SACS SACS IV.pdf

Post on 15-Sep-2015

202 views 20 download

Transcript of SACS SACS IV.pdf

  • Copyright2013byBentleySystems,Inc.Version7.0Revision2

    1.0INTRODUCTION

    1.1OVERVIEW

    SACSIV,thegeneralpurposethreedimensionalstaticstructuralanalysisprogram,isthefocalpointforallprogramsintheSACSsystem.Itgivestheuserthecapabilityofmodelingalargearrayofstructuresfromsimpletwodimensionalspaceframeanalysestocomplexthreedimensionalfiniteelementanalyses.SACSIVcanalsobeusedfornonlinearstaticanalysiswhencoupledwithPSImoduleordynamicresponseanalysiswhencoupledwiththeDynpac,WaveResponseandDynamicResponsemodules.

    SACSIVreferstothreeoftheprogrammodulesoftheSACSsystem,namelythepreprocessormodulePre,thesolvermoduleSolveandthepostprocessormodulePost.Thepostprocessormodule,Post,canbeexecutedaspartofSACSIVorasanindividualanalysisstep.ThismanualaddressesthefeaturesandcapabilitiesofthePreandSolvemodulesandincludestheprocedureusedtorunPostaspartofSACSIV.ThePostmanualaddressestheexecutionofthepostprocessorasaseparatestepandincludesadetaileddiscussionontheprogramcapabilities.

    1.2PROGRAMFEATURES

    SACSIVrequiresaSACSmodelfileoroutputstructuraldatafileforexecutionandcreatesacommonsolutionfilecontaininganalysisresults.

    SomeofthemainfeaturesandcapabilitiesofSACSIVare:

    1. Allowsspecificationofvariousinputoptions,analysisoptions,andoutputreportswithinthemodelfile.2. AllowsspecificationofpostprocessoroptionswithinthemodelfileandcanautomaticallyexecutePOST.3. CanaccessmemberpropertiesfromoneofvarioussectionpropertyfilesincludedwiththeSACSsystem,fromuserdefinedsectionpropertyfilesorfromsections

    definedwithinthemodelfile4. Supportsvariousbeamelementtypesincluding:

    a. Tubularb. Channelc. Angled. Teee. PlateGirderf. Prismaticg. Coneh. Box&StiffenedBoxi. StiffenedCylinderj. LaunchRunnerk. JackupLegl. DoubleAngle

    m. RectangularTuben. DoubleWebPlateGirdero. BoxedPlateGirderp. BoxedPlateGirderq. UnsymetricPlateGirder

    5. Supportsvarioussixdegreeoffreedomtriangularandquadrilateralplateelementtypesincluding:

    a. Isotropicb. Membranec. Sheard. Stiffenede. Corrugated

    6. Contains6,8and9nodetriangularandrectangularshellelements.7. Containsthefollowingsolidelementsshapes:

    a. 4nodetetrahedronb. 5nodepyramidc. 6nodewedged. 8nodebrick

    8. Beamandfiniteelementoffsets.9. Rotationalandtranslationalmemberreleases.

    10. Springsupportstogroundincludingatobliqueangles.11. Localandglobalelementloads.12. Memberlinearandconcentratedloadsinlocalorglobalcoordinatesystem.13. Jointloads.14. Thermalloads.15. Specifiedsupportdeflections.16. Supportstaperedsections.17. SupportstwoanalysistechniquesforplateelementsincludingDKTandtraditionalplatebeamstriptheory.

    SomeofPostmodulefeatureswhichcanbespecifieddirectlyinthemodelfileare:

    1. Membercheckcodeincluding:AISC,APIRP2A,Eurocode3,ISO,NorwegianPetroleumDirectorateandDanishOffshore,etc.2. APIandDNVhydrostaticcollapseanalysis.3. API2Uand2VBulletins4. Eulerbucklingcheckforsegmentedmembers.5. Automaticmemberredesign.6. Allowablestressmodifiers.7. Finiteelementcodecheckandstiffenerstressoutput.

    Note:RefertothePostUser=sManualforadetaileddiscussionofthepostprocessormodulecapabilities.

    1.3SACSIVMODELCOMPONENTS

    TheSACSIVmodelfileisthestandardinputforalltypesofanalysesintheSACSSystem.Theuserneedgenerateonlyonestructuralmodelthatcanbeusedinanytypeofanalysis.

  • ThemodelfilecanbegeneratedbyvariousSACSprogrammodules.Precede,DataGeneratororatexteditorisusedtocreatetheanalysisoptions,modelgeometryanduserdefinedloading.SeastateorWaveResponseisusedtogenerateenvironmentalloadingdataresultingfromwave,wind,current,deadweightandbuoyancy.Launch,FlotationorTowisusedtogenerateloadsinducedbyajacketlaunch,upendingsequenceoftransportationrespectively.Themodelfileismadeupofthefollowing:

    1. AnalysisOptions2. PostProcessorOptions3. MaterialandSectionPropertyData4. ElementData5. JointData6. LoadData

    1.4ANALYSISOPTIONS

    AnalysisoptionsmaybespecifiedinthemodelfileormaybedesignatedwhencreatingtherunfileusingtheExecutive.OptionsspecifiedinthemodelfileareinputontheOPTIONSinputlineasfollows:

    1. Unitsmustbespecifiedincolumns1415a.ENEnglishb.MNMetricwithKNforcec.MEMetricwithKgforce

    2. CreateSuperElement(column10)3. ImportSuperElement(column9)4. Consider/Ignorememberreleases(columns2122)5. Include/Excludesheareffects(columns2324)6. IncludePDeltaeffectsintheanalysis(columns1718)

    ThefollowingsampleinputdesignatesEnglishunits,astandardanalysis(columns1920blank)andincludesheareffects:

    Twoanalysistechniquesforplateelementsaresupported,,DKT(DiscreteKirchhofftheory)andtraditionalplatebeamstriptheory.Bydefault,DKTplatetheoryisused.EnterNDincolumns3637tousethetraditionalbeamstripmethod.

    Note:Forsomestructures,axialforcehasasignificanteffectonthelateralstiffnessoftheelements.ThePDeltaoptiongivesafirstorderapproximationoftheseeffects.UsingthePDeltaoptionrequiresspecifyingPDeltaloadcases(ie.theloadcasesusedtodeterminetheaxialforceinthemember)usingtheLCSELlinewiththe>PD=option.

    Twoanalysistechniquesforsolidelementsaresupported,traditionalconstantstrain3degreeoffreedomsolidsandisoparametric6degreeoffreedomsolids.Bydefault,constantstrain3DOFsolidsareused.Enter6incolumn71tousetheisoparametric6DOFsolids.

    Solidjointorderinghastwooptionsaswell.Bydefault,solidsjointsareorderedsuchthatflatplanesinsolidelementsbecomesolidfaces.AmorerobustorderingschemewhichallowssolidfacewarpagemaybespecifiedwithanRincolumn72.

    1.5POSTPROCESSOROPTIONS

    PostprocessoroptionsmaybespecifiedintheSACSmodelfilebutarenotrequired.ThepostprocessoroptionsspecifiedareusedasdefaultsbythePostandPostvueprogramsandmaybemodifiedinthePostinputfile.

    Note:APostinputfileisnotnecessaryifthepostprocessingoptionsspecifiedinthemodelfilearetobeused.

    Thefollowingisabriefdiscussionofthepostprocessingoptionsthatmaybespecifiedinthemodelfile.ThePostUsersManualaddressesthesefeaturesindetail.

    1.5.1MemberCheckCode

    ThecodethatmemberstressesaretobecheckedwithrespecttoisspecifiedontheOPTIONSlineincolumns2526.

    1.5.2MemberCheckLocations

    ThelocationsatwhichtochecknonsegmentedandsegmentedmembersarespecifiedontheOPTIONSlineincolumns2930and3132respectively.

    Fornonsegmentedmembers,thenumberofequallengthpiecesthememberistobedividedintoshouldbestipulated.Forsegmentedmembers,specifythenumberofpieceseachsegmentofthememberistobedividedinto.Ineithercase,thememberischeckedatthebeginningandendofeachpiece.

    1.5.3OutputReports

    ThedesiredoutputreportsaredesignatedontheOPTIONSinputline.Formemberreports,whenPTisenteredintheappropriatecolumns,allmembersarereportedunlessSKappearsontheindividualMEMBERline.WhenSEisspecifiedforamemberdetailreport,onlymemberswithRPontheMEMBERlinearereported.

    1.5.4RedesignParameters

    Ifautomaticredesignisdesired,theparametersaredesignatedontheREDESIGNinputlines.

    1.5.5HydrostaticCollapseParameters

    HydrostaticcollapseparametersarespecifiedontheHYDROinputline.Fullhydrostaticcheckincludingactualmemberstressesduetoaxialforces,bendingandhoopstresscanbeperformedbythePostprogram.

    1.5.6GroupingElementsbyUnityCheckRatio

    Elementswithunitycheckratiosthatfallwithinadefinedrangecanbeprintedtogetherasareportgroup.UptothreerangesmaybedefinedusingtheUCPARTinputline.

    Forexample,allelementswithunitycheckratiogreaterthan1.00canbereportedinthefirstreport,elementswithunitycheckratiobetween0.8and1.0inthesecondandelementswithunitycheckratiobetween0.5and0.8inthethirdreport.

    1.5.7AllowableStress/MaterialFactor

    ForAPI/AISCworkingstressanalysis,thecalculatedallowablestressesforaloadcase(orloadcombination)canbemodifiedbyspecifyingtheloadcasenameandtheappropriateallowablestressfactorontheAMODline.

  • ForNPDanalysis,thematerialfactorusedforallloadcasesisspecifiedusingtheAMODline.Onlyonematerialfactormaybespecifiedanditmustbedesignatedforthefirstloadcaseinthemodel,althoughitwillbeusedforallloadcases.mE

    ForDanishcodeanalysis,thefactorsmandEselectedontheGRUPlinecanbechangedforallmembersbyusingtheAMODline.Onlyonefactormaybespecifiedanditmustbedesignatedforthefirstloadcaseinthemodel,anditwillbeusedforallloadcases.Thisisusefulforblastanalysis.

    1.5.8ResistanceFactors

    TheresistancefactorsindicatedbyAPIareusedbydefaultwhenselectingLRFDcodes.TheusercanspecifythatresistancefactorsindicatedforAISCorAPIseismiccodesaretobeusedbyenteringCorSincolumn40ontheOPTIONSline.

    Forexample,thefollowinglinespecifiesthatresistancefactorsindicatedbyAISCaretobeused.

    1.5.9UserDefinedResistanceFactors

    TheusercanmodifytheresistancefactorstobeusedforLFRDanalysesusingtheRFLRFDline.Theresistancefactorsforyield,axialcompression,axialtension,bending,shearandhoopcapacitiesfortubularandnontubularmemberscanbeentered.

    Forexample,thefollowinglinespecifiesthat1.0istobeusedforaxialcompressionandtensionforbothtubularandnontubularmembers.

    Note:Whenspecifyingresistancefactors,thedefaultvaluesontheRFLRFDlineareusedforfieldsinwhichnooverridehasbeenspecified.

    1.5.10EuroCodeCheckOptions

    TheOPTIONSlinehasbeenupdatedtoincludethenewcodecheckoptionforEurocode3EN199311:2005enterE5atcolumn2526ofOPTIONSlineforthenewcode.Whenthiscodeisactivated,thenontubularmemberswillbecheckedforEurocode3:2005.Currently,thecrosssectionsofWideFlange,PlateGirder,WeldedBox,RolledRectangularTube,DoubleWebPlateGirder,andBoxedPlateGirderaresupported.ThetubularandconicalmemberswillbecheckedaccordingtoNorsokN0042004.ForEurocode3EN199311:v1992,theIDisstillECinOPTIONSlineasbefore.

    TheCODEEClinecanbeusedtomodifythedefaultEurocodecheckoption,shearareaoption,theresistancefactorsM0valueandtheM1value.ForEurocode3:2005,themethodforinteractionfactors,theoptionofnationalannexes,andthefactorofshearbucklingcanbemodifiedorselectedintheCODEline.Formoredetails,pleaserefertothelinedescriptioninthemanual.

    1.5.11SpanDesignation

    TheSPANinputlinecanbeusedtoidentifyanalyticalbeamelementsthatmakeupphysicalmembersforserviceabilityandcodecheckrequirementsbyenteringthejointsinorderofoccurrenceinthespan.Anynumberofmemberscanbeincludedinacontinuousline.CantilevermemberscanalsobeanalyzedbutmustbespecifiedbyenteringCincolumn14oftheSPANline.Momentdiscontinuitiesandmomentmemberendreleasesareallowedalongthecontinuousmember,however,forceendreleasesarenotallowed.

    Note:ThebeamelementlocalxaxesofallelementsdefinedintheSPANlinearerequiredtobeactinginthesamedirection.

    1.5.12AISC2005(13thEdition)Options

    InusingAISC2005,theuserhastwooptionscorrespondingtoASDdesignandLRFDdesign.IfoptionAAisselectedincolumns2526onOPTIONSline,thiswillactivatecodecheckbyASDmethodofAISC2005fornontubularmembersandWSDmethodofAPIRP2A21steditionfortubularmembers.IfoptionALisselectedthenthiswillactivatecodecheckbyLRFDmethodofAISC2005fornontubularmembersandLRFDmethodofAPIRP2ALRFD1steditionfortubularmembers.

