Cleaning optics Geometric optics Aberrations Fourier optics

25
Cleaning optics Geometric optics Aberrations Fourier optics Modern microscopy in Aph162 lab Optics primer

Transcript of Cleaning optics Geometric optics Aberrations Fourier optics

Page 1: Cleaning optics Geometric optics Aberrations Fourier optics

Cleaning optics

Geometric optics

Aberrations

Fourier optics

Modern microscopy in Aph162 lab

Optics primer

Page 2: Cleaning optics Geometric optics Aberrations Fourier optics

Cleaning optics

• Don’t clean optics… but if its dirty

Bare optics:1)Blow off dust

(not with organics)2)Drag and drop* Make sure solvent

is good for coatings* don’t clean bare metal

surfaces with tissues* Don’t contaminate lens tissue

Page 3: Cleaning optics Geometric optics Aberrations Fourier optics

Cleaning optics

• Objectives– 1) roll up lens tissue– 2) blot off excess oil– 3) roll up lens tissue and apply solvent; shake

off excess– 4) wipe center outward and discard.

Page 4: Cleaning optics Geometric optics Aberrations Fourier optics

Geometric optics

f

f f

Image is real Image is virtual

Page 5: Cleaning optics Geometric optics Aberrations Fourier optics

Magnification

f2f1M = f1/f2

f2f1M = f1/f2

Page 6: Cleaning optics Geometric optics Aberrations Fourier optics

Paraxial approximation

Page 7: Cleaning optics Geometric optics Aberrations Fourier optics

Thin lens equation

Now, let nm~1, d 0

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−−=+

21

11111RR

nss l

io

If so inf, si fi (and vice versa)

Gaussian lens formula

m

Page 8: Cleaning optics Geometric optics Aberrations Fourier optics

Geometric optics

f

f f

Image is real Image is virtual

Page 9: Cleaning optics Geometric optics Aberrations Fourier optics

Higher approximation (primary abberrations)

Fixes:>Apertures>1 surface (PCX BCX)>aspherics>doublets

Actually, this lensis backwards…

Page 10: Cleaning optics Geometric optics Aberrations Fourier optics

Aberrations

• Coma

• astigmatism

Page 11: Cleaning optics Geometric optics Aberrations Fourier optics

Aberrations

• Field curvature

• Distortions

Page 12: Cleaning optics Geometric optics Aberrations Fourier optics

Aberrations

• Chromatic aberration

Page 13: Cleaning optics Geometric optics Aberrations Fourier optics

Fourier Optics

))](2exp()(Re[),( rivtirAtru φπ +−=

02

2

2

22 =

∂∂

−∇tu

cnu

0))(exp()()( 22 =+∇ rirAk φ

satisfies

U(r)

cnvk π

λπ 22

==

Page 14: Cleaning optics Geometric optics Aberrations Fourier optics

Fourier Optics1) Outgoing waves only (Sommerfeld radiation condition)2) Field through opening not influenced by aperture3) Over opaque screen, field is zero4) Aperture dimensions >> λ (neglect fringing)5) Aperture to observation is far compared to wavelength01

∫∫Σ

∝ dsr

eUUikr

θcos)1()0(01

01

(Huygens-Fresnel principle)

(Fresnel Approximation)Good to distances very close to aperture

ηξηξηξ

λπηξ

∫∫+−+

∝ ddeeUyxUyx

zi

zik )(2)(2

22

),(),(

θ is angle between observation and normal to aperture

Σ

Page 15: Cleaning optics Geometric optics Aberrations Fourier optics

Fourier OpticsFraunhofer Approximation

ηξηξηξ

λπ

∫∫+−

∝ ddeUyxUyx

zi )(2

),(),(

( )2

22 ηξ +>>

kz

For visible light, and 1 inch aperture, z is 1600 meters!

Note: spherical waves passing through an aperture is diffraction.

FT of a circular aperture is an Airy pattern – how we define optical resolution – width of central lobe

NAwzd

222.1 λλ

⎯→⎯= Rayleigh criterion

Page 16: Cleaning optics Geometric optics Aberrations Fourier optics

Fourier OpticsSo, light diffracts off an object – and we collect it with a lens.What’s going on? – The lens moves the far-field diffraction pattern closer.

Amplitude function behind a lens is:

Thus, a lens computes the Fraunhofer diffraction pattern.

ηξηξηξ

λπ

∫∫+−

= ddeTyxUyx

fi )(2

),(),(

Page 17: Cleaning optics Geometric optics Aberrations Fourier optics

Consequences (E. Abbe)An image is always imperfect since a lens with a finite diameter captures limited frequency information

PSF is the Green’s function for an optical system.OTF is its Fourier Transform, characterizes a systems frequency response.

Page 18: Cleaning optics Geometric optics Aberrations Fourier optics

Microscopy (this lab)

• Brightfield• Darkfield• Phase contrast• TIRF• Optical tweezers• Fluorescence (epi-illumination)

Page 19: Cleaning optics Geometric optics Aberrations Fourier optics

Brightfield light path

We can understand from this how to align the only movable element, the condenser for Kohler illumination.

conobj NANAR

+=

λ22.1

Page 20: Cleaning optics Geometric optics Aberrations Fourier optics

Darkfield

The condenser blocks out the 0th

order light, only allowing higher orders to pass, enhancing contrast.

Page 21: Cleaning optics Geometric optics Aberrations Fourier optics

Phase contrast

By “speeding up” the 0th order light by ¼ wave, it destructively interferes with the diffracted light (green).

This is an instance of Fourier plane filtering.

Page 22: Cleaning optics Geometric optics Aberrations Fourier optics

TIRF

Snell’s law

Page 23: Cleaning optics Geometric optics Aberrations Fourier optics

Optical tweezers

2EnF oε∝

Need high NA to achieve high enough intensity to trap stuff

Page 24: Cleaning optics Geometric optics Aberrations Fourier optics

Fluorescence

Fluorescence is an electronic state relaxation phenomenom-Photobleaching-FRAP-FRET-High resolution localization

Page 25: Cleaning optics Geometric optics Aberrations Fourier optics

Fluorescence

So… how do we align the arc lamp of a fluorescence microscope?