1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

18
1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli

Transcript of 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

Page 1: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

1

STABILIZATION OF HELICOPTER SLING LOADS

Vefa Narli

Page 2: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

2

Introduction

• High Rise Rescue• Fire Fighting• Offshore• Construction

• Hover• Vertical Take-off

and Land

Page 3: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

3

Transportation Modes of Helicopters

23000 lbs

5000 lbs

40000 lbs

Page 4: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

4

Helicopter Sling Loading Capacities

Reference HelicopterHelicopter

WeightExternal Load

WeightLoad Mass

Ratio Cable Length

3 ( Handling Qualities

Requirements for MilitaryRotorcraft, Aeronautical Design

Standard)

NA NA NA 0.33 NA

4 (Requirements for the

Certification of Sling Loaded Military

Equipment for External Transportation by

Department of Defense Helicopters )

NA NA 39800 lbs (max) NA 12-16 ft

7 UH-60A 14600 lbs 1130-6384 lbs 0.07-0.3023 ft (single)

15.83 ft -(4-legged)

7 NA NA 40000 lbs NA 3-140 ft

11 UH-60 16000 lbs 1102-4409 lbs 0.06-0.22 9.84-26.2 ft

Superior Helicopter

Kaman K-1200

12000 lbs 6000 lbs 0.33 NA

Page 5: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

5

Helicopter Sling Loading

• Load is suspended beneath the helicopter

• Free to rotate in all 3 axis

• Long cable lines are used

• Requires pilot effort

Page 6: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

6

Literature Survey

• Dukes, T. A., “Maneuvering Heavy Sling Loads Near Hover, Part I: Damping the Pendulous Motion,” Journal of the American Helicopter Society, Vol. 18, (2), Apr. 1973.

• Dukes, T. A., “Maneuvering Heavy Sling Loads Near Hover, Part II: Some Elementary Maneuvers,” Journal of the American Helicopter Society, Vol. 18, (3), July 1973.

• Poli, C., and Cromack, D., “Dynamics of Slung Bodies Using a Single-Point Suspension System,” Journal of Aircraft, Vol. 10, (2), Feb. 1973.

• Cliff, E. M., and Bailey, D. B., “Dynamic Stability of a Translating Vehicle with a Simple Sling Load,” Journal of Aircraft, Vol. 12, (10), Oct. 1975.

• Nagabhushan, B. L., “Low-Speed Stability Characteristics of a Helicopter With a Sling Load,” Vertica, Vol. 9, 1985.

• Sheldon, D. F., “An Appreciation of the Dynamic Problems Associated with the External Transportation of Loads from a Helicopter—State of the Art,” Vertica, Vol. 1, 1977.

• Prabhakar, A., “Stability of a Helicopter Carrying an Underslung Load,” Vertica, Vol. 2, 1978.

• Cicolani, L. S., Kanning, G., and Synnestvedt, R., “Simulation of the Dynamics of• Helicopter Slung Load Systems,” Journal of the American Helicopter Society, Vol. 40,

(4), Oct. 1995.• Gabel, R., and Wilson, G. J., “Test Approaches to External Sling Load Instabilities,”

Journal of the American Helicopter Society, Vol. 13, (3), July 1968.

Page 7: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

7

HSL Flight Tests

[7]

Page 8: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

8

Stability of HSL - I

[7]

Page 9: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

9

Stability of HSL - II

[7]

Page 10: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

10

Stability of HSL - III

[ 11]

Level 1 – Load maintains directional stability throughout the maneuvers.

Minimal oscillation. Requires minimal concentration by the flight crew

Level 2 – Load may oscillate, rotate. Directional orientation is not stable. Does

not pose a threat to the aircraft. ost maneuvers. Moderate oscillation.

Page 11: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

11

Safety - I

Manwaring, J. C., Conway, G. A., Garrett, L. C., “Epidemiology and Prevention of Helicopter External Load Accidents,” Journal of Safety Research, Vol. 29,

No. 2, pp. 107-121, 1998.

