Warm-Up – 3/20 – 10 minutes

Post on 23-Feb-2016

39 views 0 download

description

Warm-Up – 3/20 – 10 minutes. Utilizing your notes and past knowledge answer the following questions: Define static pressure. Define dynamic pressure. What instruments only utilize the static pressure? - PowerPoint PPT Presentation

Transcript of Warm-Up – 3/20 – 10 minutes

Utilizing your notes and past knowledge answer the following questions:

1) Define static pressure.2) Define dynamic pressure.3) What instruments only utilize the static

pressure? 4) What are some of the indications for each

instrument when the system utilizes an alternative static pressure source?

5) What is the least important of the three instruments that comprise the pitot-static system?

Warm-Up – 3/20 – 10 minutes

Questions / Comments

Utilizing your notes and past knowledge answer the following questions:

1) Define static pressure.2) Define dynamic pressure.3) What instruments only utilize the static

pressure? 4) What are some of the indications for each

instrument when the system utilizes an alternative static pressure source?

5) What is the least important of the three instruments that comprise the pitot-static system?

Warm-Up – 3/20 – 10 minutes

Pitot-Static Flight InstrumentsImpact Pressure Chamber and

Lines• Static pressure,

also known as ambient pressure, is always present whether an aircraft is moving or at rest.

• It is simply the barometric pressure in the local area.

Utilizing your notes and past knowledge answer the following questions:

1) Define static pressure.2) Define dynamic pressure.3) What instruments only utilize the static

pressure? 4) What are some of the indications for each

instrument when the system utilizes an alternative static pressure source?

5) What is the least important of the three instruments that comprise the pitot-static system?

Warm-Up – 3/20 – 10 minutes

Pitot-Static Flight InstrumentsImpact Pressure Chamber and

Lines• Dynamic pressure is present only when an aircraft is in motion; therefore, it can be thought of as a pressure due to motion

Utilizing your notes and past knowledge answer the following questions:

1) Define static pressure.2) Define dynamic pressure.3) What instruments only utilize the static

pressure? 4) What are some of the indications for each

instrument when the system utilizes an alternative static pressure source?

5) What is the least important of the three instruments that comprise the pitot-static system?

Warm-Up – 3/20 – 10 minutes

Pitot-Static Flight InstrumentsImpact Pressure Chamber and

Lines• The two remaining instruments (altimeter and VSI) utilize only the static pressure which is derived from the static port.

Utilizing your notes and past knowledge answer the following questions:

1) Define static pressure.2) Define dynamic pressure.3) What instruments only utilize the static

pressure? 4) What are some of the indications for each

instrument when the system utilizes an alternative static pressure source?

5) What is the least important of the three instruments that comprise the pitot-static system?

Warm-Up – 3/20 – 10 minutes

Pitot-Static Flight InstrumentsStatic Pressure Chamber and

Lines• 1. The altimeter indicates a slightly higher altitude than actual.

• 2. The ASI indicates an airspeed greater than the actual airspeed.

• 3. The Vertical Speed Indicator shows a momentary climb and then stabilizes if the altitude is held constant.

Utilizing your notes and past knowledge answer the following questions:

1) Define static pressure.2) Define dynamic pressure.3) What instruments only utilize the static

pressure? 4) What are some of the indications for each

instrument when the system utilizes an alternative static pressure source?

5) What is the least important of the three instruments that comprise the pitot-static system?

Warm-Up – 3/20 – 10 minutes

Pitot-Static Flight InstrumentsStatic Pressure Chamber and

Lines• This most likely renders the VSI inoperative.

• The reason for choosing the VSI as the instrument to break is that it is the least important static source instrument for flight.

Questions / Comments

March 20

• 1920 — Two South African pilots complete the first flight from Britain to South Africa after a flying time of four days, 13 hours, 30 minutes.

THIS DAY IN AVIATION

March 20

• 1922 — The USS Langley (CV-1), America's first aircraft carrier, is commissioned into the U. S. Navy at Norfolk, Virginia under the command of Comdr. Kenneth Whiting.

