05 - Unbalanced Load Flow

download 05 - Unbalanced Load Flow

of 18

Transcript of 05 - Unbalanced Load Flow

  • 8/17/2019 05 - Unbalanced Load Flow

    1/18

    ETAP Workshop Notes © 1996-2009 Operation Technology, Inc.

    Unbalanced Load Flow

  • 8/17/2019 05 - Unbalanced Load Flow

    2/18

    Slide 2© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Real Unbalanced Power

    Systems• Distribution System

     – 3-phase, 2-phase, and single-phase network

    components

     – Unbalanced loads

    • Transmission System

     – Untransposed long transmission line

     – Abnormal operation with one phase out of service

     – Unbalanced loads (e.g., electrical railway traction

    motors)

  • 8/17/2019 05 - Unbalanced Load Flow

    3/18

    Slide 3© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Harmful Effects of System

    Unbalance• Overheating of generators

    • Nuisance tripping of protective relays

    • Increased real power losses

    • Transformer failure

    • Radio communication interference

  • 8/17/2019 05 - Unbalanced Load Flow

    4/18

    Slide 4© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Unbalance Factors/Indexes

    • System unbalance is considered by power

    quality standards as a disturbance

    • Voltage/Current unbalance factors

    • Ratio of zero/negative sequence to positivesequence

    • Voltage/Current unbalance indexes

    • Ratio of average values to maximum

    deviation of average values

  • 8/17/2019 05 - Unbalanced Load Flow

    5/18

    Slide 5© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Unbalanced Load Flow

    Analysis

    • Current Injection (CI) method

    • The most robust algorithm ever developed

    • Converge in less iterations than othermethods, especially for heavily loaded

    systems

    • Sparse matrix technique

    • Unique modeling concepts

  • 8/17/2019 05 - Unbalanced Load Flow

    6/18

    Slide 6© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Sequence Models of 

    3-Phase Machines

  • 8/17/2019 05 - Unbalanced Load Flow

    7/18Slide 7© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Unique Concepts of 

    3-Phase Machines

    • Swing Machine

     – The specified magnitude and the phase angle of the

    positive sequence voltage only at the swing machine

    terminal

    • PV Machine

     – The specified total output of 3-phase real powers and

    the magnitude of the positive sequence voltage

    • PQ Machine

     – The specified total outputs of 3-phase real and reactive

    powers

  • 8/17/2019 05 - Unbalanced Load Flow

    8/18Slide 8© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Concepts of Load

    Connections

    • Single-Phase Loads

    • Connected in the phase connection types of

     AB, BC, CA, AN, BN or CN• Three-Phase Loads

    • Connected in Delta, Wye or Wye-G

    • The constant individual powers in Wye are

    not allowed due to multiple solutions

  • 8/17/2019 05 - Unbalanced Load Flow

    9/18Slide 9© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Modeling Capabilities

    • A mixture of 3-phase, 2-phase and single-phase network components

    • 3-phase machines with internal impedance

    being considered

    • Built-in calculator for overhead line

    impedances

    • Mutual coupling among overhead lines

    • Transformers combined with load tap

    changers (LTC) and phase shifters

  • 8/17/2019 05 - Unbalanced Load Flow

    10/18Slide 10© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Modeling Capabilities

    • 2-winding and 3-winding transformers ofvarious winding connections

    • Lumped loads consisting of constant power,

    constant impedance and constant currentcomponents

    • Generator exciters with AVR or Mvar / PF

    controllers

    • Robust library of of commonly used

    overhead transmission lines and cables

  • 8/17/2019 05 - Unbalanced Load Flow

    11/18Slide 11© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Study Case

    • Same pretense as Balanced Load Flow withmore detailed modeling, calculations, and

    results

  • 8/17/2019 05 - Unbalanced Load Flow

    12/18Slide 12© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Output Results

    • State-of-the-art graphic display ofresults

    • Graphical display of marginal andcritical under/over voltages

    • Alert View displays

    limit violations

  • 8/17/2019 05 - Unbalanced Load Flow

    13/18Slide 13© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Reporting

    • Customized output reports using Crystal Reports

    ®

    • Individual phase and sequence voltage, current,

    and power 

    • Voltage drops, losses,

    power flows, power

    factor, voltage/currentunbalance factors, etc.

  • 8/17/2019 05 - Unbalanced Load Flow

    14/18

    Example 1

    © 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    j l . 5

    - j0 . 3

    j0 04

    T2

    10 MVA

    Gen1

    ? 5 MlJ

    2 .1 - j0 . 1

    2

    1 .6

    1 .5

    ~ : : : : I :   S u b 2 ~ B ~ ~ - - ~ _ ,

    Sub2A . s - j0 . 5 z j l . 4

    l

      Z j l Z

    0 .9 - j0 . 2

    1 .2

    - j0 . 5

    - j0 . 1

    Z . 1 - j0 . 1 t

    l

    6

    . 2 . 30.1

    0 .2 j0 .1 0 .3

    0 .2 j0 .1 0 .3

    ~ \ 1 taP)

    ~ \ 1

    t Pc)

    ~ \ I t &

    Syn1

    -0 .9 j0 .2

    -0.8

    j0 .2

    -0.9 j0 .3

    T

    1 5 / 1 0 / 5 MVA

    jO .

     SW)

    3

    jO

    - j0 .08

    - j  Lb . .

    - j0 . 2 0 .5

    - j0 . 2 0 .5

    Sub3 H e t

    0.