    1.5.13PanelCodeCheckOptions

    Column35oftheOPTIONSlinecanbeusedforselectingcodechecksforstiffenedorunstiffenedpanels.EnterAforAPIBULL2VorDforDnVRPC201.CurrentlyonlyDnVRPC201codeofpracticeisimplemented

    TheDnVRPC201platepanelcodecouldbeusedinaccordancetoeithertheLRFDorWSDstandardsbyspecifyingtheappropriatecodecheckoptionsincolumn2526ofOPTIONSline.

    ThePCODEinputlineforDnVRPC201codeofpracticemaybeusedtoinputuserdefinedparameters.CurrentlyalltheoptionsinthislineareonlyapplicabletoDnVRPC201codeofpractice.ThefollowinginputcanbedefinedonthePCODEline.

    a.Column1419:materialfactorM(default1.15).

    b.Column20:Methodselectionforeffectivewidthcalculationofgirdersinaccordancetosection8.4(Method2isthedefault).Thisoptionisonlyvalidfororthogonallystiffenedpanels.

    c.Column2125:EnteranallowableusagefactoraccordingtoWSDstandardifthepaneltobecheckedinaworkingstressdesignstandard(WSD)(default0.6).

    Note:IftheWSD(sometimesalsoreferredtoasASD)codeisselectedincolumns2526ofOPTIONSline,thentheplatepanelwillbecheckinaccordanceWSDstandardusingtheuserspecifiedusagefactorfromthePCODEline.Ifcolumns2125ofPCODElineareleftblank,thenthedefaultusagefactorof0.6willbeused.However,iftheLRFDcodeisselectedincolumns2526ofOPTIONSline,thentheplatepanelwillbecheckinaccordancetotheLRFDstandard.Inthiscase,theusagefactorfromcolumns2125ofPCODElinewillbeignoredevenifavaluehasbeenspecified.

    d.Columns2631:Thealphalimitfornonrectangularpanels(default10degrees).Ifthislimitexceededforanypanelthentheprogramwillissueawarningmessagetoremindtheuserthatanequivalentrectangularpanelusingalargerdimensionsparalleltostiffener(s)ofthefirststiffenedplateinthepanel

  • willbeusedforthecodecheck.

    e.Column3237:Limitforpanelcoplanarcheck(defaultto400,i.e.coplanarcheckwillbelimitedtopanellength/400andpanelwidth/400whicheverisless).

    1.5.14ISOcodecheckoptions

    ISO19902:2007codecheckontubularmembers,conicaltransitions,anddentedandgroutedmembershasbeensupported.IScodeoptioncanbeselectedonOPTIONSline.ISO199013:2010containsrequirementsandguidancefortopsidesstructures.Inordertospecifytheassociatedcodecheckoptionfornontubularstructuralmembers,CODEISlinemustbeused,whereusermaychooseEurocode3:2005,Eurocode3:1992,AISC13th2005LRFD,CanadianCSAS162009,andNS3472.Theresistancefactorsoftubularorconicalsectionsunderaxialtension,compression,bending,shearandhoopcompressioncanbemodifiedinCODEISline.Ifnecessary,thecorrespondingresistancefactorsforEurocode3codescanbeenteredinCODEECline,forAISC13thLRFDcodeinRFLRFDline,andforCanadiancodeinRFLRFDlinetoo.NotethatthebuildingcodecorrespondencefactorKcinISO199013isnotsupportedincodecheckandstillunderinvestigation.Formoredetails,pleaserefertotheassociatedlinedescriptionincardimage.

    1.5.15NorsokStandardN004codecheckoptions

    NorsokStandardN004"Designofsteelstructures"specifiesguidelinesandrequirementsfordesignanddocumentationofoffshoresteelstructuresandhasbeenupdatedtoRev3,2013.SACSsupportbothRev2,2004andRev3,2013intubularmembersandconicaltransitionscodecheck.EnterNSatcolumn2526ofOPTIONSlineforv2004and"NC"forthelatest2013code.ThenontubularmembersarecheckedbyNS3472for"NS"option,andbyEurocode3:2005for"NC"option.ForEurocode3code,thecorrespondingresistancefactorscanbeenteredinCODEECline.

    Note:SectionAnnexK.5.3GroutedconnectioninNorsokN004isnotsupportedinSACS.Forfatigueanalysis,pleaserefertoSACSFatiguemanualfordetails.Forsimpletubularjointdesign,pleaserefertoSACSJointCanmanual.

    1.5.16ALSloadcasesspecification

    Ingeneral,ULS(ultimatelimitstate)isthedefaultstateinmembers'LRFDcodecheck.InordertodoALS(accidentallimitstate)analysis,userneedstomodifytheassociatedresistancefactorsandrunaseparatedpostprocessinganalysis.SACSnowsupportspecifyingloadcasesasULSorALSinonepostprocessingmembercodecheck.ThisfeatureisperformedbyusingAMODlinesandworksonlyforNorsokStandardN004,Eurocode3,andISO19902codes.InAMODlines,loadcaseswithAMODvaluespecifiedto2.0areconsideredasALSwhosepartialresistancefactorsormaterialfactorsaremodifiedto1.0automaticallyincodechecktheloadcaseswithoutAMODvalue(default)orAMODvaluesetto1.0areULSwithappropriateresistancefactors.Notethat,NorsokStandardN004doesnotallowthematerialfactorMinULSloadcasetobemodified,whichequalsto1.15forEurocode3andISO19902,usermaydefineULSresistancefactorsinCODEECorCODEISline,respectively.

    1.6SELECTINGLOADCASESFOROUTPUT

    Theloadcasesforwhichoutputresultsaredesired,maybedesignatedinthemodelfileusingtheLCSELline.Foraparticularanalysistype,resultsonlyforloadcasesspecifiedforthattypearereported.

    Specifyloadcasesincolumns1775andtheanalysistypetowhichthelistofloadcasespertainincolumns78asfollows:

    STStandardstaticanalysisand/orPSIanalysisGPGapelementanalysisDYConverttomassforDynpacanalysisPDDesignatesgravityloadusedtodeterminePDeltaeffectsforsecondorderanalysisand/ormomentmagnifiersforconcreteelementsinfirstorderanalysis.

    LeavefunctionblankiftheloadcaseslistedaretobeusedforstandardSTanddynamicDYfunctions.

    Forexample,thefollowinglinesdesignatethatloadcasesGRAV,ST01andST02aretobeusedforstandardanalyses,whileloadcasesBOATandMISCaretobeconvertedtomasswhenrunningDynpac.

    Note:MorethanoneLCSELlinemaybeused.IfnoLCSELlineisspecified,allloadcasesareusedforstandardanalysis.

    1.6.1PDeltaLoadCases

    Thelateralstiffnessofanelementisafunctionofaxialforcesuchthataxialcompressionreducesthelateralstiffnesswhileaxialtensionincreasesthelateralstiffness.Fortypicallinearstaticanalysis,theeffectofaxialforceonthelateralstiffnessisnegligible.Forsomestructures,howevertheaxialforcedoeshaveasignificanteffectonthelateralstiffnessoftheelements.ThePDeltaoptiongivesafirstorderapproximationoftheseeffects.

    WhenusingthePDeltaoption,theprogramcalculatesthelateralstiffnessofeachmemberusingareferenceaxialforceobtainedfromtheloadcasesdesignatedasPDeltaloadcases.

    Forexample,ifmostoftheaxialloadintheelementsofastructureisduetodeadloadingorotherverticalloading,thecorrespondingloadcasesshouldbedesignatedasPDeltaloadcases.ThelateralstiffnessforeachmemberwillthenbedeterminedconsideringtheaxialforceduetothedesignatedPDeltaloadcases.

    ThefollowingdesignatesthatloadcasesDEAD,MISC,EQPTandAREAaretobeusedtoincludetheeffectsaxialloadhasonlateralstiffness.

    Note:Iftwodifferentdesignloadcasescausecompletelydifferentaxialloading,thenaseparateanalysismustberunforeachofthedesignloadcase.Forexample,ifonecasecausessignificantaxialcompressionwhileanothercausessignificantaxialtension,separateanalysesmustbeexecuted.

    1.6.2LargeDeflectionorPDeltaAnalysis

    WhenchoosingbetweenlargedeflectionorPDeltaoptionsforanalysis,somefactorsshouldbeconsidered.PDeltaanalysisgivesafirstorderapproximationoftheeffectofaxialforceonthelateralstiffnessofthestructure.Largedeflectionanalysisisahigherorderapproximation.Assuch,thePDeltaoptionisusefulforstructuresinwhichthelateraldeflectionislessthan10%ofthetotalstructureheight(groundsupportedstructures).Forexample,ina300footplatform/towerassembly,PDeltaanalysiswouldbevalidfortowerdeflectionsinanydirectionoflessthan30feet.PDeltaanalysisislimitedtothedeflectionofframedstructures(beams).Forstructuresconsistingofplates

  • orothersolidelements,PDeltaanalysisdoesnotapplyandtheuseofthisanalysiswillnotmakeanydifferenceintheresults.

    Largedeflectionanalysisisusedwhenloaddependentdeflectionsordiaphragmactioniscommon.UnlikePDeltaanalysis,largedeflectionanalysisislimitedtooneloadcaseperrun.Forexample,aplatedboilermightbeanalyzedwithlargedeflectionanalysis,beingasthelargeplatedeflectionswillcausetheboilerwallstobehavelikeadiaphragmwithmembraneactionratherthanalinearplatewithonlybendingstiffness.

    1.7FACTORINGLOADCASES

    LoadcasesmaybefactoredforparticulartypesofanalysesusingtheLCFACline.Specifyloadcasesincolumns1775,thefactortobeappliedincolumns1116andtheanalysistypetowhichtheloadfactorpertainsincolumns78asfollows:

    STStandardstaticanalysisand/orPSIanalysisDYConverttomassforDynpacanalysisLeavefunctionblankiftheloadcaseslistedaretobeusedforstandardSTanddynamicDYfunctions.

    Forexample,thefollowinglinesdesignatethatloadcasesBOATandMISCaretobefactoredby0.5whenconvertedtomassforDynpac.

    Note:MorethanoneLCFAClinemaybeused.Whenloadcasefactorsarespecified,theloadcaseisfactoredbeforebeingappliedtoanyloadcombinations.

    1.8MATERIALANDSECTIONPROPERTYDATA

    EachbeamandplateelementintheSACSmodelisassignedtoagroupwhichcontainsthematerialandsectionpropertydataforallelementsassignedtothatgroup.Elementswiththesamenumberofsegmentsandidenticalstructural,materialandcodecheckpropertiesmaybeassignedtothesamegroup.

    1.8.1SectionProperties

    Thefollowingsectiondetailsdefiningsectionpropertiesforbeamandfiniteelements.

    1.8.2NonTubularMembers

    SectionpropertiesfornontubularbeamelementsaredefinedbythesectionreferencedontheGRUPlineofthegrouptheelementisassignedto.Referencedsectionsthataredefinedinthesectionlibraryfileneednotbedefinedinthemodelfile.NontubularsectionsthatarenotdefinedinthesectionlibraryfilemustbedefinedinthemodelfileusingaSECTIONline.

    WhendefiningsectionpropertiesusingaSECTIONline,thesectionnameisdesignatedincolumns612,thesectiontypein1618andthedimensionsin5080.Crosssectiontypessupportedare:

    1. Tubular2. WideFlange3. CompactWideFlange4. Box5. Tee6. GeneralPrismatic7. Channel8. PlateGirder9. Angle

    10. Cone11. StiffenedBox12. StiffenedCylinder

    Stiffnesspropertiesarecalculatedfromthedimensionsinputbutmaybeoverriddenincolumns1948.Whenoverridingstiffness,allvaluesmustbeinput.

    Note:Iftheuserinputsanyofthecrosssectionproperties(column19to48ontheSECTline),theprogramwillusetheinputvalueofthecglocation.Otherwisetheprogramcomputesitusingthecrosssectiondimensions.Stiffnessvaluesforanglecrosssectionsmaynotbeoverridden.

  • ThefollowingsampledefinestheplategirdersectionPLGRD2referencedbygroupZB1andboxsectionRECTANG.Theboxsectionhasstiffnessvaluesspecified.SectionW24X76referencedbygroupW02isobtainedfromthesectionlibraryfile.

    Note:Whenusingsectionsdefinedinthesectionlibraryfile,thesectionlabelspecifiedonthemembergrouplinemustmatchthenameinthelibraryfileexactly.Also,sectionsdefinedinthelibraryfilemaybeoverriddenbydefiningthesamesectioninthemodelfile.

    Angle,teeandbulbcrosssectionsmaybeutilizedasstiffeningelements.Forexample,ifthestemofateecrosssectioniscontinuouslyconnectedtoaplateorgirderstructure,thentheteecrosssectionwillreinforcethestructuretowhichitisattached.Tospecifythatanangle,teeorbulbcrosssectionistoserveasastiffener,enterSincolumn15oftherelevantSECTline.ThefollowingdesignatesthatanglecrosssectionSTFANGLwillbeusedasacontinuouslyconnectedstiffenerinthemodel.

    Note:Onlyangle,teeandbulbsectionsusedasstiffenersmaybe

  • specifiedinthismanner.

