2132-2 Winter College on Optics and...

62
2132-2 Winter College on Optics and Energy J. Nelson 8 - 19 February 2010 Imperial College London U.K. Physics of Solar Cells (I)

Transcript of 2132-2 Winter College on Optics and...

  • 2132-2

    Winter College on Optics and Energy

    J. Nelson

    8 - 19 February 2010

    Imperial CollegeLondon

    U.K.

    Physics of Solar Cells (I)

  • Optics & Solar Energy : Nelson : Lec. 1

    ICTP Winter College on Optics and Energy8 – 19 February 2010

    Jenny NelsonDepartment of PhysicsImperial College London

    ([email protected])

    Physics of Solar Cells (I)

  • Optics & Solar Energy : Nelson : Lec. 1

    Outline

    1. Photovoltaic applications

    2. The solar resource

    3. Photovoltaic energy conversion

    4. The p‐n junction solar cell

    5. Solar cell performance characteristics

  • Optics & Solar Energy : Nelson : Lec. 1

    • Radiant power at Earth’s surface ~ 100000 TW 

    • Electricity consumption ~ 2 TW

    • 80% from fossil fuels & nuclear, 0.1% from PV

    The solar energy resource

  • Optics & Solar Energy : Nelson : Lec. 1

    Some concepts in PV

    Solar cellModule

    System

  • Optics & Solar Energy : Nelson : Lec. 1

    1.1. PHOTOVOLTAIC APPLICATIONS

  • Optics & Solar Energy : Nelson : Lec. 1

    Photovoltaic applications

    158

    249

    1347

    54Domestic off-grid

    Non-domestic off-grid

    Grid-connecteddistributedGrid-connectedcentralised

    Cumulative PV capacity 2003 (MW): 1.8 GWp

  • Optics & Solar Energy : Nelson : Lec. 1

    Photovoltaic applications

    311 430

    8220

    4464 Domestic off-grid

    Non-domestic off-grid

    Grid-connecteddistributedGrid-connectedcentralised

    Cumulative PV capacity 2008 (MW): 13.4 GWp

  • Optics & Solar Energy : Nelson : Lec. 1

  • Optics & Solar Energy : Nelson : Lec. 1

  • Optics & Solar Energy : Nelson : Lec. 1

  • Optics & Solar Energy : Nelson : Lec. 1

  • Optics & Solar Energy : Nelson : Lec. 1

  • Optics & Solar Energy : Nelson : Lec. 1

    1.2. THE SOLAR RESOURCE

  • Optics & Solar Energy : Nelson : Lec. 1

    U V IR red

    yello

    w

    gree

    n

    blue

    purp

    le

    3 00 4 00 50 0 6 00 7 00 90 08 00 11 00 12 00 13 0 0

    4.1 4 3 .10 2 .4 8 2 .0 7 1 .77 1 .3 81 .55 1 .2 4 1 .03 0 .9 6

    λ [n m ]

    E [eV ]

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    0 .0

    0.5

    1.0

    1.5

    2.0

    Irrad

    ianc

    e / W

    m-2 n

    m-1

    W ave leng th / nm

    A M 0

    Solar power spectrum

  • Optics & Solar Energy : Nelson : Lec. 1

    U V IR red

    yello

    w

    gree

    n

    blue

    purp

    le

    3 00 4 00 50 0 6 00 7 00 90 08 00 11 00 12 00 13 0 0

    4.1 4 3 .10 2 .4 8 2 .0 7 1 .77 1 .3 81 .55 1 .2 4 1 .03 0 .9 6

    λ [n m ]

    E [eV ]

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    0 .0

    0.5

    1.0

    1.5

    2.0

    Irrad

    ianc

    e / W

    m-2 n

    m-1

    W ave leng th / nm

    A M 0 B B 5780K

    Solar power spectrum

    Power density 1353 W m-2 outside earth atmosphere

  • Optics & Solar Energy : Nelson : Lec. 1

    U V IR red

    yello

    w

    gree

    n

    blue

    purp

    le

    3 00 4 00 50 0 6 00 7 00 90 08 00 11 00 12 00 13 0 0

    4.1 4 3 .10 2 .4 8 2 .0 7 1 .77 1 .3 81 .55 1 .2 4 1 .03 0 .9 6

    λ [n m ]

    E [eV ]

