integrated farming environment

5

Dr. Andrew SalterADBA, NEC, 2010

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Wheat Triticale

me

than

e y

ield

m3/h

a

3-4 node

anthesis

milk ripe

dough ripe

mature

Effect of harvest date

Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H., Schreiner, M . & Zollitsch, W. (2007) Methane production through anaerobic digestion of various energy crops grown in

sustainable crop rotations. Bioresource Technology, 98, 3204-3212.

Environmental impacts

Dr Donna Clarke

Page 6: AD in an integrated farming environment

6

Dr. Andrew SalterADBA, NEC, 2010

Aims

• Assess potential impacts on biodiversity of diversification into farm energy production through AD (i.e. dedicated energy crops)

• Develop conceptual model / framework to identify impacts for management & mitigation

Environmental & Ecological Impacts

Dr. Andrew SalterADBA, NEC, 2010

Environmental impact assessmentRISK SCORED ON Potential impact on invertebrates & weeds

Regulating Supporting

Management PracticePest Control Pollination Soil Formation Nutrient Cycling Primary Production

Cultivation

Tillage "tillage" +1.0 -1.0 -2 -2 -2

Inversion ploughing -3 -2 -3 -3 -2

Minimal tillage +1.5 +1.5 +1 +1 +2

Direct Drilling +1 ?+1 +1 +1 -1/+1

Cultivation Score

Crop Production

Nutrient input Mineral fertilizer -2 -2.0 -2.5 -2.5 -2.5

Slurry / organic +1.5? +1 +2 +2 +1.5

Digestate ? ? ? ? ?

Production Score

Crop Protection

Weed control Mechanical -1 -2.0 -1.5 -1.5 -2

Herbicides -2 -3 -2 -2 -3

control Pesticides -2 -3 -2 -2 -3

fungicides ? ? Neg neg ?

Protection Score

Pre/Post Cropping

Stubble removed -2.5 -2.5 -2.0 -2.0 -3

Stubble retained +2.5 +2.5 +2.0 +2.0 +3

Incorporation ? ? +1.5 +1.5 +2

Spring sowing Pos Pos Pos pos +3

Winter sowing ? ? ? ? -3

Pre/Post Cropping Score

Other Management Practices

Intensive grassland - cutting (>1/yr) +0.5? -2.0 ? ? -2

- grazing (high intensity) -1.5 -1.5 ? ? -2

- fertiliser applications -2 -1.5? -2.5 -2.5 -3

Other Unimproved grassland Pos +2.5 Pos pos +3

Permanent grassland (>5 yrs) Pos neg? Pos pos +2

Switch from hay to silage +1 -2.5 Neg neg -2.5

Other Practices Score

OVERALL RISK SCORE

Page 7: AD in an integrated farming environment

7

Dr. Andrew SalterADBA, NEC, 2010

Conventional Winter WheatRISK SCORED ON Potential impact on invertebrates & weeds

Regulating Supporting

Management PracticePest Control Pollination Soil Formation Nutrient Cycling Primary Production

Cultivation

Tillage "tillage" +1.0 -1.0 -2 -2 -2

Inversion ploughing -3 -2 -3 -3 -2

Minimal tillage +1.5 +1.5 +1 +1 +2

Direct Drilling +1 ?+1 +1 +1 -1/+1

Cultivation Score -3 -2 -3 -3 -2

Crop Production

Nutrient input Mineral fertilizer -2 -2.0 -2.5 -2.5 -2.5

Slurry / organic +1.5? +1 +2 +2 +1.5

Digestate ? ? ? ? ?