    1.8.3TubularMembersFortubularsections,sectionpropertiescanbedefinedonaSECTIONlineorcanbecalculateddirectlyfromtheoutsidediameterandwallthicknessinputontheGRUPline.WhenasectionlabelisspecifiedontheGRUPline,thepropertiesaredeterminedfromtheinputonthecorrespondingSECTIONline.ThesectionlabelfieldshouldbeleftblankwhensectionpropertiesaretobedeterminedfromtheoutsidediameterandwallthicknessspecifiedontheGRUPline.

    ThefollowingdefinestubulargroupsBL1andBL2.ThepropertiesfromBL1aredesignatedontheGRUPlinewhilethepropertiesforgroupBL2areobtainedfromsectionCAN105definedusingasectionline.

    1.8.4GroutedTubularMembers

    Groutedsectionsaredefinedusingatubularsection.TheODandthicknessofeachoftheconcentrictubesmustbespecifiedontheSECTIONline.Forpurposeofdeterminingtheweight,theannulusisassumedtobefilledwithgrout(150#/ft3).Forstiffnesspurposes,however,thegroutintheannulusisignored.

    ThefollowingdefinesthegroutedleggroupGL2usingsectionGLEG103whichcontains103.ODand90.0ODconcentrictubulars.

    1.8.5DentedTubularMembers

    DentedtubularsectionsaredefinedusingaSECTIONlinewithDTBincolumns1618.TheODandthicknessofthetubularmustbespecifiedontheincolumns5055and5660,respectively.Thedentdepthandgroutfillratioareinputincolumns6166and6771.Ifthesectionisbentandthebendisnotaccountedforusingoffsetsoradditionaljoints,entertheoutofstraightnessincolumns7276.

    ThefollowingdefinesthedentedsectionDENT24as24x1.0withadentdepthof4inches.Nogroutisincluded.

    Note:ThedentpointsinthelocalZdirectionandissymmetricaboutthelocalXZplane.Thedentlengthisthelengthofthememberorthelengthofthesegment.ThelocalZdirectioncanbeorientedrelativetothedefaultusingachordangleincolumns3641ofthecorrespondingMEMBERline(orareferencejointincolumns4245).

    1.8.6SegmentedMembers

    Thesectionlabeldefiningthecrosssectionproperties,orthediameterandwallthicknessfortubularmembers,foreachofthemembersegmentsisspecifiedontheGRUPlinecorrespondingtothatsegment.SeetheexampleintheSegmentedMembersundertheMaterialPropertiesSection.

    1.8.7PlateElements

    SectionpropertiesofaplateelementaredeterminedfromthethicknessspecifiedonthePLATElineforisotropicplatesthatarenotassignedtoplategroupsortheappropriatePGRUPlineformembrane,shear,andcorrugatedplatesorforisotropicplatesassignedtoagroup.ThepropertiesofstiffenedplatesaredeterminedfromtheplatepropertiesspecifiedonthePGRUPlineandstiffenersspecifiedonthePSTIFinputline.

    ThefollowingdefinesplatesAAAAandAAAB.ThethicknessforAAAAisdefineddirectlyonthePLATElinewhileAAABisobtainedfromthePGRUPlinedefininggroupP01.

    1.8.8ShellandSolidElements

    SectionpropertiesofashellelementaredeterminedfromthethicknessspecifiedontheSHELLlineforisotropicshellsthatarenotassignedtoshellgroupsviatheSHLGRPline.Solidelementshavenosectionpropertiesparticulartotheelement.

    1.8.9MaterialProperties

  • 1.8.10MembersorBeamElements

    Forbeamelements,materialpropertiessuchasmodulusofelasticity,shearmodulus,yieldstress(andshearareafactorfortubulars),arespecifiedontheappropriateGRUPline.ThegrouptowhichthememberisassignedisdesignatedontheMEMBERline.

    ThefollowingdefinesthematerialpropertiesforgroupsBL1andBL2.

    Note:Bydefault,theplategirderflangeyieldstressisassumedtobethesameasthewebyieldstress.Entertheflangeyieldstressincolumns4145oftheGRUPlinedefiningtheplategirdergroupifdifferentfromthewebyieldstress.

    1.8.11TaperedMembers

    TaperednonsegmentedelementsmaybedefinedusingtwoGRUPlines.ThepropertiesofthebeginningofthetaperaredefinedusingaGRUPlinewithBincolumn9whilethepropertiesattheendofthetaperaredefinedusingaGRUPlinewithEincolumn9.

    Forexample,thefollowingdefinesataperedplategirderwiththebeginningdefinedbysectionPGIRD18andtheenddefinedbyPGIRD12.

    Note:Thesectiontypemustbethesameateachendofthetaperedsegment.

    ThepreviouscaseistheonlycaseinwhichmorethanoneGRUPlinecorrespondstoasinglesegmentmember.InthiscasedonotspecifyasegmentlengthoradifferenceinmaterialpropertiesinthetwoGRUPlines.Inallothercases,thenumberofconsecutiveGRUPlineswiththesamegroupnamecorrespondstothenumberofsegmentsinagroup.

    Ifataperedbeamisneededwhosetopflangeisparalleltothelinebetweentheendpointjoints,itisnecessarytoaddtwointermediatejointsandsplitthememberintothreemembers,thefirsttapered,thesecondconstantcrosssection,andthethirdtapered.Thisisdoneasfollows:

    TaperedsegmentedelementsaredefinedusingaGRUPlineforeachsegment.ThepropertiesofthegroupforthebeginningofthetaperaredefinedusingaGRUPlinewithBincolumn9whilethepropertiesofthegroupfortheendofthetaperaredefinedusingaGRUPlinewithEincolumn9.AGRUPlinewithaBincolumn9willstartataperwiththeendofthetapercrosssectionobtainedfromthenextGRUPline.AGRUPlinewithanEincolumn9willendataperwiththebeginningofthetaperdeterminedfromthepreviousGRUPline.

    Forexample,thefollowingdefinesataperedplategirderwiththebeginningdefinedbysectionPGIRD12.ThemiddlesectionisconstantdepthdefinedbyPGIRD18andtheendisdefinedbyPGIRD12.

  • Note:Thesectiontypemustbethesameforeachsegmentofthetaperedmember.

    Inasegmentedmember,theaxisofthememberbetweenthejointscorrespondstotheneutralaxisofeachsegmentinthemember.IntheprevioustaperedplategirderthetopandbottomflangesofthePGIRD12segmentwouldexpandtoreachthePGIRD18section.Inataperedsegmentedmember,thetopandbottomflangesarenotusuallyparalleltothelinebetweenmemberendpoints.

    1.8.12SegmentedMembers

    AseriesofGRUPlineswiththesamegrouplabelareusedtodefinethepropertygroupofasegmentedmember.Eachinputlinecorrespondstooneofthesegmentsofthatgroup.Materialpropertiesofthesegmentinadditiontothesegmentlengthmaybespecified.Forexample,groupLG1inthefigurebelowwouldbespecifiedusingthreegrouplinesasfollows:

    Note:Thesegmentlengthforoneofthesegmentswasleftblanksothatitcanbedeterminedbytheprogram.Thisinsuresthatthesumofallsegmentlengthswillequalthememberlength.

    Thesegmentlengthmayalsobeexpressedasafractionofthetotalmemberlength.Inthiscase,thefractionforeachsegmentmustbeenteredandthesummationofallsegmentlengthfractionsmustequalone.Ifanysegmentlengthisleftblank,itisassumedthattheremaininglengthsarelengthsratherthanfractions.

    1.8.13PlateElements

    MaterialpropertiesforplateelementsincludingYoungsModulus,PoissonsRatioandyieldstressarespecifiedontheappropriatePLATElineforisotropicplatesthatarenotassignedtoaplategrouporonthePGRUPlineformembrane,shear,corrugatedandstiffenedplatesorforisotropicplatesassignedtoaplategroup.Ifaplategroupistobeused,thegrouptowhichtheplateisassignedisdesignatedonthePLATElinedefiningtheelement.

    ThefollowingdefinesthepropertiesforplategroupP01.

    1.8.14ShellandSolidElements

    Materialpropertiesforshellandsolidelementswhicharenotinputingrouplines(SHLGRPorSLDGRP,respectively)areinputdirectlyontheSHELLorSOLIDlinedefiningtheelement.

    1.8.15StiffenerData

    1.8.16PlateGirders

    Bydefaultplategirdermembersareassumedtohavewebstiffenerspacingequaltothememberlength.Plategirderwebstiffenerspacingcanbedesignatedincolumns6569ontheGRUPlinedefiningtheplategirdergroup.

    ThefollowingdesignatesahybridplategirdergroupnamedPG2thatreferencessectionPG36100.Theflangeyieldstressis50,thewebyieldstressis36andthewebstiffenerspacingisdesignatedas24.

    1.8.17TubularMembers

    Tubularmemberscancontainringand/orlongitudinalstiffenersasdefinedontheSECSCYlineimmediatelyfollowingtheSECTlinedefiningthetubularproperties.Enterthelongitudinalstiffenersectionnameincolumns915andthespacingincolumns1620.

    Theringstiffenersectionisdefinedincolumns2127alongwiththeringspacingincolumns2832.

    Note:Thebasicsectionproperties(i.e.ODandthickness)ofastiffenedtubularsectionmustbedefinedusingaSECTIONline.

    Thefollowingdefinesastiffened48.0x1.0tubularsectionnamedSCY48X1withringstiffenersdefinedbysectionRSTIF1spacedat24.

  • Note:StiffenedtubularsectionscanbecodecheckedusingAPI2UBulletincriteriabyspecifyingPTincolumns6768ontheOPTIONSline.

    1.9ELEMENTDATA

    TheSACSsystemallowstheuseofbeam,plate,shelland/orsolidelementsinthemodel.

    1.9.1MembersorBeamElements

    BeamelementsarespecifiedonMEMBERlinesfollowingtheMEMBERheaderinputline.Beamelementsarenamedbythejointstowhichtheyareconnected.Inadditiontotheconnectingjoints,thepropertygrouplabelalongwithsomeoptionalpropertydataarespecifiedontheMEMBERline.Memberpropertiesspecified,suchasfloodcondition,Kfactors,averagejointthicknessanddensityoverridedataspecifiedontheGRUPline.

    Thefollowingdefinesmember101201andassignsittopropertygroupGL2.

    Note:Whenanaveragejointthicknessisentered,thememberlengthusedforEulerbucklingandhydrodynamicloadgenerationisshortedbytheaveragejointthickness.Anyexistingloadsarenotaffectednormodifiedwhenanaveragejointthicknessisspecified.

    1.9.2MemberLocalCoordinateSystem

    Eachmemberhasanassociatedlocalcoordinatesystemwhichloadsandstressesmaybedefinedwithrespectto.Thedefaultmemberlocalcoordinatesystemisdefinedas:

    ThememberlocalXaxisisdefinedalongthememberneutralaxisfromthefirstconnectingjointspecifiedtowardthesecondconnectingjoint.

    Formembersthatarenotvertical,i.e.localXaxisisnotparalleltoglobalZ,thelocalZaxisisdefinedasperpendiculartolocalXaxis,lyingintheplaneformedbytheglobalZandlocalXaxesandhavingapositiveprojectionalongtheglobalZaxis.TherighthandruleisusedtodeterminethelocalYaxis.ThelocalZaxisforverticalmembers,i.e.memberswhoselocalXaxisisparalleltoglobalZ,isparalleltotheglobalYaxisandinthepositiveYdirection.ThelocalYaxisisdeterminedbyusingtherighthandrule.Seefigurebelow.

    Thedefaultorientationofthememberlocalcoordinatesystemcanbeoverriddenbyspecifyingachord(beta)angleand/oralocalZaxisreferencejointontheMEMBERline.Whenachordangleisinput,thedefaultlocalcoordinatesystemisrotatedaboutthelocalXaxisbytheanglespecifiedfollowingtherighthandrule.TheZaxisreferencejointisusedwiththelocalXaxistodefinethelocalXZplane.ThelocalZaxisisdefinedsuchthatitisperpendiculartothememberandpositivetowardthereferencejoint.

    1.9.3MemberInternalLoadandStressSignConvention

    ThesignconventionusedbythePostprogrammoduleforreportingmemberinternalloadsandstressesisdependentonthememberlocalcoordinatesystemasfollows:

    1. Axialtensionispositiveatbothendsofthememberwhilecompressionisnegativeatbothends.2. Positivebendingatbothendsofthemembercausesthecenterofthemembertodeflectdownwardorinthenegativedirectionofthelocalcoordinatesystem.3. Positiveshearforceisinthedirectionofthepositivelocalmembercoordinateatthebeginningofthememberandinthenegativelocalmembercoordinateattheendof

    themember.4. Apositivetorsionvectorisoutwardatbothendsofthemember.

    Thefigurebelowshowspositiveloadsandmomentsalongwithpositivestressesatthememberbeginningandend.

  • 1.9.4MemberEndFixity

    Bydefault,theendsofamemberarefixedtotheconnectingjointsforallsixdegreesoffreedom.However,anyofthesixdegreesoffreedommaybereleasedfromtheconnectingjointbyspecifyinga1intheappropriatecolumnontheMemberDescriptionline.Degreesoffreedomareinthememberlocalcoordinatesystem.