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    0 .0

    0.5

    1.0

    1.5

    2.0

    Irrad

    ianc

    e / W

    m-2 n

    m-1

    W ave leng th / nm

    A M 0 B B 5780K A M 1.5

    Solar power spectrum

    Atmosphere absorbs and scatters light

    ~15% of solar radiation is ‘diffuse’

    datm

    γ d atm

    x nAir

    Mass

    s

    Air Mass = Cosec γs

    Standard spectrum is Air Mass 1.5, 1000 Wm-2

  • Optics & Solar Energy : Nelson : Lec. 1

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    2400

    2600

    2800

    3000

    0 .0

    0.5

    1.0

    1.5

    2.0

    Irrad

    ianc

    e / W

    m-2 n

    m-1

    W ave leng th / nm

    A M 1.5

    Vibrational-rotational modes of H2O

    Vibrational-rotational modes of CO2

  • Optics & Solar Energy : Nelson : Lec. 1

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    0

    2 00

    4 00

    6 00

    8 00Irr

    adia

    nce

    / W m

    -2 e

    V-1

    P h o ton E n e rg y / e V

    A M O B B 5 7 8 0 K B B 3 0 0 K A M 1 .5

    Solar power spectrum

    visible

    ( )nm//1240eV/ λ=E

  • Optics & Solar Energy : Nelson : Lec. 1

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    0

    2 00

    4 00

    6 00

    8 00Ph

    oton

    flux

    den

    sity

    / s-

    1 m-2 e

    V-1

    P h o to n E n e rg y / e V

    A M O B B 5 7 8 0 K B B 3 0 0 K A M 1 .5

    Solar photon flux spectrum

    Important quantity for PV is solar photon fluxdensity (not power density)

  • Optics & Solar Energy : Nelson : Lec. 1

    Average ~ 200 Wm-2 (5 peak sun hours)

    Southern Britain ~ 125 Wm-2 (~3 peak sun hours)

    100 W m-2

    100

    150

    150

    200

    200

    250

  • Optics & Solar Energy : Nelson : Lec. 1

    JAN

    FEB

    MAR

    APR

    MAY

    JUN

    JUL

    AUG

    SEP

    OCT

    NOV

    DEC

    0

    1

    2

    3

    4

    5

    6

    7

    Peak

    Sun

    Hou

    rs

    Month

    Paris Reykjavik

    JAN

    FEB

    MAR

    APR

    MAY

    JUN

    JUL

    AUG

    SEP

    OCT

    NOV

    DEC

    0

    1

    2

    3

    4

    5

    6

    7

    Peak

    Sun

    Hou

    rs

    Month

    Tokyo

    JAN

    FEB

    MAR

    APR

    MAY

    JUN

    JUL

    AUG

    SEP

    OCT

    NOV

    DEC

    0

    1

    2

    3

    4

    5

    6

    7

    Peak

    Sun

    Hou

    rs

    Month

    Bulawayo Penang Guantanamo

    JAN

    FEB

    MAR

    APR

    MAY

    JUN

    JUL

    AUG

    SEP

    OCT

    NOV

    DEC

    0

    1

    2

    3

    4

    5

    6

    7

    Peak

    Sun

    Hou

    rs

    Month

    Sydney

  • Optics & Solar Energy : Nelson : Lec. 1

    -80 -60 -40 -20 0 20 40 60 800

    1

    2

    3

    4

    5

    6

    7

    0

    40

    80

    120

    160

    200

    240

    280

    Ave

    rage

    irra

    dian

    ce /

    W m

    -2

    5.5*cos(Latitude)

    Aver

    age

    Peak

    Sun

    Hou

    rs

    Latitude / Degrees N

    What will be the consequences of latitude on off-grid power generation?

  • Optics & Solar Energy : Nelson : Lec. 1

    Energy consumption per capita in Western Europe ~ 5 kW

    Mean solar irradiance in Southern Britain ~ 125 W m-2

    What land area is needed to supply the energy needs of a city of 10 million people using solar irradiation:

    (a) with conversion efficiency of 50%?

    (b) with conversion efficiency of 5%

  • Optics & Solar Energy : Nelson : Lec. 1

  • Optics & Solar Energy : Nelson : Lec. 1

  • Optics & Solar Energy : Nelson : Lec. 1

  • Optics & Solar Energy : Nelson : Lec. 1

    1.3. PHOTOVOLTAIC ENERGY CONVERSION

  • Optics & Solar Energy : Nelson : Lec. 1

    Light energy conversion

    • Packets of light energy (photons) defined by the wavelength of light 

    • May be absorbed in matter to promote electrons to higher energy

    What happens next depends on the system …

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00

    100

    200

    300

    400

    500

    600

    Irrad

    ianc

    e / W

    m-2 e

    V-1

    Photon energy / eV

  • Optics & Solar Energy : Nelson : Lec. 1

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00

    100

    200

    300

    400

    500

    600

    Irrad

    ianc

    e / W

    m-2 e

    V-1

    Photon energy / eV

    Ene

    rgy

    Heat

    Light

    Solar thermal

    Light ΔμChemical potential energy

    Solar chemical

    Light Δμ Electricwork

    Solar photovoltaic

  • Optics & Solar Energy : Nelson : Lec. 1

    Energy

    Heat, light

    Light

    Semiconductor - open system

    μ

    μ+Δμ

    Δμ electric workΔμ dN

  • Optics & Solar Energy : Nelson : Lec. 1

    Photons in, electrons out

    eV

    • Photovoltaic energy conversion requires:

    – photon absorption across an energy gap

    – separation of photogenerated charges

    – asymmetric contacts to an external circuit

  • Optics & Solar Energy : Nelson : Lec. 1

    Photons in, electrons out

    movie

  • Optics & Solar Energy : Nelson : Lec. 1

    Photons in, electrons out

    p type silicon

    n ty

    pe

    silic

    on

    movie

  • Optics & Solar Energy : Nelson : Lec. 1

    p type silicon

    n ty

    pe efficiency ~ 14%

    power rating ~ 80 Wp

    Applications

    CIS Tower, Manchester0.4 MWp

    (Solar Century)Solar powered refrigeration

    ~100 Wp

    ~1 mWp

  • Optics & Solar Energy : Nelson : Lec. 1

    1.4. THE P-N JUNCTION

    p type

    0 V 0 V

    n type

    EgLight

  • Optics & Solar Energy : Nelson : Lec. 1

    0 V 0 V

    No driving force to direct photocurrent

    How do the electrons know which way to go??

    EgLight

  • Optics & Solar Energy : Nelson : Lec. 1

    0 V+V0

    Applied voltage drives photocurrent, but power consumed

    J

    EgLight

  • Optics & Solar Energy : Nelson : Lec. 1

    p type

    0 V 0 V

    Compositional change drives photocurrent

    n type

    EgLight

  • Optics & Solar Energy : Nelson : Lec. 1

    p type

    Compositional change drives photocurrent

    Jn type

    EgLight

  • Optics & Solar Energy : Nelson : Lec. 1

    • To generate electric power from solar radiation we need

    – An energy gap (to keep photo‐generated electrons at high Δμ)– A preferred direction for electron extraction

    • A semiconductor provides the energy gap

    • Asymmetric contacts (for directed charge extraction) can be provided by a p‐n or n‐p junction

  • Optics & Solar Energy : Nelson : Lec. 1

    Energy

    μ

    intrinsic

    μ

    n-type

    μ

    p-type

  • Optics & Solar Energy : Nelson : Lec. 1

    Energy

    μ

    n-type

    μ

    p-type

  • Optics & Solar Energy : Nelson : Lec. 1

    Energy

    μ

    n-type

    μ

    p-type

  • Optics & Solar Energy : Nelson : Lec. 1

    Energy

    μμ

    n-typep-type

    ++++

    ----

    Electric field

  • Optics & Solar Energy : Nelson : Lec. 1

    Semiconductor p‐n junction

    • Band gap enables photogeneration

    • Compositional change drives photocurrent

    EgLight

    p type

    0 V 0 V

    n type

  • Optics & Solar Energy : Nelson : Lec. 1

    1.5. SOLAR CELL PERFORMANCE CHARACTERISTICS

    -JSC

    VOC

    Power density

    -Jm

    Cur

    rent

    den

    sity

    P

    ower

    den

    sity

    Voltage / V Vm

    Current density

  • Optics & Solar Energy : Nelson : Lec. 1+

    Voltage

    Cur

    r ent

    In the dark

  • Optics & Solar Energy : Nelson : Lec. 1+

    Voltage

    Cur

    r ent

    - +

    Voc

    Open circuit voltage Voc

    Open circuit

  • Optics & Solar Energy : Nelson : Lec. 1+

    Voltage

    Cur

    r ent

    Short circuit current density -Jsc

    Short circuit

  • Optics & Solar Energy : Nelson : Lec. 1+

    Voltage

    Cur

    r ent

    Load Operating point

    Operating: photovoltage x photocurrent = electric power

  • Optics & Solar Energy : Nelson : Lec. 1

    Solar cell characteristics

    • Quantum efficiency

    • Short circuit current density

    -Jsc

    0

    1

    2

    400 800 1200

    Wavelength / nm

    Exte

    rnal

    qua

    ntum

    ef

    ficie

    ncy

    QE

    solar spectrum

    )()(

    in photonsout electrons

    EqbEJQE

    sun

    sc==

    ∫ ×= dEEEqJ sc )(QE )(densityflux photon Voltage

    Cur

    r ent

  • Optics & Solar Energy : Nelson : Lec. 1

    Solar cell characteristics

    • Short circuit current density Jsc,

    • Open circuit voltage Voc

    • Fill factor FF

    • Power conversion efficiency

    • Measured under Standard Test Conditions (AM1.5, 1000 Wm-2, 25°C)

    in

    ocsc

    PFFVJPCE =

    ∫= dEEEbP inin )(

    ocsc

    mm

    VJVJFF =

    -JSC

    VOC

    Power density

    -Jm

    Cur

    rent

    den

    sity

    P

    ower

    den

    sity

    Voltage / V Vm

    Current density

  • Optics & Solar Energy : Nelson : Lec. 1

    Cell Type Area (cm2)