Production Score -2 -2 -2.5 -2.5 -2.5

Crop Protection

Weed control Mechanical -1 -2.0 -1.5 -1.5 -2

Herbicides -2 -3 -2 -2 -3

control Pesticides -2 -3 -2 -2 -3

fungicides 0 0 Neg 0 0

Protection Score -4 -6 -4 -4 -6

Pre/Post Cropping

Stubble removed -2.5 -2.5 -2.0 -2.0 -3

Stubble retained +2.5 +2.5 +2.0 +2.0 +3

Incorporation ? ? +1.5 +1.5 +2

Pre/Post Cropping Score +2.5 +2.5 +2 +2 +3

Other Management Practices

Intensive grassland - cutting (>1/yr) +0.5? -2.0 ? ? -2

- grazing (high intensity) -1.5 -1.5 ? ? -2

- fertiliser applications -2 -1.5? -2.5 -2.5 -3

Other Unimproved grassland Pos +2.5 Pos pos +3

Permanent grassland (>5 yrs) Pos neg? Pos pos +2

Switch from hay to silage +1 -2.5 Neg neg -2.5

Other Practices Score

OVERALL RISK SCORE -6.5 -7.5 -7.5 -7.5 -7.5

Dr. Andrew SalterADBA, NEC, 2010

Organic grasslandRISK SCORED ON Potential impact on invertebrates & weeds

Regulating Supporting

Management PracticePest Control Pollination Soil Formation Nutrient Cycling Primary Production

Cultivation

Tillage "tillage" +1.0 -1.0 -2 -2 -2

Inversion ploughing -3 -2 -3 -3 -2

Minimal tillage +1.5 +1.5 +1 +1 +2

Direct Drilling +1 ?+1 +1 +1 -1/+1

Cultivation Score

Crop Production

Nutrient input Mineral fertilizer -2 -2.0 -2.5 -2.5 -2.5

Slurry / organic +1.5 +1 +2 +2 +1.5

Digestate ? ? ? ? ?

Production Score +1.5 1 +2 +2 +1.5

Crop Protection

Weed control Mechanical -1 -2.0 -1.5 -1.5 -2

Herbicides -2 -3 -2 -2 -3

control Pesticides -2 -3 -2 -2 -3

fungicides ? ? Neg neg ?

Protection Score

Pre/Post Cropping

Stubble removed -2.5 -2.5 -2.0 -2.0 -3

Stubble retained +2.5 +2.5 +2.0 +2.0 +3

Incorporation ? ? +1.5 +1.5 +2

Pre/Post Cropping Score

Other Management Practices

Intensive grassland - cutting (>1/yr) +0.5? -2.0 -1 0 -2

- grazing (high intensity) -1.5 -1.5 ? ? -2

- fertiliser applications -2 -1.5? -2.5 -2.5 -3

Other Unimproved grassland Pos +2.5 Pos pos +3

Permanent grassland (>5 yrs) +1 -1 +1 +1 +2

Switch from hay to silage +1 -2.5 Neg neg -2.5

Other Practices Score +1.5 -3 0 +1 0

OVERALL RISK SCORE +3 -2 +2 +3 +1.5

Page 8: AD in an integrated farming environment

8

Dr. Andrew SalterADBA, NEC, 2010

Environmental impact scores

Regulating Supporting

Pest

ControlPollination

Soil

Formation

Nutrient

Cycling

Primary

Production

Winter Wheat (conventional) -6.5 -7.5 -7.5 -7.5 -7.5

Oilseed rape (conventional) -6.5 -6.5 -7.5 -7.5 -7.5

Maize -6.5 -7.5 -7.5 -7.5 -7.5

Grass (3 cut silage) -3.5 -3.5 -2.5 -2.5 -5

SpringWheat (conventional) -4 -6 -6.5 -6.5 -5.5

Winter Wheat (organic) +1 +1.5 +1 +1 +2.5

Grass (organic) +2 -1 +2 +2 -0.5

Economics

Philip Jones

Page 9: AD in an integrated farming environment

9

Dr. Andrew SalterADBA, NEC, 2010

• Optimise net margin for whole farm

– Linear programming

– Compare inputs, outputs and costs for a range of farm enterprises

• Example

– Cereal farm model

– Based on East of England

– Farm size 312 ha (average of FBS)