    Forinstance,thestartofmember101102isfixedforaxialloadandshear.Thetorsion,momentYandmomentZdegreesoffreedomarethereforereleasedbyspecifying000111incolumns2328.Theendofthememberisfixedforalldegreesoffreedom.

    1.9.5MemberOffsets

    Memberoffsetsareusedtoshortenorlengthenthememberortomovethememberwhentheneutralaxisisnotlocatedonthelinebetweenitsconnectingjoints.Whenoffsetsarespecified,theprogramcreatesarigidlinkbetweentheneutralaxisofthememberendandtheconnectingjoint.

    Theoffsetsdescribethelengthoftherigidlinkandmaybedescribedinlocalorglobalrectangularcoordinates.Thecoordinatesystemusedisspecifiedincolumn7ontheMEMBERline.Enter1forglobalcoordinatesystemor2forlocalcoordinatesystem.TheoffsetsaredefinedontheMEMBEROFFSETSlineimmediatelyfollowing

    Thefollowingdefinesoffsetsintheglobalcoordinatesystemformember203301.

    Note:Specifiedmemberendreleasesareappliedtotheconnectionbetweenthememberendandtherigidlink.

    1.9.6Kfactors/EffectiveBucklingLength

    Kfactorsoreffectivebucklinglength,butnotboth,maybespecifiedforbucklingaboutthelocalYandZaxes.KfactorsarespecifiedonthepertinentGRUPlineincolumns5259butmaybeoverriddenontheMEMBERlineincolumns5259.

    WhenKfactorsareused,theeffectivebucklinglengthiscalculatedastheKfactormultipliedbytheactualmemberlength.WheneffectivelengthsarespecifiedontheMEMBERline,Lmustbeinputincolumn47.TheeffectivebucklinglengthisthendeterminedusingtheKfactorfromtheGRUPlinemultipliedbucklinglengthspecified.

    Thefollowingdefinesmembers101201and201301.Theeffectivebucklinglengthformember101201isdeterminedusingtheKfactorsspecifiedforgroupT01sincenoKfactorsarespecifiedontheMEMBERline.Theeffectivelengthformember201301isdeterminedusingthebucklinglengthontheMEMBERlineandtheKfactorsspecifiedforgroupT01.

    1.9.7UnbracedLengthofCompressionFlange

    Thedistancebetweenbracingagainsttwistorlateraldisplacementofthecompressionflangeforuseincalculatingbendingallowablestressesfornontubularmembers,maybeinputontheGRUPorMEMBERlineincolumns6064.Thedefaultisthememberlength.

    Thefollowingdesignatesthattheunbracedlengthofthecompressionflangeformember101201is5.

  • Note:ValuesspecifiedontheMEMBERlineoverridevaluesspecifiedontheGRUPline.

    1.9.8ShearAreaFactorforTubularMembers

    Fortubularmembers,thefactorwithwhichtomultiplythecrosssectionareaforpurposesofshearstresscalculations,maybeinputontheGRUPlineincolumns6569orontheMEMBERlineincolumns6064.

    Thefollowingspecifiesashearareamodifierof0.5formember101501.

    1.9.9SkippingfromOutputReports

    AmembermaybeeliminatedfromoutputreportsbyinputtingSKontheMEMBERlineincolumns2021.IfSEwasdesignatedastheelementdetailreportoption,enterRPtohavethestressandunitycheckresultsreportedfortheparticularmember.Allmembersofagroupmaybeskippedfromoutputreportsbyspecifying9incolumn47oftheGRUPline.

    1.9.10MultipleMembersBetweenTwoJoints

    Amaximumoftwomembers,spanninginoppositedirection,areallowedbetweenthesametwojoints.Forexample,twomembersmaybemodeledbetweenjoints101and102,member101102andmember102101.However,allloadingappliedtothememberswillbeappliedtothefirstmemberspecified.Ingeneral,modelingtwomembersbetweenthesamejointsisapplicablewhenthesecondmemberisadummymemberusedonlytosimulateadditionalstiffness.

    1.9.11DefiningSpecialElementTypes

    1.9.12CableElement

    CableelementsaredefinedusingstandardbeamelementsexceptthatadditionalmemberdataisspecifiedontheMEMB2line.Thetensionusedtodeterminethecablestiffnessisinputincolumns814ontheMEMB2line.

    Thefollowingspecifiesatensionforceof10.0forcablemember101501.

    Note:EnterAincolumn16ontheMEMBERlineifadditionalmemberdataisspecifiedontheMEMB2line.

    1.9.13GapElement

    Elementscanbedesignatedastensiononly,compressiononly,noloadorfrictionelementsforGapanalyses.Thegapelementtypemaybedesignatedonthemembergrouplineincolumn30orontheMEMBERlineincolumn22usingT,C,NorF,Release6:Revision0SACSSACSIV219respectively.

    Note:Thegapelementtypeisonlyapplicablewhenrunningagapelementanalysisandisignoredforallotheranalysistypes.

    1.9.14XBraceorKBrace

    Bydefault,thebucklinglengthandKfactorsspecifiedontheGRUPandMEMBERlinesinthemodelareusedforunitycheckcalculationsforeachloadcase.

    MembersmakingupanXbraceorchordmembersofaKbracenotbracedoutofplanemaybedesignatedassuchusingtheMEMB2line.TheMEMB2lineallowsdesignationoftheKfactorand/orbucklinglengthtobeusedforloadcaseswherethememberispartofanXbraceorthechordofaKbrace.

    Note:TheXbraceorKbraceparametersareonlyappliedtotheaxisintheplaneoftheconnectionforloadcaseswherethememberisincompressionandthereferencemember(s)areintension.

    ThebracetypeXorKisdesignatedincolumn15.Thememberlocalaxis,YorZ,thatliesintheplaneoftheXbraceorKbraceisenteredincolumn16.Enterthereferencemember(s)thatwillbecheckedfortensionincolumns1732.TheKfactorand/orbucklinglengthtobeusedforloadcaseswherethememberispartofanXbraceorthechordofaKbraceisdesignatedincolumns3338and3945,respectively.

    Note:KbracesrequiretworeferencememberswhilethesecondreferencememberisoptionalforXbraces.

    Thefollowingexampledefinesparametersformembers101109and105109whicharechordmembersofaKbracewhoselocalYaxeslieinthebraceplane.ThediagonalorKbracemembersare109110and109112.Forloadcaseswherechordmembers101109and105109areincompressionandmembers109110and109112areintension,aKfactorof0.8andabucklinglengthof11.15istobeused.Forotherloadcases,theKfactorandbucklinglengthspecifiedinthemodelfilearetobeused.

  • Thisexampledefinesparametersformembers301309and307309whicharechordmembersofanXbraceandmembers303309,305310and310309whichmakeupthetwobraceelementsframingintothechord.ThememberslocalYaxeslieintheplaneofthebrace.Formembers301309and307309,aKfactorof0.9andabucklinglengthof8.71istobeusedforloadcaseswherethememberisincompressionandtheotherpairofmembersframingintothechord,303309and310309,areintension.Formembers303309,305310and310309,aKfactorof0.9andabucklinglengthof8.55istobeusedforloadcaseswherethememberisincompressionandmembers301309and307309areintension.Forotherloadcases,theKfactorandbucklinglengthspecifiedinthemodelfilearetobeused.

    1.9.15PlateElementsTheSACSsystemcontainsbothtriangularandquadrilateralorthotropicflatplateelements.Theelementisatrue6degreeoffreedomlinearstrainelement.Theorthotropicnatureoftheflatplateelementallowsforthemodelingofthefollowingplatetypes:Isotropic,Membrane,Shear,Stiffened&Corrugated.

    Theappendicescontainadetaileddiscussionofeachplateelementtype.

    1.9.16IsotropicPlatesForisotropicplateelements,theplatename,connectingjoints,thicknessandmaterialpropertiesmaybespecifiedontheappropriatePlateDescriptionline.Aplategroupisnotrequired.Ifaplategroupisspecified,thematerialpropertiesandthicknessareobtainedfromtheplategroupunlessoverriddenonthePLATEline.

    ThefollowingdefinesplatesAAAAandAAAB.ThepropertiesofplateAAAAaredefineddirectlyonthePLATElinewhileplateAAABobtainspropertiesfromgroupP01.

    1.9.17MembraneandShearPlates

    APLATElinecontainingtheplatename,connectingjointsandplatepropertygroupnameisusedtodefinetheplate.Theplatetype,thicknessandmaterialpropertiesarestipulatedontheappropriatePGRUPline.AnyplatematerialpropertiesinputonthePLATElineoverridethosespecifiedfortheplategroup.

    1.9.18StiffenedPlates

    APLATElinecontainingtheplatename,connectingjointsandplatepropertygroupnameisusedtodefineastiffenedplate.Theplatetype,materialproperties,stiffenersectionlabels,stiffenerdirection,location(top,bottomorboth)andspacingarespecifiedontheappropriatePGRUPinputline.MultiplePGRUPlineshavingthesamegrouplabelcanbeusedtodescribeplateswithmorethantwosetsofstiffeners.PlatematerialpropertiesinputonthePLATElineoverridethosespecifiedfortheplategroup.

    PlatestiffenercrosssectionsmaybeanyshapedefinablebytheSECTIONline.SpecialstiffenercrosssectionsnotavailableontheSECTIONlinemaybedefinedusingthePSTIFline.SectionsnotfoundinthesectionlibraryfilemustbedefinedinthemodelusingPSTIFlines.AnoutlineofPSTIFgeometryisshowninthediagramfollowing.

    ThefollowingsampleshowsplateAAAAdefinedbygroupP01.GroupP01isastiffenedplategroupwithW12X26runningalongthelocalXaxisat100.0spacing.W12X26isasectiondefinedinthesectionlibraryfile.

  • 1.9.19CorrugatedPlates

    Corrugatedplatesarespecialplateswithacombinationofbothinplaneandoutofplanestiffness.CorrugatedplatesaregivendirectlyonthePSTIFlinebyspecifyingfourparametersA,B,C,andDasshowninthefollowingfigure.

    ThefollowinginputdefinesacorrugatedplateAAABwithcorrugationsrunninginthelocalXdirection.Thethicknessoftheplateis0.25andthespacingCis12.TheAandBdimensionsare3and3,respectively.WiththestiffenerspacingunspecifiedonthePGRUPline,thestiffenerspacingdefaultstotheCdimension12.AspecificationofTorBfortoporbottomstiffenersisunnecessary.

    Note:AvonMisescheckversusanallowableof0.6Fyisusedtocheckthecorrugatedplate.Bucklingisnotincludedintheplatemodelorcodecheck.Ifbucklingcanoccur,theplatethicknessmayrequireadjustmenttolimittheplatecapacity.ThenormallimitationsapplysuchasaspectratioandgriddensityaswithanyFEmodel.Sincethecorrugatedplatehassignificantoutofplanestiffness,adjacentmembersareassumedtosharetheloadwiththecorrugatedplate.

    1.9.20PlateLocalCoordinateSystem

    Likebeamelements,eachplateelementhasanassociatedlocalcoordinatesystemwhichloadsandstressesmaybedefinedwithrespectto.TheplatelocalXaxisisdefinedattheplatecenterlinefromthefirstconnectingjointspecifiedtothesecondconnectingjoint.ThelocalXYplaneisdefinedbythefirstthreejointswithlocalYaxisperpendiculartothelocalXaxistowardthethirdjoint.TherighthandruleisusedtodefinethelocalZaxis.

  • Forexample,plateAAABconnectedtojoints614,615,627and626hasalocalXaxisfromjoint614tojoint615.ThelocalYaxisisperpendiculartothelocalXaxisinthedirectionofjoint627.

    1.9.21PlateOffsets

    Plateoffsetsmaybeusedwhentheplatescenterplaneisnotlocatedattheplaneformedbytheconnectingjointsorwhenoneoftheedgesdoesnotcorrespondtoalinebetweenthejointstowhichitisconnected.Plateoffsetscanalsobeusedtogeneratethetransitionbetweentheflatplatesandbeamelements.SeetheCommentaryforadetaileddiscussion.

    Whenanoffsetisstipulated,theprogramcreatesarigidlinkbetweentheplatecornerandtheconnectingjoint.Theoffsetsdescribethelengthoftherigidlinkandmaybedescribedinlocalorglobalrectangularcoordinates.ThecoordinatesystemusedisspecifiedonthePLATEline.

    LocalZoffsetsmaybespecifieddirectlyonthePGRUPlineincolumns3641.Forstiffenedplates,theautomaticoffsetoption,whichcalculatestheoffsetsuchthatthecenterplaneoftheplateitselfliesinthejointplane,maybeselectedbyenteringZincolumn10.AnylocalZoffsetsspecifiedareaddedtothecalculatedoffsets.

    ThefollowingdefinesplategroupsP01andP02containingalocalZoffsetof10.GroupP02isastiffenedplateandalsohastheneutralaxisoffsetoptiononsothattheoffsetismeasuredfromtheplatecenterinsteadoftheneutralaxis.

    OffsetsdefiningthelocationoftheplateedgesaredesignatedonthetwoPLATEOFFSETSlinesimmediatelyfollowingthePLATEinputline.Thefirstoffsetlinecontainstheoffsetsforthefirsttwojoints,andthesecondcontainstheoffsetsforthethirdandfourth(optional)joint(s).Thecoordinatesystemthattheoffsetsaredefinedwithrespecttoisdesignatedincolumn43onthePLATEline.Enter1forglobalcoordinatesor2forlocalcoordinates.