    1

    0 j0 .1

    0 j0 .1

    j0 . 2

    j0 .1

    j0 .2

    :r

    CAP1

    450

    kva r

    Syn3

    3500

    HP

    1250 HP

    0 .2 j0 .1

    I..A.IVOU. 2

    j

    0 . 1

    T

    1 5

    MVA

    T4

    )

    CB22 ~ \ 1 taP)

    Bus

    0

    .469 ~ \ 1 t Pc)

    jo .1

    o

    .4

    1

    ; .

    ~ t e a )

    CB2;1 : .2 j0 .1 o.41

    0 .2 j0 .1

    Ill

    DC Sys t e m

  • 8/17/2019 05 - Unbalanced Load Flow

    15/18Slide 15© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Example 2

    IEEE Four Node Test Feeder 

    • Characteristics of the Feeder 

    1. Two line segments with a 3-phase

    transformer bank connected between the twosegments

    2. Data is specified for balanced and

    unbalanced loading at the most remote node

    3. Transformer is specified for different

    connection testing

  • 8/17/2019 05 - Unbalanced Load Flow

    16/18Slide 16© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    U1

    U7

    us

    99999992

    MVAsc:

    99999992

    MVAsc:

    99999992 MVAsc:

    1853

    j516

    \(\1 ~ ' * ' )

    15 4

    2

    j1361

    \(\1

    ' * ' )

    19 6

    3

    j1699

    2164 j1644

    4 7

    2316

    j9 90

    '\z.4.7 17 4

    j l l 2 2

    \(\1

    Bus1

    \_1.. \(\1

    Bu s

    31

    +2

      97

    j2 46

    4 7

    Bus27

    +2

    2

    5

    j1846

    '\z.4.7

    +2

    368 j l l 9 6

    '\z.4.7

    ' I ( ' J

    \1.. \(\1

    h 853

    j516

    \_1.. 4.

    h 54 2

    j1361

    \_1..

    4

    +19 6 3

    j1699

    \_1.

    _4 7 \(\1 ~

    2164 j1644

    2316

    j99

    17 4 j l l 2 2

    \_1..

    4.

    2 97

    j2 46

    225 j1846

    2368 j l l 9 6

    Line1

    Line1

    2

    Line14

    44

    '- \]

    ~ - ' )

    \(\1 ~ ' * ' )

    '$1 '- \] ~ - ' )

    Bus3

    \_1. (' .:)

    r:>? '- \]

    \_1.. (' .:)

    Bu s 32

    \_1.. (' .:)

    \1.

    ~ . : ; : . )

    Bus28

    1. \

    '- \]

    e;,

    '- \]

    h 849

    j499

    ~ ' - \ ]

    h

    528

    \_1..

    ~ . : ; : . )

    h

    943

    j1667

    \_1..

    ~ . : ; : . )

    ' \ _ 1 . - ~

    j1341 ¢ '---r

    \ 6 '- \]

    214 j1622

    23 3

    j9 62 \_1. ·

    1696 j l l

    4

    \z.Z

    2 75

    j1993

    22 3

    1

    j18 5

    j l l 6 1

    T1

    T8

    6

    MVA

    \(\1 ~ ' * ' )

    T7

    6 MVA

    Bus4

    < ; ~ 7 ' \

    6 MVA

    \(\1 ~ ' * ' )

    ' J O J ' ~ ~ )

    '- \] ~ - p . : ) Bus3

    < ; 1 7 ~ ' 1 ( \ J ~ ~ )

    Bu s

    3 4

    ~ - < ; 1 ' 1 ( \ J ~ ~ )

    +

    1325

    ~ . i i o ' i l

    B

  • 8/17/2019 05 - Unbalanced Load Flow

    17/18Slide 17© 1996-2009 Operation Technology, Inc. – Workshop Notes: Unbalanced Load Flow Analysis

    Example 3

    IEEE 13 Node Test Feeder 

    • Characteristics of the Feeder 

    1. Short and relatively highly loaded for a 4.16

    kV feeder 

    2. Overhead lines with variety of phasing

    3. Shunt capacitor banks

    4. In-line transformer 

    5. Unbalanced loading

  • 8/17/2019 05 - Unbalanced Load Flow

    18/18Slide 18© 1996-2009 Operation Technology Inc – Workshop Notes: Unbalanced Load Flow Analysis

    Line603 BC300

    Line605 CN300

    LUI lp6

    188 kVA

    CAP1

    100 kvar

    U1

    Bus650

    T1

    1000000 00 liVAs c

    500 kVA

    Line60

    3

    BC500 Line60

    2

    l t r 31

    170 kUJ

    Line604 ACN300

    Load2

    154 kVA

    Bus632

    16 3

    121

    t 1 22

    +

    1059

    j479

    504 j98

    1026 j3 32

    Line

    01 22

    LUI lp9

    116 kVA

    Li ne6 0 1 33

    Bus680

    LUI lp7

    116

    kVA

    -0

    - j O

    0 - j O

    +-

    o j o

    - - r l - ' ~

    _1. 3 < \( I ltl

    ~ 1 9 1

    o > - ~

    - 1 ) 1 . 1

    Bus633

    162

    121

    t122

    115

    9 2

    9 3

    LUI lp1

    494

    kVA

    j

    11

    0

    j90

    j90

    1 .

    8 l VAb

    Cab1e6

    06 500

    488

    j1

    68

    - j1 8 1

    t2

    91 j 3 7

    +

    44 j121

    0

    jO

    120

    j 2

    5

    - ' ~

    LUI lp 5

    3

    \(\( I t l ' ~

    227

    kVA

    .1-9

    1

    \ ( I d > - ~

    Bu s675

    +485 j 190 t j 1 91

    68

    j60 0

    j2 42

    290

    j 2

    1 2 0 j 1 75

    LUI lp4

    971

    kVA

    r

    CAP2

    6 00 k

    var