Economic potentials

Dr. Andrew SalterADBA, NEC, 2010

• Based on 2009 prices

Reference scenario

0

20

40

60

80

100

120

he

ctar

es

Page 10: AD in an integrated farming environment

10

Dr. Andrew SalterADBA, NEC, 2010

Introducing AD

0

20

40

60

80

100

120h

ec

tare

s

Scenario 1 - AD: max farm net margin

Feedstock

Food

Reference run Scenario 1 Percentage

(kg) (kg) change

Nitrogen (N) 39,796 18,387 -53.8

Potassi um (k) 24,185 9,768 -59.6

Phosphorous (P) 15,467 9,359 -39.5

nutrient imports

Dr. Andrew SalterADBA, NEC, 2010

Changing the electricity value

0

20

40

60

80

100

120

he

cta

res

Scenario 3a - AD at 50% Feed-in tariff

Feedstock

Food

Page 11: AD in an integrated farming environment

11

Dr. Andrew SalterADBA, NEC, 2010

Imported feedstock

0

20

40

60

80

100

120

Scenario 4 - imported maize

Feedstock

Food

Scenario 1

(kg)

Scenario 4 (importation

of feedstocks) (kg)

Percentage

change

Nitrogen (N) 18,387 0 -100

Potassium (k) 9,768 0 -100

Phosphorous (P) 9,359 3104 -68.2

Reducing farm GHGs

Page 12: AD in an integrated farming environment

12

Dr. Andrew SalterADBA, NEC, 2010

• Arable farms

–Mineral fertilisers

–Diesel fuel use

• Dairy farms

–Manure management

–Mineral fertilisers

–Diesel fuel use

Sources of GHGs

Dr. Andrew SalterADBA, NEC, 2010

GHG emissions - arable

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

cereals with

grass

with

grass

(AD)

sugar

beet

(AD

leaves)

sugar

beet

(AD all)

maize SB with

food

waste

GH

G e

mis

sio

n/s

av

ing t

CO

2e

q

CHP

sprays

fertiliser

fuel

Page 13: AD in an integrated farming environment

13

Dr. Andrew SalterADBA, NEC, 2010

GHG emissions - dairy

-1400

-1200

-1000

-800

-600

-400

-200

0

200

av farm +AD 100%

housed + AD

no cows + food

waste

+ food

waste (2)

GH

G e

mis

sio

ns

(t C

O2

eq

)

overall emissions

emissions saved from landfill

mineral fertiliser

diesel usage

saving from generated electricity

imported electricity

An integrated approach

Page 14: AD in an integrated farming environment

14

Dr. Andrew SalterADBA, NEC, 2010

• Can combine food and energy production.

– Utilise break crops for energy and environment

• Reduce mineral fertiliser use with digestate and legume crops

– legume (clover) before wheat to capture nitrogen, can be digested and used as feedstock

• Use crop residues as a resource for energy production and then nutrients

Integrated farming approach

Dr. Andrew SalterADBA, NEC, 2010

Farm integration

clover

digester

grass

tops

slurry

oilseed rape

seed

nitrogenosr press

cake

feed

grain

wheatbeet

sugar beet

digestate

CHP

bio-

diesel

plant

dairy unit

bio-diesel

energy

milk & beef

Page 15: AD in an integrated farming environment

15

Dr. Andrew SalterADBA, NEC, 2010

An integrated example

Dr. Andrew SalterADBA, NEC, 2010

• Many different crops can be used as feedstock depending on the circumstances

– Grass - multiple harvest dates

– Whole crop cereals – earlier than Maize and range of possible harvest dates

– Headlands and margins

– Rotation systems

• Alternative cropping systems help to maximise yield and minimise use of artificial fertiliser

– Reduce costs

– Reduce GHG emissions

Conclusions

Page 16: AD in an integrated farming environment

16

Thank you

This research is funded by UK Research Councils under the Rural Economy and Land Use Programme (RELU)

More information can be found at:

http://www.AD4RD.soton.ac.uk

http://www.cropgen.soton.ac.uk