    ThefollowingdefinesplateAAABwithglobalXoffsetof10.0specifiedateachjoint.

    1.9.22SkippingfromOutputReports

    AplatemaybeeliminatedfromoutputreportsbyinputtingSKincolumns3132onthePLATEline.IfSEisdesignatedforelementdetailreportsontheOPTIONSline,enterRPincolumns3132tohavethestressandunitycheckresultsreportedfortheparticularplate.

    1.9.23PlateModelingConsiderations

    Unlikebeamelements,flatplateelementsarenotclosedformsolutions.Therefore,therearelimitationstothegeometryandmeshsizethatarenecessarytogenerateaccuratestressesanddeflections.ThefollowingsuggestionsaremadefortheuseofflatplatesintheSACSsystem:

    1. Theaspectratio(widthversusheight)forplateelementssubjectedtooutofplanebendingshouldbelimitedto6to1forthreenodeplatesand3to1forfournodeplates.Iftheprimaryplateloadisintheplaneoftheplatethentheaspectratiocanbeincreasedto10to1forthreenodeplatesand5to1forfournodeplates.

    2. Interiorangleswithinaplateshouldnotexceed180degrees.3. Fournodeplatesarelimitedto3degreesofoutofplanetolerancebetweentheRelease6:Revision0SACSSACSIV225fournodessuchthattheanglebetweenthe

    normalstoanytriangularportionsofthefournodeplatecannotexceedthisvalue.4. Fordetailedstresses,ameshsizeoffournodesbyfournodeswillaccuratelyrepresentaflatplateforbothstiffnessandstresscalculations.Acoarsermeshspacingwill

    resultinrelativelyaccuratestiffnessrepresentationbutstresscalculationsmaynotrepresentlocalstressvariationswithintheplate.5. Becausefournodeplatesarerepresentedinternallyby4threenodeplates,a4nodeplateisinherentlymoreaccuratethana3nodeplate.6. Platestressesfortraditionalbeamstriptheoryplatesareonlyreportedatthegeometriccenteroftheplate.PlatestressesforDKTplatesarereportedatthecorner

    jointsandthegeometriccenter.Platestressesreportedatthegeometriccenterofplatesaretheoreticallymoreaccuratethanthoseatcornerjoints.

    1.9.24ShellElements

    TheSACSprogramcontains6nodetriangular,and8or9noderectangularisoparametric

  • shellelements.Shellelementscanhaveconstantthicknessorthicknessmaybespecifiedateachnode.Rigidlinkoffsetscanbemodeledateachnodetoallowforconnectioneccentricities.

    Materialpropertiesincludingmodulusofelasticity,Poissonsratio,yieldstress,coefficientofthermalexpansionanddensityarespecifiedeitherontheSHLGRPlineorontheSHELLlineitself.Shellthickness,ifconstant,maybespecifiedeitherontheSHLGRPlineorontheSHELLline.Forshellswithvaryingthickness,thethicknessateachnodeisspecifiedontheSHELLTHICKlineimmediatelyfollowingtheSHELLlinedefiningtheelement.

    1.9.25ShellLocalCoordinateSystem

    Fortriangularshellelements,thelocalXaxisisdefinedfromnodeonethroughnodethree.

    ThelocalYaxisisperpendiculartothelocalXaxisandliesintheplaneformedbynodesone,threeandfive.TherighthandruleisusedtodeterminethelocalZaxis.ThelocalXaxisforarectangularshellisdefinedbynodesoneandthree.ThelocalYaxisisperpendiculartothelocalXaxisandliesintheplaneformedbynodesone,threeandseven.ThelocalZaxisisdeterminedbytherighthandrule.Adetaileddiscussiononshellelementsislocatedintheappendices.

    1.9.26IntegrationPoints

    ThenumberofGaussianIntegrationpointsalongtheelementsurfaceisspecifiedeitherontheSHLGRPlineorontheSHELLlineitself.TheuserspecifiesFine,MediumorCoarseintegrationcorrespondingto13points,7pointsor3pointsrespectivelyfortriangularshells,or4x4,3x3or2x2meshrespectivelyforrectangularshells.Therearealsotwointegrationpointsthroughtheelementthicknessforbothtriangularandrectangularshellelements.

    1.9.27ShellOffsets

    Shelloffsetscanbemodeledateachnodetoallowforconnectioneccentricities.TheoffsetsarespecifiedontheSHELLOFFSETlineinglobalcoordinates.Twooffsetlinesarerequiredfor6nodeelementsandthreearerequiredforeightorninenodeelements.

    1.9.28ShellElementReport

    IfPTisdesignatedintheelementdetailreportfieldontheoptionsline,thestressdetailsforashellelementmaybeskippedbyinputtingSontheSHLGRPorSHELLline.IfSEorisdesignatedintheelementdetailreportfieldontheoptionsline,allshellelementdetailswillbeskipped.

    1.9.29SolidElements

    TheSACSprogramcontains4nodetetrahedron,5nodepyramid,6nodewedgeand8nodebricksolidfiniteelementshapes.Theelementsareconstantstrainelementsanddonotrestrainrotationatthenodes.Thesolidname,connectingjointsandmaterialpropertiesincludingmodulusofelasticity,Poissonsratio,yieldstress,coefficientofthermalexpansionanddensityarestatedeitherontheSLDGRPlineorontheSOLIDlineitself.

    Beingasthesesolidfiniteelementsdonotcontaininherentrotationalstiffness,therotationaldegreesoffreedomforjointscontainedwithinonlysolidelementswillbeconstrained.SACSautomaticallygeneratestheconstraintsofrotationaldegreesoffreedomforjointswhichareexclusivelycontainedinsolids.Withtheextraconstraintsonsolidjoints,therewillbeextrareactionforcesgeneratedinthePostoutputfortheseconstraineddegreesoffreedom.

    Inherentrotationaldegreesoffreedominsolidelementsmaybemodeledbyspecifying6incolumn71oftheOPTIONSline.Theseelementsareacondensationofhigherorderisoparametricsolidelements,withtherotationaldegreesoffreedombeingobtainedfrommidsidenodetranslationaldegreesoffreedom.

    Jointorderinginsolidelementsisfree.Assuch,arbitraryjointordermaybeinputwiththeprogramdeterminingsolidfaces.Therearetwooptionsforjointordering:(1)thedefaultmethodwhichrequiresflatsolidfacesand(2)amorerobustschemeallowingsolidfacewarpage.Thesecondscheme,whichisspecifiedwithanRincolumn72oftheoptionsline,hastheadditionalfeatureofallowingtheprogramtobypassjointorderingforanysolidwhenanNisspecifiedincolumn44oftheSOLIDline(orcolumn

  • 14oftheSLDGRPline).WiththedefaultjointorderingmethodanNspecifiedincolumn44oftheSOLIDline(orcolumn14oftheSLDGRPline)willmeanthatonly8nodebricksolidelementsarenotreordered.Thedefaultjointorderingforsolidsisshowninthefigure.

    1.9.30SolidLocalCoordinateSystem

    ThelocalXaxisisdefinedbynodesoneandtwo.ThelocalXYplaneisdefinedbynodesone,twoandthree.ThelocalYaxisisperpendiculartothelocalXaxis,positiveinthedirectionofnodethree.TherighthandruleisusedtodeterminethelocalZaxis.

    1.9.31SolidOffsets

    SolidoffsetscanbespecifiedtoaccountforeccentricitiesorelementtransitionsontheSOLIDOFFSETlinefollowingtheSOLIDlinedefiningtheelement.

    Normallyoffsetsareusedtolocatetheelementrelativetotheconnectingjointsusingarigidlink.Offsetscanalsobeusedtogeneratetransitionsbetweensolidelementsandisoparametricshells,flatplates,andmembers.Forexample,ifafournodefaceofasolidelementisconnectedtoabeamorplateelement,thesolidfaceshouldbedescribedusingonlytwojointslyingatthecenteroftheface.Twojointsshouldbespecifiedasthefourconnectingjoints(i.e.101,102,102,101).Offsetsarethenspecifiedateachconnectingjointtooffsetthejointstothecornersoftheelement.Theresultingoffsetsolidelementwillformafull6degreeoffreedomtransitionconnectionbetweentheelements.

    1.10JOINTS

    JointsaredefinedontheJOINTinputlinewhichcontainsthejointname,globalcoordinatesandfixity.

    1.10.1JointCoordinates

    TheX,YandZglobaljointcoordinatesmaybeinputinfeet,inchesorfeetplusinchesforEnglishunitsorinmeters,centimetersormeterspluscentimetersformetricunits.Forexample,ajointwithanXcoordinateof25.50feetmaybeenteredas25.5feet,306.0inchesor25.0feetand6.0inchesasillustratedbythefollowingthreeJOINTlines:

    AjointwithanXcoordinateof25.5metersmaybeenteredas25.5meters,2550.0centimetersor25.0metersand50.0centimetersasillustratedbytheinputlinesbelow:

    1.10.2JointSupport/Fixity

    Thejointsupportconditionorfixityofeachofthesixdegreesoffreedom(X,YandZtranslationandrotation)isspecifiedontheJOINTlineincolumns5560.

    Bydefault,eachdegreeoffreedomisassumedfree.Ablankor0indicatesthatthedegreeoffreedomisfree.

    1.10.3FixedtoGround

    A1indicatesthatthedegreeoffreedomisfixedtoground.Forapinnedsupport,afixityof111orPINNEDshouldbespecified.Afixedsupportcanbespecifiedas111111orFIXEDincolumns5560.

    Thefollowingshowsjoint297aspinned(i.e.111)andjoint298fixedforXandYtranslationandforrotationabouttheglobalZaxis(i.e.110001).

    Note:Jointswithspringsupportsortowhichprescribeddisplacementsaredefinedmustbefixedtogroundforanydegreeoffreedomtowhichaspringvalueordisplacementisassigned.

    1.10.4PileheadSupports

    Jointsthroughwhichalinearstructureisconnectedtoanonlinearsystemarecalledpileheadsupports.Thestiffnessandloadmatricesofthelinearstructurearecondenseddowntothepileheadjointsinordertoaccountfortheeffectsofthelinearstructureinthenonlinearanalysis.ThisisrequiredwhenusingthePSImoduletoaccountforthenonlinearpile\soilinteraction.AjointisdesignatedasapileheadjointbyspecifyingPILEHDincolumns5560ontheJOINTline.

    Thefollowingshowsjoint299asapileheadsupport.

  • Note:Forstaticlinearanalysis,jointswithPILEHDstipulatedasthesupportconditionareassumedtobefixedsupports.

    1.10.5SpringSupports

    Anyoralldegreesoffreedomofajointmaybedesignatedasatranslationorrotationelasticspringprovidedthatthedegreeoffreedomisdesignatedasfixed(i.e.1)ontherespectiveJointDescriptionline.ThespringconstantsforsprungdegreesoffreedomarespecifiedontheJointElasticSupportinputlineincolumns1253followingtheJointDescriptionlineandareenteredwithrespecttothesupportjointcoordinatesystem.Thesupportjointcoordinatesystemistheglobalcoordinatesystembydefault.

    Thefollowingdefinesjoint297asapinnedsupportwithaspringconstantof1000.0fortheverticaldirection(Ztranslationdegreeoffreedom).

    Whenallthreetranslationaland/orrotationaldegreesoffreedomaredesignatedassprings,thesupportjointcoordinatesystemmayberedefinedusingtworeferencejointsspecifiedincolumns7376and7780ontheJointElasticSupportline.ThesupportjointlocalXaxisisdefinedbythesupportjointandthefirstreferencejoint.ThelocalXZplaneisdefinedbythesupportjointandthereferencejointswiththelocalZaxisperpendiculartothelocalXaxis.

    Forexample,joint297isdefinedaspinnedwithaspringconstantof100.0alongalinebetweenjoints297and505(supportlocalX).ThejointsupportcoordinatesystemXZplaneisdefinedusingjoint702.

    Note:Degreesoffreedommustbesprungasasetwhenthesupportcoordinatesystemisredefinedbyreferencejoints.Therefore,sincethelocalYandZdegreesoffreedomaretobefixed,theywereassignedaveryhighspringconstant.

    1.10.6RetainedforDynamics

    Fordynamicanalysis,unrestraineddegreesoffreedomareconsideredasslavedegreesoffreedom.Specify2intheappropriatecolumntodesignateafreeDOFasamasterDOFfordynamics.

    Forexample,joint297isfreeforstaticanalysisbuttranslationXandYdegreesoffreedomareconsideredmasterorretaineddegreesoffreedomformodeshapeextraction.

    1.10.7MasterDegreesofFreedom

    ThedisplacementcharacteristicsofajointmaybeappliedtootherjointsusingtheMASTERline.Thislinespecifiesmasterdegreesoffreedomforwhichallcoupledjointswillhaveidenticaldisplacements.Thisisusefulinmodelingrigidstructuralelementswhichattachtoabodyandsupplyuniformdisplacementforseveraljointsinastructure.Asaruleofthumb,coupledjointsshouldnotbecoupledforalldegreesoffreedomtypically,distinctpointsmaybeforcedtodisplacesimilarlybutmaynotrotatesimilarly.Thefollowingexamplespecifiesthatjoints22,23,24and25havethesameX,YandZdisplacement(1incolumns13,15and17,respectively)asmasterjoint20.