Page 12: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

12

Safety - II

• …The helicopter departed with a 150-foot long-line attached and no external load on the hook… After lift-off, the long-line tangled in the trees, causing the helicopter to crash…

• …An Aerospatiale 316B was moving equipment in mountainous terrain with a 100-foot long cable… the cargo hook snagged on an equipment trailer adjacent to the take-off area. As the tension on the line increased, the hook broke free of the trailer and the cable recoiled into the main rotor blades, rendering the helicopter uncontrollable…

• …During the flight to reposition the helicopter that was transporting seismic equipment with a 100-foot long line, the load caught on a nearby fence…

Page 13: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

13

Literature Survey

• Lucassen, L. R., and Sterk, F. J., “Dynamic Stability Analysis of a Hovering Helicopter With A Sling Load,” Journal of the American Helicopter Society, Vol. 10, (2), Apr. 1965.

• - 2001 (Dynamics and Stability)• Stiles et al, (2004, [22],) mention sling load

active stabilization as a future direction of research in his review of Helicopter AFCS.

Page 14: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

14

Statement of the Problem

• Keep the oscillations of the payload under a critical angle, or deviation

• The effect of the load on the helicopter dynamics should not exceed more than 10% of the static weight of the load.

• System should be adjustable to different line length and load weight and should be robust to 10% changes of the nominal values.

Page 15: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

15

Approach - I

• Modified AFCS that stabilizes the slung load

• Stand-alone stabilizing system– Cartesian mechanism– Spherical mechanism

Page 16: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

16

Approach - II

Cho, S.-K., Lee, H. H., “An Anti-Swing Control of a 3-Dimensional Overhead Crane,” Proceedings of the American Control Conference, Chicago, Illinois, pp. 1037-1041, 2000.

[2]

Page 17: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

17

Future Work

• Anti-sway control of shipboard boom cranes• Simulations of a quadrotor suspended mass • Update the statement of the problem• Stabilization of a 3D suspended pendulum with

a cartesian mechanism• Stabilization of a 3D suspended pendulum with

a spherical mechanism• UH-60 helicopter MatLAB model• Simulations of 3D suspended pendulum

attached to UH-60

Page 18: 1 STABILIZATION OF HELICOPTER SLING LOADS Vefa Narli.

18

References1. Abdel-Rahman, E. M., Nayfeh, A. H., Masoud, Z. N., “Dynamics and Control of Cranes: A Review”, Journal of Vibration and Control, 9, pp. 863-908, 2003, cited by 15.2. Alleyne, A., Hedrick, J. K., “Nonlinear Adaptive Control of Active Suspensions,” IEEE Transactions on Control Systems Technology, Vol. 3, No. 1, pp. 94-101, 1995, cited

by 123.3. Anonymous, “Handling Qualities Requirements for Military Rotorcraft, Aeronautical Design Standard,” ADS-33E-PRF, 2000.4. Anonymous, “Requirements for the Certification of Sling Loaded Military Equipment for External Transportation by Department of Defense Helicopters”, MIL-STD-913A,

1997.5. Balachandran B., Li, Y.-Y., Fang, C.-C., “A Mechanical Filter Concept For Control of Non-linear Crane-Load Oscillations”, Journal of Sound and Vibration, 228, pp. 651-682,

1999, cited by 12.6. Bartolini, G., Pisano, A., Usai, E., “Second-order Sliding-Mode Control of Container Cranes”, Automatica 38 pp. 1783-1790, 2002, cited by 11.7. Cicolani, L. S., Sahai, R., Tucker, G. E., McCoy, A. H., Tyson, P. H., Tischler, M. B., Rosen, A., “Flight Test Identification and Simulation of a UH-60A Helicopter and Slung

Load”, NASA/TM-2001-209619, USAAMCOM-TR-01-A-001, 2001.8. Corriga, G., Giua, A., Usai, G, “An Implicit Gain-Scheduling Controller for Cranes”, IEEE Transactions on Control Systems Technology, Vol. 6, No. 1, pp. 15-20, 1998, cited

by 36.9. Fang, Y, Dixon, W. E., Dawson, D. M., Zergeroglu, E., “Nonlinear Coupling Control Laws For An Underactuated Overhead Crane System”, IEEE/ASME Transactions on