THIS DAY IN AVIATION

March 20

• 1932 — The airship “Graf Zeppelin” begins a series of flights between Germany and Brazil. Several round-trips are planned per year to Rio de Janeiro.

THIS DAY IN AVIATION

March 20• 1937 — An attempted round-the-

world flight by leading United States woman aviator Amelia Earhart ends dramatically when the starboard tire of her Lockheed “Electra” airliner bursts during take-off from Honolulu, Hawaii.

• Because of the damage, the expedition is temporary abandoned.

• The first leg from Oakland, California to Honolulu on March 17 was made in 16 hours, an east-west record.

THIS DAY IN AVIATION

March 20

• 1959 — The site in Cheyenne Mountain, Colorado, is approved as the location for NORAD.

THIS DAY IN AVIATION

Questions / Comments

SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY

2 3 4

Fuel Systems

5 6

Electrical Systems

7 8

         

9 10

Chapter 6

Hydraulic

Systems

11 12

Chapter 6

13 14

FltLine Friday

15

             

16 17 18

Chapter 7

19 20

Chapter 7

21 22

             

23 24 25

Chapter 7

26 27

Chapter 7

28 29

             

30 31          

             

March 2014

Questions / Comments

Mission: Identify in writing how to interpret and operate flight instruments.

Describe the pilot’s ability to recognize errors and malfunctions with flight instruments.

Describe the pitot-static system and associated instruments.

Describe the vacuum system and related instruments.

Describe the gyroscopic instruments and the magnetic compass.

EQ: Describe the importance of Aeronautical Knowledge for the

student pilot learning to fly.

Today’s Mission Requirements

Altimeter• The altimeter is an

instrument that measures the height of an aircraft above a given pressure level.

• Since the altimeter is the only instrument that is capable of indicating altitude, this is one of the most vital instruments installed in the aircraft.

Principle of Operation

• The altimeter uses static pressure as its source of operation.

Principle of Operation• Air is denser at sea

level than aloft—as altitude increases, atmospheric pressure decreases.

• This difference in pressure at various levels causes the altimeter to indicate changes in altitude.

Effects of Nonstandard Pressure

• For example, if an aircraft is flown from a high pressure area to a low pressure area without adjusting the altimeter, a constant altitude will be displayed, but the actual height of the aircraft above the ground would be lower then the indicated altitude.

Setting the Altimeter• To adjust the

altimeter for variation in atmospheric pressure, the pressure scale in the altimeter setting window, calibrated in inches of mercury ("Hg) and/or millibars (mb), is adjusted to match the given altimeter setting.

Setting the Altimeter• If a pilot is not utilizing

ATC assistance, local altimeter settings can be obtained by monitoring local automated weather observing system/automated surface observation system (AWOS/ASOS) or automatic terminal information service (ATIS) broadcasts.

Altimeter Operation• When the aircraft climbs

or descends, changing pressure within the altimeter case expands or contracts the aneroid barometer.

• A decrease in pressure causes the altimeter to indicate an increase in altitude, and an increase in pressure causes the altimeter to indicate a decrease in altitude.

Altimeter Operation• To clear obstructions,

the pilot must constantly be aware of the altitude of the aircraft and the elevation of the surrounding terrain.

• To reduce the possibility of a midair collision, it is essential to maintain altitude in accordance with air traffic rules.

Types of Altitude

• 1. Indicated altitude—read directly from the altimeter (uncorrected) when it is set to the current altimeter setting.

• 2. True altitude—the vertical distance of the aircraft above sea level—the actual altitude.

Types of Altitude• 3. Absolute altitude

—the vertical distance of an aircraft above the terrain, or above ground level (AGL).

• 4. Pressure altitude—the altitude indicated when the altimeter setting window (barometric scale) is adjusted to 29.92 "Hg.

Types of Altitude• 5. Density altitude—

pressure altitude corrected for variations from standard temperature.

• This is an important altitude because it is directly related to the aircraft’s performance.

• The density of the air affects how much power a naturally aspirated engine produces, as well as how efficient the airfoils are.

Instrument Check

• Prior to each flight, a pilot should examine the altimeter for proper indications in order to verify its validity.

• Set the barometric scale to the current reported altimeter setting.

Questions / Comments