    Note:Adegreeoffreedomforaparticularjointmaynotbecoupledtomorethanonemasterjoint.Similarly,amasterjointmaynotbecoupledtoanothermasterjoint.

    1.11LOADING

    TheSACSsystemsupportsloadingappliedatjointsandtomembers,platesandshellelements.LoadinginformationisgenerallyspecifiedafterallgeometryinformationinthemodelfileandmaybespecifiedbytheuserorgeneratedbyoneoftheSACSprogrammodules.AlinewithLOADspecifiedincolumns14isusedtosignalthebeginningoftheloadingsectionofthemodel.

  • 1.11.1LoadConditions

    RelatedloadingisusuallygroupedintoaLoadConditionorLoadCasewithauniquenamedesignation.Loadcasesarenamedusingupto4characters(numericoralphanumeric).

    TheLoadConditionHeaderline,labeledLOADCN,signalsthebeginningoftheloadconditionspecifiedincolumns810.AllloadinginformationpertainingtothedesignatedloadconditionfollowsontheLOADlinesimmediatelyafter*.

    Note:Platetemperatureloadandjointspecifieddeflectionsareexceptions.Seediscussionlaterinthissection.

    1.11.2MemberDistributedLoadsandMoments

    MemberdistributedloadsarespecifiedusingtheLOADlinetitledMemberDistributedLoadsbydesignatingtheappropriatememberjointnamesincolumns815andUNIFincolumns6669forloadandDMOMincolumns6669formoment.LoadingmaybespecifiedinthedirectionoftheglobalormemberlocalX,YorZcoordinateaxes.Ingeneral,thefollowingdatashouldbespecifiedfordistributedloadsormoments:

    1. Thedistancefromthestartofthemembertothepositionthattheloadstarts,2. Themagnitudeperunitlengthoftheloadatthestartposition,3. Thedistancefromthestartpositiontothepositionthattheloadends,and4. Themagnitudeperunitlengthoftheloadattheendposition.

    Ifthestartoftheloadcoincideswiththestartofthemember,thenthestartpositionoftheloadneednotbespecified.Furthermore,iftheendoftheloadcoincideswiththeendofthemember,thenthedistancefromtheloadstarttotheloadendneednotbespecified.

    Thefollowingdesignatesadistributedloadformember101102appliedintheglobalZdirection.Theloadbegins1.0fromthebeginningofthememberwithamagnitudeof2.5k/ftandisappliedalongthememberfor5.0ft.Thefinalvalueis7.5k/ft.Member102103hasadistributedmomentaboutthelocalXaxis.Themomentatthebeginofthememberis0andincreaseslinearlyto10.0atthememberend.

    Note:Thebeginningpositionoftheloadingormomentismeasuredfromthememberendandnotfromthebeginjoint.Theeffectsofoffsetsshouldbetakenintoconsiderationwhenspecifyingthisposition.

    1.11.3MemberConcentratedLoadsandMoments

    MemberconcentratedloadsormomentsarespecifiedontheLOADlinetitledMemberConcentratedLoadsbydesignatingthememberjointnamesincolumns815andCONCorMOMTincolumns6669.Concentratedloadsormomentsmaybespecifiedwithrespecttotheglobalormemberlocalcoordinateaxes.ThedistancefromthebeginendofthemembertotheloadmustbespecifiedandshouldtakeintoconsiderationanymemberoffsetsalongthememberlocalXaxisatthebeginend.

    ThefollowingdefinesaconcentratedloadintheglobalZdirectiononmember101102.Theloadmagnitudeis57.0andisappliedadistanceof4.5fromthebeginningofthemember.Also,amomentof345.isappliedaboutthelocalZaxisofmember101102atthesamelocation.

    1.11.4MemberTemperatureLoads

    Membertemperatureloadsarestipulatedbydesignatingthememberconnectingjoints,thecoefficientofthermalexpansionandTEMPintheappropriatecolumnsontheLOADlinetitledMemberTemperatureLoad.ConstanttemperaturechangesorlineartemperaturegradientsalongthememberlocalX,YorZaxismaybespecifiedwithrespecttotheambienttemperature.

    FortemperaturechangesalongthelocalYorZaxis,thechangeattwosurfacesataspecifieddistanceapartareinput.Thedistancebetweenthetwosurfacesaremeasuredalongthememberlocalaxisspecifiedabouttheneutralaxis.Forchangesalongthememberaxis,thetemperaturechangeatthebeginningandendofthememberarespecified.

    Note:Whenspecifyingthetemperaturechangesalongthemember,1.0shouldbeinputasthedistancebetweenthetemperaturesurfaces.

    TheinputlinesforcasesA,B,C,DandEillustratedinthefigureaboveformember12wheredzis20,dyis8andthecoefficientofexpansionis0.65xE05followrespectively:

  • 1.11.5JointLoads

    LoadsonjointsaredesignatedusingtheLOADlinetitledJointLoads.Thejointname,forcesactingintheglobalX,YorZdirectionsand/ormomentsabouttheglobalX,YorZaxisarestipulated.GLOBandJOINarespecifiedincolumns6164and6669respectively.

    ThefollowingdefinesaforceintheglobalYdirectionof50.0andamomentabouttheZaxisof345.0injoint123.

    1.11.6JointSpecifiedDisplacements

    Forceddisplacementsforjointdegreesoffreedomdesignatedasfixedtoground,maybespecifiedusingtheJOINTlinenamedJointSpecifiedDeflection.TheJointSpecifiedDeflectionlineshouldfollowimmediatelyafterthedefiningJointDescriptionlineinthemodelfile.Thejointname,thespecifiedtranslationsand/orrotationswithrespecttotheglobalcoordinatesystemandPERSETmustbespecified.TheloadconditiontowhichthedeflectionsapplyorALLforallloadconditionsisstipulatedincolumns6972.

    Thefollowingdesignatesadisplacementof3.5intheglobalZdirectionatjoint123inloadcaseMISC.

    Note:ThedegreeoffreedombeingdisplacedusingthePERSETlinemustbefixedtoground.

    1.11.7PlatePressureLoads

    PlatepressureloadscanbeapplieddirectlytotheplateusingtheLOADPRESlines.Pressureloadingcanbeappliedtoindividualplatesortoplategroupsasuniformpressureoralinearlyvaryingpressure.

    1.11.8UniformPressure

    Foruniformpressure,thepressureisdesignatedincolumns1723andthekeywordUNIFisspecifiedincolumns6669.Specifyeithertheplatenameorplategroupnameincolumns811or1315,respectively.

    Thefollowingappliesauniformpressureloadof100toplateA001andallplatesingroupPLT.

    1.11.9VaryingPressure

    Forlinearingvaryingpressure,thepressureatthejointsisspecifiedincolumns1744andthekeywordJTJTisspecifiedincolumns6669.Specifyeithertheplatenameorplategroupnameincolumns811or1315,respectively.

    ThefollowingappliesavaryingpressureonplateU002.

    1.11.10SubmergedPressure

    PressureloadsduetoheadcanbeapplieddirectlytoplateelementsusingtheLOADPRESlinewiththeSUBMkeywordspecifiedincolumns6669.

    Entereithertheplatenameorplategroupincolumns811or1315,respectively.Thesurfaceelevationandwaterdensityareenteredincolumns1723and2430,respectively.

    1.11.11PlateThermalLoads

    PlatethermalortemperatureloadsarespecifiedontheLOADPTEMlinesintheloadingsectionofthemodel.Temperatureloadingmaybespecifiedforindividualplatesbyenteringtheplatenameincolumns811orforplategroupsbyenteringthegroupnameincolumns1315.Thecoefficientofthermalexpansionandplatetemperaturechangeswithrespecttotheambienttemperaturearerequired.

    1.11.12UniformTemperature

    UniformtemperaturechangeisdesignatedbytheUNIFkeywordincolumns6669andauniformtemperaturespecifiedincolumns1723.

    ThefollowingshowsplateD100andallplatesingroupAAAwithauniformtemperatureof135inloadcaseT135.

  • 1.11.13VaryingTemperature

    AtemperaturechangeateachjointisdesignatedbytheJTJTkeywordincolumns6669.Thetemperatureateachjointisinputincolumns1744.

    1.11.14SurfaceTemperature

    SurfacetemperatureloadingisspecifiedusingtheTPBMkeywordincolumns6669.Entertheuppersurfaceandlowersurfacetemperaturesincolumns1723and2430,respectively.

    ThefollowingshowsplateD101andallplatesingroupABCwithanuppersurfacetemperatureof100andalowersurfacetemperatureof75inloadcaseloadcaseT135.

    1.11.15ShellPressureLoads

    GeneralshellpressureloadsappliedatthejointsarestipulatedontheLOADSPGlinetitledShellPressureLoadlocatedwithintheappropriateloadconditiondata.Thepressureisappliedtoeitheroneshell,arangeofshellsorallshellswithinthemodel,byspecifyingoneshellname,twoshellnamesornoshellname.Thepressureateachoftheshelljointsisdesignatedincolumns1880.

    ConstantorlinearlyvaryingpressurewithinashellelementmaybespecifiedontheLOADSPCline.Byspecifyingoneshellname,twoshellnames,ornotspecifyingashellname,theShellVariablePressurelinecanapplytooneshell,arangeofshellsorallshellswithinthemodel.Forconstantpressure,thepressureisspecifiedincolumns1824.Forvaryingpressure,thepressuregradientsinthedirectionofeachoftheglobalaxesarespecifiedincolumns2545.

    1.11.16ShellTemperatureLoads

    ShelltemperatureloadsarespecifiedwithintheloadconditiondatausingtheLOADlinetitledShellTemperatureLoad.Constanttemperature,temperaturevaryingatmidsurface,thetopsurfaceorthebottomsurfacemaybespecifiedbySTC,STM,STTorSTBrespectively.Theshellname,ornamesforarangeofshells,towhichtheloadistobeappliedalongwiththetemperaturechangeateachjointarespecified.Ifnoshellnameisspecified,theloadingisappliedtoallshellsinthemodel.Forconstanttemperature,typeSTC,thetemperaturechangeatthefirstjointonlyisrequired.

    1.11.17LoadCombinations

    LoadcombinationsconsistingofbasicloadconditionsorpreviouslydefinedloadcombinationsaredefinedusingtheLCOMBinputline.LoadcombinationlinesfollowthebasicloadconditionsinthemodelandmustbeinitiatedwithaLCOMBheaderline.

    Note:BasicloadcasesmaynotbedefinedaftertheLCOMBheaderline.

    Theloadcombinationnamemustbeauniquenamenotusedbyabasicloadcaseorbyanothercombination.Theloadcasesorcombinationsmakinguptheloadcombinationalongwiththeappropriateloadfactorstobeappliedarespecified.TheloadcombinationdefinitionmaybecontinuedbyrepeatingtheLCOMBlinewiththecombinationnamespecifiedincolumns710,sothatuptofortyeightloadcomponentsmaybespecified.

    ThefollowingdefinesaloadcombinationnamedST03consistingof100%ofloadcaseMISC,110%ofDEADand85%of7.

    Note:Forastandardstaticanalyses,loadcombinationsarenotsolvedinthesolutionphase.Resultsareobtainedbysuperpositionofthebasicresultsduringpostprocessing.BecausePSIanalyseshavenonlinearsolutions,resultsforonlyloadcombinationsandbasicloadcasesspecifiedontheLCSELlineareobtained.

    2.0SACSIVTROUBLESHOOTING

    2.1MODELSINGULARITY

    Modelsingularityisthecommontermusedtodescribeproblemswithinastiffnessmatrixthatmaylimittheaccuracyofthesolutionorpreventitentirely.Inmatrixtheory,astructuralmodelmatrixmustbePositiveDefiniteforittobeinverted.SomecommonreasonsforastructuralmodelmatrixbecomingNonPositiveDefiniteareasfollows:

    1. Portionofstructureorentirestructuretranslatingasarigidbodyinspace.2. Portionofstructureorentirestructurerotatingasarigidbodyinspace.3. Ajointconnectedtothestructureistranslatingorrotatinginspacebecauseaparticularendfixityforallmembersconnectingtothejointisreleased,thereforethejoint

    canmoveorspinfreely.4. Memberorplatestructuralpropertiesarezeroforallelementsconnectingtoajointsothatthejointiseffectivelyunrestrained.

    Whenusingacomputertoperformasolution,thereexistsafinitenumberofdigitsthatcanbeusedtodefineanyonenumber.Duringnumericalprocedureswithintheprogram,accuracymaybelostduetotherelativesizeofthenumbersusedinthemathematicaloperations.SACSIVdeterminestheaccuracylostduringsolutionandreportsitastheMaximumNumberofSignificantDigitslostintheoutputlistingfile.Ingeneral,solutionswithsixorfewersignificantdigitslostaresufficientlyaccuratewhilesolutionswithtwelveormoresignificantdigitslostarenot.

    Itispossibleforthesolutiontolosesufficientaccuracysuchthatthesolutionbecomestrivialorthestructurebecomesmathematicallyunstable(matrixisNonPositiveDefinite).Commonreasonsforastructuralmodeltoloosesignificantaccuracyorbecomemathematicallyunstablefollow:

    1. Verystiffelementattachedtoaverysoftelement.2. Astiffstructureattachedtogroundthrougharelativelysoftspringsystem.3. Astructurewithlittlestiffnessattachedtogroundthrougharelativelystiffspringsystem.