    Voc (V) Jsc (mA /cm2) FF (%) Efficiency (%)

    c-Si

    UNSW PERL

    4.0 0.696 42.0 83.6 24.9

    c-GaAs Kopin 3.91 1.022 28.2 87.1 25.1

    poly-Si

    UNSW/ Eurosolare

    1.0

    0.628

    36.2

    78.5 19.8

    a-Si

    Sanyo 1.0 0.887 19.4 74.1 12.7

    CuInGaSe2 NREL 1.04

    0.669

    35.7

    77.0 18.4

    Cd Te

    NREL 1.131 0.848 25.9 74.5 16.4

    polymer / fullerene

    various 0.1 ~0.6-0.8 ~12-15 ~60 5 - 6

    Solar cell performance

  • Optics & Solar Energy : Nelson : Lec. 1

    More on this in next Monday’s lectures

  • Optics & Solar Energy : Nelson : Lec. 1

    Summary

    • Installed photovoltaic capacity reached 13 GWp in 2008, mainly in grid connected applications

    • Overhead sun provides ~ 1 kW m-2 of radiant power at the Earth’s surface, annually averaged irradiance ~ 100 – 200 W m-2 depending on latitude

    • In photovoltaic energy conversion, – absorbed photons promote electrons to higher energy levels within

    a semiconductor– opposite charges are driven towards opposite contact by electrode

    selectivity – charges are extracted ( current) with some electrochemical

    potential energy ( voltage)

    • Power conversion efficiency is about 25% for the best single junction solar cells.

  • Optics & Solar Energy : Nelson : Lec. 1

    Energy consumption per capita in Western Europe ~ 5 kWMean solar irradiance in Southern Britain ~ 125 W m-2What land area is needed to supply the energy needs of a city of 10 million people using solar irradiation:

    (a) with conversion efficiency of 50%?

    107 x 5000/(125 x 0.5) m2 = 8 x 108 = 800 km2

  • Optics & Solar Energy : Nelson : Lec. 1

    Energy consumption per capita in Western Europe ~ 5 kWMean solar irradiance in Southern Britain ~ 125 W m-2What land area is needed to supply the energy needs of a city of 10 million people using solar irradiation:

    (b) with conversion efficiency of 5%?

    107 x 5000/(125 x 0.05) m2 = 8 x 108 = 8000 km2

  • Optics & Solar Energy : Nelson : Lec. 1

    Device physics of solar cells

    • Physics governed by charge continuity

    • Generation G = light absorption rate

    • Recombination R usually linear

    • Current density J Dominated by minority carrier diffusion.  

    • Differential equation for carrier density

    • Boundary conditions

    01 =−+ RGdxdJ

    e

    xsunebG

    αα −=

    τnBnpR ≈=

    μεqndxdnqDJ +=

    Gtn

    dxndD

    nn −=−

    2

    ( ) kTVenn /00 = ( ) 0=dJn

  • Optics & Solar Energy : Nelson : Lec. 1

    Gen

    erat

    ion

    rate

    np

    n-p junction

    Car

    rier d

    ensi

    ty

    n p

    Cur

    rent

    den

    sity

    JnJp

  • Optics & Solar Energy : Nelson : Lec. 1

    Device physics of solar cells

    • Result: diode equation for J‐V ( )1/0 −+−= mkTqVsc eJJJ

    • Important parameters:

    – absorption coefficient α, optical depth αd, reflectivity

    – charge diffusion length L = (Dτ)1/2

    – type of recombination (e.g. linear, bimolecular, via defect states)

    – parasitic resistances: series R and shunt R (leakage)

  • Optics & Solar Energy : Nelson : Lec. 1

    24.4% efficient PERL cell

    Solar cell design

    • good optical absorption: 

    – Increase thickness

    – Anti‐reflection coating, texturing

    – Fine contacts

    • efficient charge separation: 

    – Increase junction built‐in bias, junction area

    – Suppress recombination

    • efficient transport 

    – Improve material quality

    • low electrical losses

    – reduce series resistance

    Play: YesPlay 2: Yes