1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

14
1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001

Transcript of 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

Page 1: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

1

Preliminary Analysisof

GTF Longitudinal Emittance Experiment

D. DowellSLAC July 18, 2001

Page 2: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

2

I. Description of Experimental Technique

II. Data Analysis

III. Experimental Results

IV. Summary and Conclusions

Talk Outline

Page 3: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

3

BoosterGun

Spectrometer

Energy Screen

Description of the Experimental Technique

booster

Determine Longitudinal-Space at Exit of Gun

Longitudinal : Measure Energy Spectra Vs. booster

Transverse: Measure Beam Size Vs. Quad Current

Technique similar to quadrupole scan of transverse emittance

Page 4: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

4

Longitudinal Beam Ellipse:

t t E E2 22

Longitudinal Beam Matrix:

11 12

12 22

11 Uncorrela ted Bunch Length

22 Uncorrela ted Energy Spread

Definition of Initial Phase Space Parameters, Including Correlations

Include correlated emittance by distorting the ellipse boundary using quadratic and cubic terms:

E t tt

a t b t

2 2

2 3

E E Ebooster1 0booster

(cos( t0 booster ) cos( )) ; t t1 0

Uncorrelated Bunch Length

Uncorrelated Energy Spread

Randomly populate and ray-trace down the booster:

Page 5: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

5

27 28 29 30 310

500

1000

1500Booster Phase = -33 degrees

27 28 29 30 310

500

1000

1500Booster Phase = -28

27 28 29 30 310

200

400

600

800

1000Booster Phase = -23 degrees

27 28 29 30 310

200

400

600

800Booster Phase = -18

27 28 29 30 310

500

1000

1500Booster Phase = -13 degrees

27 28 29 30 310

500

1000

1500

2000Booster Phase = -5 degrees

27 28 29 30 310

500

1000

1500

2000Booster Phase = 0 degrees

27 28 29 30 310

500

1000

1500

2000

2500Booster Phase = 5 degrees

27 28 29 30 310

1000

2000

3000

4000Booster Phase = 10 degrees

May, 2001 Longitudinal Emittance Scan

Page 6: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

6

20

QuadraticDistortion

12 = 0a > 0, b = 0

CubicDistortion

12 = 0a = 0, b > 0

Undistorted Phase Space12 = 0

a = 0, b = 0

E (keV)

t (ps)

Distortions of the Longitudinal Phase Space Ellipse

Page 7: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

7

30.4 30.5 30.6 30.7 30.8 30.9 31 31.1 31.20

500

1000

1500

2000

Booster Phase = 0 degrees

2 1 0 1 20.4

0.2

0

0.2

0.4Booster Phase = 0 degrees

Time (ps)

En

erg

y (

MeV

)

Curvature Terms are Needed to Fit Ends of Energy Spectra

Head

Tail

Page 8: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

8

30.4 30.5 30.6 30.7 30.8 30.9 31 31.1 31.20

500

1000

1500

2000Booster Phase = 0 degrees

30.56 30.58 30.6 30.62 30.640

200

400

600

800

Booster Phase = -13 degrees

4 2 0 2 40.4

0.2

0

0.2

0.4

E1ip

t0ip

4 2 0 2 40.1

0

0.1

E2ip

t0ip

2 0 2

0.2

0

0.2

Longitudinal Distribution After Gun

Time (ps)

Ene

rgy

(MeV

)

On Crest Min Energy Spread

Page 9: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

9

27.6 27.8 28 28.2 28.4 28.60

500

1000

Booster Phase = -33 degrees

28.2 28.4 28.6 28.8 29 29.20

500

Booster Phase = -28 degrees

29.2 29.4 29.6 29.8 30 30.20

500

Booster Phase = -23

29.6 29.8 30 30.2 30.40

200

400

600

30.4 30.5 30.6 30.7 30.80

500

Booster Phase = -13 degrees

30.5 30.6 30.7 30.8 30.9 310

1000

2000

Booster Phase = -5 degrees

30.4 30.6 30.8 31 31.20

1000

2000

Booster Phase = 0

30 30.2 30.4 30.6 30.8 31 31.20

1000

2000

Booster Phase = 5 degrees

30 30.2 30.4 30.6 30.8 31 31.20

1000

2000

Booster Phase = 5 degrees

29.8 30 30.2 30.4 30.6 30.80

1000

2000

3000

Booster Phase = 10 degrees

Fits to Longitudinal Emittance Scan

Fit

Data

Page 10: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

10

2 0 2

0.2

0

0.2

Longitudinal Distribution After Gun

Time (ps)

En

erg

y (

MeV

)

4 2 0 2 40

100

200

Pulse Length

Time (ps)

0.2 0 0.20

20

40

Energy Spectrum

Energy (MeV)

Phase Space Out of GunCorrelated Length and Energy Spectrum

2.9 ps fwhm

Tail

Head

Page 11: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

11

2 0 2

0.2

0

0.2

Longitudinal Distribution After Gun

Time (ps)

En

erg

y (

MeV

)

Uncorrelated Energy Spread

15 keV

Page 12: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

12

0 2 4 6 8 10 12 140

5

10

15

20

25

30

350 2 4 6 8 10 12 14

0

5

10

15

20

25

30

35

[2.6 + 2.1 (nC/cm2)] mm-keV

Unc

orre

late

d L

ongi

tudi

nal E

mitt

ance

( m

m-k

eV)

Surface Charge Density (nC/cm2)

The Uncorrelated Longitudinal Emittance Grows Linearly with Surface Charge Density Below the Space Charge Limit

-Results from 1994 Experiment for 144 MHz Gun-

Ref: D. H. Dowell, S. Joly and A. Loulergue, “The Dependence of Longitudinal Emittance Upon Surface Charge Density in a RF Photoinjector”, Proc. Of 1997 Particle Accelerator Conf., Vancouver, BC, Canada

Page 13: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

13

0 2 4 6 8 10 12 140

2

4

6

8

10

120 2 4 6 8 10 12 14

0

2

4

6

8

10

12

0.81 keV + 0.66 (nC/cm2) keV

Unc

orre

late

d E

nerg

y Sp

read

(ke

V)

Surface Charge Density (nC/cm2)

In These Experiments Most of the Emittance GrowthResults From Increased Energy Spread

-Results from 1994 Experiment for 144 MHz Gun-

1 Spread

Ref: D. H. Dowell, S. Joly and A. Loulergue, “The Dependence of Longitudinal Emittance Upon Surface Charge Density in a RF Photoinjector”, Proc. Of 1997 Particle Accelerator Conf., Vancouver, BC, Canada

Page 14: 1 Preliminary Analysis of GTF Longitudinal Emittance Experiment D. Dowell SLAC July 18, 2001.

14

Summary and Conclusions

-Curvature Terms Needed to Fit Energy Spectra

-Fits Poor for Large Phases--> More careful analysis

-Large Energy Correlation for 50 deg Launch Phase(Relative to Peak Field)

-Compression Observed from 4 ps to 2.9 ps

-Model-Independent Analysis (Tomography) Needed