  • 2.2DEBUGGINGTHEMODEL

    IfSACSIVdetectsaNonPositiveDefinitediagonalterminthestiffnessmatrix,itwillindicatetherowofthematrixwhereitoccurred.Ifthevalueisbetweenzeroand0.0001itwillberesetto1.0,therowandcolumnwhereitoccurredwillbenulledandthesolutionwillcontinue.Ifthediagonalvalueislessthan0.0001theprogramterminatesexecutionandreportsthecriticaljointdegreeoffreedom.

    Forinstanceswhereanunrestrainedportionofthestructureactsasamechanismforsingularitytooccur,thelastjointofthemechanism,inoptimizedorder,isreported.Ifthereportedjointisindeedrestrained,theInterpretedInputEchoReportcanbeusedtoisolatethecriticalportionofthestructure.TheinterpretedJointDataListportionofthereportcontainsthejointdegreeoffreedomandmatrixrowlocationlistinthefollowingformat:

    1. ThedegreesoffreedomforeachjointinthestiffnessmatrixarereportedasrotationX,YandZfollowedbytranslationX,YandZ.2. Foreachjoint,thebeginningrownumberpertainingtotherotationXdegreeoffreedomislistedinthereport.TherownumberspertainingtorotationY,andZand

    translationX,YandZareobtainedbyadding1,2,3,4,and5respectivelytotherowreportedforthejointrotationXdegreeoffreedom.

    Thecriticalrowlocationisreportedinthesolutionlistingfile.

    3.0COMMENTARY

    3.1ANGLECROSSSECTIONS

    TheorientationofananglesectionisdeterminedfromthesignsoftheAandBdimensionsinputontheSECTinputline.

    Note:PositiveBdimensionisinthenegativelocalYaxisdirection.

    SACSIVusespropertiesaboutthememberprincipalaxesforstiffnesscalculations.Normally,thecrosssectioninputlocalaxesareaxesofsymmetryandarethereforeprincipalaxes.Forangles,however,theinputaxesarenotprincipalaxes.Therefore,theinertiapropertiescalculatedabouttheinputaxesmustbetransformedtotheprincipalaxesbytheprogramusingthefollowing:

    Theshearareasabouttheprincipalaxesareusedinmemberstiffnesscalculationsandaretakenas:

    wheretheIViandQViarewithrespecttothemprincipalaxis.

    BendingstressandEulerbucklingstressarecalculatedwithrespecttotheprincipalaxes.Theeffectivebucklinglengthfactors,KyandKz,areinputwithrespecttothelocalcoordinates.TheprogramtransformstheinputKfactorsintotheprincipalaxessystemtoobtainthefactorstobeusedinEulerbucklingcalculations,from:

  • K1,2=PrincipalaxeseffectivelengthfactorsKy,z=Inputeffectivebucklinglengthfactors=Anglebetweeninputaxesandprincipalaxes

    Theshearstressatanypointiscalculatedwithrespecttothelocalcoordinatesystemusingthefollowingequation:

    Iy,Iz,Iyz=InertiapropertieswithrespecttoYandZaxesVy,Vz=ShearinYandZdirectionst=ThicknessQy,Qz=FirstmomentsaboutYandZaxesofportionofthecrosssectionareabetweenthepointandthefreeedge(Shadedareainfigurebelow).

    Tensileandcompressivestressesareevaluatedatpoints1,2,3,4and5shownintheaboverightfigure.Shearstressesaredeterminedatthepointsofmaximumshearstressineachleg.Thesepointsarelocatedautomaticallyforeachloadcase.

    Note:Althoughprincipalaxesareusedinstiffness,bendingstressandEulerbucklingcalculations,theoutputresultsarereportedwithrespecttothelocalcoordinateaxes.

    3.2FLATPLATECROSSSECTIONS

    TheSACSIVprogramcontainsbothtriangularandquadrilateralorthotropicflatplateelements.Theseelementsarederivedfromclassicalflatplatetheorytechniquesbyincorporatinganempiricaltheorythatincludesaconstantstraininplaneextensionalandshearmodel,anedgebeamrepresentationforoutofplanebendingandshearmodelandaninplanetorsionmodel.Thiscombinationresultsinatrue6degreeoffreedomlinearstrainelementthathasexcellentconvergenceproperties.

    3.2.1IsotropicPlates

    Theisotropicplateelementisafull6degreeoffreedombendingelementthatassumesconstantinplaneandoutofplanepropertiesinalldirections.Thiselementisapplicableforplateswithconstantthicknessandmaterialproperties.

    3.2.2MembranePlates

    Themembraneplateelementissimilartotheisotropicplateelementexcepttheoutofplanebendingandshearstiffnessissettozero.Theoutofplanedeflectionsandrotationsarenotrestrained.Thiselementisapplicablewhenthebendingstiffnessoftheplateisnotcoupledtothesupportingframeorthebendingstiffnessoftheplateisincludedinthesupportingstructureelements.

    3.2.3ShearPlates

    Shearplateshaveonlyinplaneshearstiffnesswithallothercomponentsofstiffnesssetequaltozero.Thiselementcanbeusedtorepresentshearwallsorageneralshearstiffnessforcoarsefiniteelementmeshrepresentation.

    3.2.4StiffenedPlates

    StiffenedplatesarerepresentedbyanisotropicplatewithadditionaloutofplanebendingandshearstiffnessincludedtorepresentparallelmemberelementsattachedtotheplateintheplatelocalXandYcoordinatedirections.Theadditionalbendingandshearstiffnessdoesnothavebiaxialcoupling(theXstiffenersarenotcoupledtotheYstiffeners).

    Thestiffenedplateelementcontainstheflatplatepropertiesandtheaveragememberstiffenerpropertiesinbothlocalcoordinatesincludingtheplacementoftheplaterelativetothemembersstiffeners.Theoutofplanebendingstiffnesscalculationforthestiffenersassumesaneffectiveplatewidthactingwiththestiffenersforcalculatinganaverageadditionalmomentofinertiaduetothestiffeners.Theeffectiveplatewidthislimitedtothesmalleroftheparallelstiffenerspacingor30timestheplatethickness.

    Stiffenedplateelementsareeffectiveforincludingthestiffnessofplatesandmembersinoneelementwithoutmodelinganexcessivenumberofjointsand/orbeamelements.Thepropertiesreportedforthestiffenedplatearetheeffectivesmearedproperties.Themaximumstressesarereportedfortheflatplateportionandthestiffenersseparately.

    3.2.5CorrugatedPlates

    Thecorrugatedplateisaspecialcombinationofbothinplaneandoutofplanestiffness.Acorrugatedplatehasextensionalstiffnessinthedirectionofthecorrugationsandnoextensionalstiffnessacrossthecorrugations.Inplaneshearisassumedtobefullyeffective.Theoutofplanebendingandshearstiffnessiszerowhenbendingacrossthecorrugations.Inthedirectionofthecorrugations,theoutofplanebendingandshearstiffnessisduetotheeffectivebeampropertiesofthecrosssection.Nobiaxialbendingcouplingisallowedandtheinplanetorsionalpropertiesareassumedtobefullyeffective.

    Note:Whenusingcorrugatedplates,thesumoftheinplaneareaduetotheeffectiveplatethicknessandthestiffenersmustequalthetotalinplaneareaofthecorrugatedpanelinthedirectionofthecorrugations.

    3.2.6PlateElementTransitiontoBeamElement

  • Plateoffsetscanbeusedtomodeltransitionpointsbetweenplateandbeamelements.Anytwoadjacentplatenodescanbespecifiedasthesamejointname.Plateoffsetsspecifiedateachplatenodecanthenbeusedtoseparatethenodesandplacethemindifferentspatialpositions.Thiswillresultinoneedgeiftheplatebeingdescribedbythemotionofonejointwhichcanbeconnectedtoabeamelement.Forexample,whenmodelingatubularmemberwithafiniteelementmesh,thereisusuallyatransitionpointwherebeamelementtheorybecomessufficientlyaccurate.Atthispoint,alloftheplateelementsmustbeattachedtoasinglecentraljointwhichisthebeginningjointofthebeamelement.TheplateelementsareconnectedtothecentralJointwithoffsetssuchthattheendsoftheplatesarelocatedatthesurfaceofthetubular.Thetransitionjointwilldefinethecompletedisplacementofthecrosssectionatthatpointandwillassureproperinternalloadtransfer.Also,thecrosssectionofthetubularatthetransitionwillremainplaneduringdeformationwhichisaconstraintofnormalbeamtheory.

    3.3SHELLELEMENTS

    TheSACSIVprogramcontains6,8and9nodetriangularandrectangularIsoparametricShellElementsbasedonderivationsbyBathe[Bathe,KlausJurgen,FiniteElementProceduresInEngineeringAnalysis,PrenticeHall,NewJersey,1982].Theseelementsareconsideredindustrystandardsandareavailableinmostlargescalefiniteelementprograms.

    ThelocationofthestresspointsalongtheshellsurfacedependsintheselectionofthenumberofGaussianIntegrationpointsspecifiedforeachshell.Thestressescanbecalculatedatthecenteroftheshelland/oratthecornerGaussianpointsasshowninthefigures.Thedefaultforeachshellisthehavethestressdeterminedattheshellcenteronly.Theshelltotalinplanedirectandshearstressesarereportedinthelocalplatecoordinatesystemattheupper,middleandlowersurfacesandtheprincipalstressesandmaximumshearstressesarereportedfortheupperandlowersurface.

    TheunitycheckcalculationsarebasedonmaximumvonMisesstressforinplanestressesattheupper,middleandlowershellsurface.Shellbucklingisnotincludedintheunitycheckcalculation.TheunitycheckformulationscanbefoundintheusersmanualofthePOSTprogrammodule.

    3.3.1ShellElementTransitiontoBeamElement

    Isoparametricshelloffsetsarenormallyusedtolocatetheneutralaxisoftheshellrelativetotheconnectingstructure.Theycanalsobeusedtogeneratethetransitionbetweentheisoparametricshellsandbeamelements.

    Anythreenodesthatdescribethesideofashellcanbeconnectedtothesamejoint.Usingshelloffsets,thecoincidentnodescanbeseparatedandplacedindifferentspatialpositions,resultinginonesideoftheshellbeingdescribedbythemotionofonejointwhichcanbeconnecteddirectlytoabeamelement.

    Forexample,whenmodelingatubularmemberwithshellelements,thereisusuallyatransitionpointwherebeamelementtheorybecomessufficientlyaccurate.Atthispoint,alloftheshellelementsmustbeattachedtoasinglecentraljointwhichisthebeginningjointofthebeamelement.Theshellelementsareconnectedtothecentraljointwithoffsetssuchthattheendsoftheshellsarelocatedatthesurfaceofthetubular.Thetransitionjointwilldefinethecompletedisplacementofthecrosssectionatthatpointandwillassureproperinternalloadtransfer.Also,thecrosssectionofthetubularatthetransitionwillremainplaneduringdeformationwhichisaconstraintofnormalbeamtheory.

    3.4SOLIDELEMENTS

    TheSACSIVprogramcontains4,5,6and8nodeSolidFiniteElementsthatrepresenttetrahedron,pyramid,wedgeandbrickshapedelements,respectively.TheSolidElementsarebasedonaconstantstraintheoryandtheelementsdonotrestrainrotationatthenodes.Thepyramid,wedgeandbrickelementsarebuiltfromthebasictetrahedronelement.

    3.4.1SolidTransitiontoShell,PlateorBeamElements

    Solidelementoffsetscanbeusedtogeneratethetransitionbetweenthesolidelementsandisoparametricshells,flatplatesand/orbeamelements.IfafournodefaceofasolidelementisconnectedtoaoneortwodimensionalelementthenthefournodefaceshouldbedescribedbyonlytwoJoints.thesetwoJointsshouldlieonatthecenterofthefaceoftheSolidElement.TheupperandloweredgesofthefacewillbedescribedbythesametwoJointsandwillincludeoffsetstolocatethemcorrectlyinspace.TheresultingOffsetSolidElementwillformafull6degreeoffreedomtransitionconnectionbetweentheelements.

    4.0SAMPLEPROBLEMS

    ThesampleproblemsillustratevariouscapabilitiesoftheSACSIVprogrammodule.Twoseparateanalysesaredetailed.

    1. Thefirstsampleproblemisajackettypestructureconsistingoftubular,wideflange,angleandconecrosssectionbeamelementsandflatplateelements.Inadditiontopropertiesspecifiedinthemodelfile,sectionpropertiesdefinedintheAISCsectionlibrarywerereferenced.Thissamplecontainsmemberandplateoffsetsalongwithmemberendreleases.Fourbasicloadconditions,comprisedofjointloads,memberuniformloads,memberconcentratedloadsandjointspecifieddisplacements,andtwoloadcombinationswerespecified.

    2. SampleProblem2illustratestheuseofshellandsolidelements.Threebasicloadcasesconsistingofjointloads,linearlyvaryingshellpressureloadsandvaryingshelltemperatureloadswerespecifiedinadditiontotwoloadcombinations.

    SAMPLEPROBLEM1

    SampleProblem1isthejackettypestructureshownfixedatthebottomofthepiles.Cone,tubular,wideflangeandanglecrosssectionbeamelementsandflatplateelementsaremodeled.Flatplate,tubular,angleandconesectionpropertiesaredefinedinthemodelfilewhilewideflangepropertiesareobtainedfromtheAISCsectionlibraryfile.