Mechatronics, Vol. 8, No. 3, pp. 418-423, 2003.10. Fliess, M., Levine, J., Rouchon, P., “A Simplified Approach of Crane Control Via A Generalized State-Space Model”, Proceedings of the 30th Conference on Decision and

Control, England, pp. 736-741, 1991, cted by 29.11. Fusato, D., Guglieri, G., Celi, R., “Flight Dynamics of an Articulated Rotor Helicopter with an External Slung Load,” AHS International Annual Forum, 55th, Montreal,

Canada, 1999, cited by 8.12. Hrovat, D., “Survey of Advanced Suspension Developments and Related Optimal Control Applications,” Automatica, Vol. 33, No. 10, pp. 1781-1817, 1997, cited by 121.13. Karnopp, D., “Active Damping in Road Vehicle Suspension Systems,” Vehicle System Dynamics, 12, pp. 291-316, 1983, cited by 50.14. Karnopp, D., “Design Principles for Vibration Control Systems Using Semi-Active Dampers,” Journal of Dynamic Systems, Measurement and Control, Vol. 112, pp. 448-

455, 1990, cited by 43.15. Key, D. L., “Airworthiness Qualification Criteria for Rotorcraft With External Sling Loads”, NASA/TM-2002-211390, USAAMCOM AFDD/TR-02-A-002, 2002. 16. Kriikku, E., Singer, N., Singhose W., “An Input Shaping Controller Enabling Cranes to Move Without Sway”, American Nuclear Society 7th Topical Meeting on Robotics and

Remote Systems, 1997, cited by 36.17. Kureemun, R., Walker, D. J., Manimala, B., Voskuijl, M., “Helicopter Flight Control Law Design Using Hinf Techniques,” Proceedings of the 44th IEEE Conference on

Decision and Control, and the European Control Conference, pp. 1307-1312, 2005.18. Moustafa, K. A. F., Ebald, A. M., “Nonlinear Modeling and Control of Overhead Crane Load Sway”, Transactions of ASME, Vol. 110, pp. 266-271, 1988, cited by 38.19. Omar, H. M., “Control of Gantry and Tower Cranes”, PhD. Thesis, Blacksburg, Virginia, 2003, cited by 5.20. Postlethwaite I., Prempain, E., Turkoglu, E., Turner, M. C., Ellis, K., Gubbels, A. W., “Design and Flight Testing of Various Hinf Controllers for the Bell 205 Helicopter,”

Control Engineering Practice, 13, pp. 383-398, 2005, cited by 1.21. Singer, N. C., Seering W. P., “Preshaping Command Inputs to Reduce System Vibration”, Transactions of ASME, Vol. 112, pp. 76-82, 1990, cited by 331.22. Stiles, T. R., Mayo, J., Freisner, A. L., Landis, K. H., Kothmann, B. D., “Impossible To Resist, The Development of Rotorcraft Fly-by-Wire Technology,” AHS 60th Annual

Forum, Baltimore, MD, 2004.23. Sunwoo, M., Cheok, K. C., Huang, N. J., “MRAC for Vehicle Active Suspension Systems”, IEEE Transactions on Industrial Electronics, Vol. 38, No. 3, pp. 217-222, 1991,

cited by 15.24. Tyson, P. H., Cicolani, L. S., Tischler, M. B., Rosen, A., Levine, D., Dearing, M., “ Simulation Prediction and Flight Validation of UH-60A Black Hawk Slung-Load

Characteristics,” AHS 55th Annual Forum, Montreal, Canada, 1999.25. Ulsoy, A. G., Hrovat, D., Tseng, T., “Stability Robustness of LQ and LQG Active Suspensions,” Journal of Dynamic Systems, Measurement, and Control, Vol. 116, pp. 123-

131, 1994, cited by 28.26. Walker, D. J., “Multivariable Control of the Longitudinal and Lateral Dyamics of a Fly-By-Wire Helicopter,” Control Engineering Practice 11, pp. 781-795, 2003, cited by 5.