  • Offsetsarespecifiedforjackettubularmemberssothatbracesaremodeledtothefaceofthechordanda2"gap(atthechordface)existbetweenbraces.W12deckwideflangemembersmodeledintheglobalYdirectionareoffsetsothattheyarelyingontopofW24maingirderswiththeneutralaxisatelevation40.0.Platesareoffsetsothattheneutralaxisislocatedatelevation42.Anglemembersonthedeckaremodeledtoresistonlyaxialloadandshearbydesignatingmemberendreleases.

    Fourbasicloadconditionsandtwoloadcombinationsarespecified.LoadCaseLIVEconsistofmemberuniformloadsrepresentingliveload.LoadCaseEQPTcontainsjointloadsandmemberconcentratedloadsrepresentingequipmentloads.Thethirdloadcase,LATXcontainsjointlateralloadsandLoadCaseDISPisusedtospecifysupportdisplacements.

    PartsoftheSACSmodelfileisshownbelowfollowedbyadescriptionofselectedportions.

  • ThefollowingisadescriptionofselectedinputlinesintheSACSmodelfileforSampleProblem1.Theinputlinesarereferencedbytheletterintheleftmarginoftheinputlisting.

    Note:Forasteriskeditems(*),seePostprogrammanualforadetaileddiscussiononpostprocessingoptions.

    A. TheOPTIONSlinespecifiestheanalysisoptions,namely.A. Englishunitsaredesignatedby'EN'incolumns1415.B. Bydefaultastaticanalysisisdesired(columns1920areblank).C. SDincolumns2324specifiesthatsheareffectsaretobeconsideredinmembers.D. *ElementcodecheckwillbebasedonAISC/APIcode(UCincolumns2526).E. *Nonsegmentedbeamelementswillbedividedintotwopostprocessingsegmentsandeachsegmentofsegmentedelementswillbeconsideredasapost

    processingsegmentby2and1incolumns30and32.F. AninterpretedechoofthemodelisrequestedbyPTincolumns4142.G. *Unitycheckrange,stressforcontrollingloadcase,internalloadandjointreactionreportsarerequestedwhenperformingcodecheck.

    B. *OnlyresultsforloadcasesCMB1andCMB62aretobereportedasspecifiedontheLCSELline.C. *TheelementUCrangesarespecifiedontheUCPARTline.D. *AllowablestressesforloadcaseCMB2aretobefactoredby1.333asspecifiedontheAMODline.E. NontubularcrosssectionsnotdefinedinthesectionlibraryfilearedefinedbySECTlinesfollowingtheSECTheader.Thefirstlinedefinespropertiesofsection

    CON4436asfollows:A. Thesectiontowhichtheinformationappliesisspecifiedincolumns612.B. SectionCON4436isdesignatedasaconesectionbyCONincolumns1618.C. Becausenostiffnesspropertiesarespecifiedincolumns1948,theywillbecalculatedbySACSIV.D. ThelargerOD,thicknessandsmallerODarespecifiedincolumns5055,5660and6166respectively.

    F. PropertiesaredefinedonGRUPinputlinesfollowingtheGRUPheaderline.ThepropertiesforallmembersassignedtogroupDK1aredefinedontheGRUPlinewithDK1specifiedincolumns68.

    A. ThecrosssectionisaW24X94wideflangewhosepropertiesaredefinedinthesectionlibraryfile.B. Theelasticmodulus,shearmodulusandyieldstressarespecifiedincolumns3135,3640and4145respectively.C. *Columns47,5255and5659definethedefaultmemberclassification,KyandKzfactorsforcodecheck.D. Thematerialdensityis490.0#/ft3asspecifiedincolumns7176.

    G. ThepropertiesformembersassignedtogroupDK3aredefinedbytheGRUPlinewithDK3specifiedincolumns68.A. ThecrosssectionpropertiesaredefinedbysectionL3X3whichisdefinedinthemodelfile.

    H. ThepropertiesofmembersassignedtogroupLG1varyalongthelengthofthemember.ByinputtingthreeGRUPlinesforgroupLG1,themembersaredividedintothreesegmentseachwithpropertiesdefinedforeachsegment.

    A. Thepropertiesforthefirstsegment**aredefinedbythefirstGRUPLG1line.Thelinespecifiesoutsidediameter48.0,wallthickness1.5andyieldstress50.0ksi.Thelengthofthefirstsegmentis6.98asspecifiedincolumns7780.

    B. Themiddlesegmentisatubularwith48.0outsidediameter,1.0wallthicknessand36.0yieldstress.Nosegmentlengthisspecified**.C. Thelastsegmentisatubularwith48.0outsidediameter,1.5wallthicknessand50.0yieldstress.Thesegmentlengthis5.55asspecifiedincolumns7780.

    **Note:Thefirstsegmentspecifiedcorrespondstothesegmentstartingatthememberstartjoint.Also,thelengthofonesegmentshouldalwaysbeleftblank.Theprogramwilldeterminethelengthoftheblanksegmentforeachmemberofthegroupindividually,thusallowingmembersofdifferentlengthstobeassignedtothesamegroup.

    I. ThepropertiesformembersassignedtogroupMD1arespecifiedontheGRUPlinewithMD1incolumns68.A. TheODandthicknessfortubularsectionsarespecifieddirectlyontheGRUPline.TheODisspecifiedas18.00andthicknessas0.75incolumns1823and25

    29respectively.Theprogramwillcalculatethecrosssectionproperties.J. MembersaredefinedintheinputfilefollowingtheMEMBERheaderline.MembersaredefinedusingaMEMBERinputlineandarenamedbythestartandendjoints.

    Member101201isdefinedasfollows:A. Thestartandendjointsarespecifiedincolumns811and1215.B. ThememberisassignedtogroupLG1(columns1719).

    K. Member101112isdefinedbytheMEMBERlinewith101and112specifiedincolumns911and1315asfollows:A. AMEMBEROFFSETSlinedefiningoffsetsinglobalcoordinateswillfollowasdesignatedby1incolumn7.B. ThepropertygroupisMH1andKyandKzare0.80.C. TheMEMBEROFFSETSlinespecifiesanoffsetintheglobalXdirectionof24.0atthestartjoint.

    L. Member520501isadeckmemberassignedtogroupDK2withglobaloffsetsspecified(1incolumn7).A. ThememberisaW12X65(definedbygroupDK2)withtheunbracedlengthofcompressionflangespecifiedas0.01incolumns6064.B. BecausethemembersitsonthetopflangeoftheW24itcrosses,itisoffset18.0"intheglobalZatthestartandendofthememberbytheMEMBEROFFSET

    line.

  • M. Thememberdefinedbyjoints525and503isassignedtogroupDK3whichisdefinedasan3x3xdangle.A. Offsetswillbedefinedwithrespecttothememberlocalaxisasdesignatedby2incolumn7.B. ThememberendsarereleasedforlocalYandZmomentatthestartandlocalX,YandZmomentattheendasspecifiedby000011and000111incolumns

    2328and2934respectively.C. Thememberlocalcoordinatesystemisrotated90

  • SAMPLEPROBLEM2

    SampleProblem2illustratestheuseofninenodeshellandeightnodesolidfiniteelements.Threebasicloadcasesconsistingofjointloads,linearlyvaryingshellpressureloadsandvaryingshelltemperatureloadswerespecifiedinadditiontotwoloadcombinations.

    FollowingistheSACSmodelfileforthissampleproblemandadescriptionofselectedportions.

  • ThefollowingisadescriptionofselectedinputlinesintheSACSmodelfileforSampleProblem2.Theinputlinesarereferencedbytheletterintheleftmarginoftheinput

  • listing.

    Note:Forasteriskeditems(*),seePostprogrammanualforadetaileddiscussiononpostprocessingoptions.

    A. TheOPTIONSlinespecifiestheanalysisoptions,namely:A. EnglishunitsaredesignatedbyENincolumns1415.B. Bydefaultastaticanalysisisdesired(columns1920areblank).C. *ElementcodecheckwillbebasedonAISC/APIcode(UCincolumns2526).D. *AnelementdetailedstressreportisrequestedbyPTincolumns5556.

    B. *Onlyresultsforloadcombinations4and5aretobereportedasspecifiedontheLCSELline.C. ASHELLheaderlinedesignatesthatshellelementdefinitionsfollow.ThefirstSHELLinputlinedefinesthepropertiesofshellS212asfollows:

    A. TheshellnameS212isdesignatedincolumns710.B. Theconnectingjointsarespecifiedincolumns1247.ShellS212isaninenodeshelldefinedbyjoints212,213,214,224,234,233,232,222and223,where

    joint223isthecenterjoint.ThelocalXaxisisdefinedbyjoints212and214,thelocalYisperpendiculartothelocalXandparalleltothelineformedbyjoints214and234.

    C. Aconstantthicknessof2.5"isassignedby0incolumn6(constant)and2.5incolumns5355.D. TheModulusofelasticity,Poissonsratio,yieldstress,materialdensityandcoefficientofthermalexpansionarespecifiedincolumns5761,6265,6670,7175

    and7680.D. SolidelementsaredefinedonSOLIDinputlinesfollowingtheSOLIDheaderline.ThegeometryandpropertiesforsolidelementD101aredefinedonthefirst

    SOLIDlineasfollows:A. ThesolidnameD101isdesignatedincolumns710.B. Theconnectingjointsarespecifiedincolumns1243.SolidD101isaneightnodebrickelementdefinedbyjoints101,102,202,201,111,112,212,and211.C. Amodulusofelasticityof3,640ksiisassignedby3.64incolumns5761.ThedefaultPoissonsratioandyieldstressareused.D. Thematerialdensityisspecifiedas150.0#/ft3incolumns7175.

    E. TheJOINTheaderlinesignalsthebeginningofjointdefinitions.ThefirstJOINTlinedefinesthecoordinates**ofjoint101(101specifiedincolumns810).

    **Note:Jointcoordinatesmaybedefinedindecimalsoffeet(meters)orinfeet(meters)plusinches(centimeters).Forthissample,coordinatesareexpressedinfeetplusinches.

    A. TheXcoordinateofjoint101is9ftasdesignatedby9.incolumns1218.B. TheYcoordinateis5'0.276"or5.023'(5.00276mifmodelunitsaremetric)asdesignatedby5.incolumns1925and0.276incolumns4046.C. TheZcoordinateis0.(0incolumns2632).D. Joint101isasupportjointwithallsixdegreesoffreedomrestrained(111111incolumns5560).

    F. Joint112isdefinedbyJOINTlinewith112incolumns810.A. TheX,YandZcoordinatesaredefinedincolumns1253.B. TheX,YandZrotationaldegreesoffreedomarerestrainedby000111incolumns5560.

    Note:Becausesolidelementsdonothaverotationalstiffness,therotationaldegreesoffreedomforjointsconnectedexclusivelytosolidelementsmustbefixed.

    G. TheloadingportionoftheinputbeginswiththeLOADheaderline.Loadcondition1isdesignatedincolumn10oftheLOADCNinputline.H. Loadcase1consistofloadsonjoints212,213,214,215,216,222,223,224,225,226,232,233,234,235and236.Joint212isloadedasfollows:

    A. TheJOINlabelincolumns6669designatesthetypeofloadingasajointload.B. Thejointtobeloadedisdesignatedincolumns911.C. Aloadof0.735istobeappliedintheglobalZdirectionasindicatedincolumns3137.

    I. Loadcase2containsavaryingnormalpressureloadactingonshellsS212andS214.TheLOADinputlinespecifiesthefollowing:A. ThetypeofloadisdesignatedasanormalpressureloadbySPCincolumns68.B. AllshellnamesfromS212throughS214aretobeloadedbythisinputline(S212andS214incolumns1013and1417).C. Thenormalpressureattheoriginjoint(i.e.firstjointspecifiedontheSHELLline)is10.4psiinthelocalZdirectionasspecifiedby10.4incolumns1824.D. Thenormalpressuredecreasesby0.866psiperfootinthelocalYdirection(0.866incolumns3238).

    J. Loadcase3containsshelltemperatureloadsonthetopandbottomsurfacesofshellsS212andS214.Thetopsurfaceoftheshellisexposedtoatemperaturelowerthantheambienttemperaturewhilethebottomsurfaceisattheambienttemperature.

    A. ThetypeofloadisdesignatedasashelltemperatureloadatthetopsurfacebySTTincolumns68.B. AllshellnamesfromS212throughS214aretobeloadedbythisinputline(S212andS214incolumns1013and1417).C. Thetemperatureatthetopsurfacerelativetotheambienttemperatureateachoftheshelljointsisspecifiedincolumns1880.D. Thetemperatureatthebottomsurfacerelativetoambienttemperatureisspecifiedincolumns1880oftheSHELLlinewithSTBdesignatedincolumns68.

    K. Loadcombinationsmadeupofoneormoreloadcasesand/orcombinationsaredefinedaftertheLCOMBheaderline.Loadcase4isacombinationconsistingofloadcase1multipliedby1.1and100.0percentofloadcase2.

    Theoutputfilefortheanalysisislistedonthefollowingpages.TheoutputforthepostprocessorisincludedandisdiscussedindetailinthePostprogrammodulemanual.