SACS SACS IV.pdf

40
Copyright ©2013 by Bentley Systems, Inc. Version 7.0 Revision 2 1.0 INTRODUCTION 1.1 OVERVIEW SACS IV, the general purpose three dimensional static structural analysis program, is the focal point for all programs in the SACS system. It gives the user the capability of modeling a large array of structures from simple two dimensional space frame analyses to complex three dimensional finite element analyses. SACS IV can also be used for nonlinear static analysis when coupled with PSI module or dynamic response analysis when coupled with the Dynpac, Wave Response and Dynamic Response modules. SACS IV refers to three of the program modules of the SACS system, namely the preprocessor module Pre, the solver module Solve and the post processor module Post. The post processor module, Post, can be executed as part of SACS IV or as an individual analysis step. This manual addresses the features and capabilities of the Pre and Solve modules and includes the procedure used to run Post as part of SACS IV. The Post manual addresses the execution of the post processor as a separate step and includes a detailed discussion on the program capabilities. 1.2 PROGRAM FEATURES SACS IV requires a SACS model file or output structural data file for execution and creates a common solution file containing analysis results. Some of the main features and capabilities of SACS IV are: 1. Allows specification of various input options, analysis options, and output reports within the model file. 2. Allows specification of post processor options within the model file and can automatically execute POST. 3. Can access member properties from one of various section property files included with the SACS system, from user defined section property files or from sections defined within the model file; 4. Supports various beam element types including: a. Tubular b. Channel c. Angle d. Tee e. Plate Girder f. Prismatic g. Cone h. Box & Stiffened Box i. Stiffened Cylinder j. Launch Runner k. Jackup Leg l. Double Angle m. Rectangular Tube n. Double Web Plate Girder o. Boxed Plate Girder p. Boxed Plate Girder q. Unsymetric Plate Girder 5. Supports various six degree of freedom triangular and quadrilateral plate element types including: a. Isotropic b. Membrane c. Shear d. Stiffened e. Corrugated 6. Contains 6, 8 and 9 node triangular and rectangular shell elements. 7. Contains the following solid elements shapes: a. 4 node tetrahedron b. 5 node pyramid c. 6 node wedge d. 8 node brick 8. Beam and finite element offsets. 9. Rotational and translational member releases. 10. Spring supports to ground including at oblique angles. 11. Local and global element loads. 12. Member linear and concentrated loads in local or global coordinate system. 13. Joint loads. 14. Thermal loads. 15. Specified support deflections. 16. Supports tapered sections. 17. Supports two analysis techniques for plate elements including DKT and traditional plate beamstrip theory. Some of Post module features which can be specified directly in the model file are: 1. Member check code including: AISC, API RP2A, Eurocode 3, ISO, Norwegian Petroleum Directorate and Danish Offshore, etc. 2. API and DNV hydrostatic collapse analysis. 3. API 2U and 2V Bulletins 4. Euler buckling check for segmented members. 5. Automatic member redesign. 6. Allowable stress modifiers. 7. Finite element code check and stiffener stress output. Note: Refer to the Post User=s Manual for a detailed discussion of the post processor module capabilities. 1.3 SACS IV MODEL COMPONENTS The SACS IV model file is the standard input for all types of analyses in the SACS System. The user need generate only one structural model that can be used in any type of analysis.

Transcript of SACS SACS IV.pdf

  • Copyright2013byBentleySystems,Inc.Version7.0Revision2

    1.0INTRODUCTION

    1.1OVERVIEW

    SACSIV,thegeneralpurposethreedimensionalstaticstructuralanalysisprogram,isthefocalpointforallprogramsintheSACSsystem.Itgivestheuserthecapabilityofmodelingalargearrayofstructuresfromsimpletwodimensionalspaceframeanalysestocomplexthreedimensionalfiniteelementanalyses.SACSIVcanalsobeusedfornonlinearstaticanalysiswhencoupledwithPSImoduleordynamicresponseanalysiswhencoupledwiththeDynpac,WaveResponseandDynamicResponsemodules.

    SACSIVreferstothreeoftheprogrammodulesoftheSACSsystem,namelythepreprocessormodulePre,thesolvermoduleSolveandthepostprocessormodulePost.Thepostprocessormodule,Post,canbeexecutedaspartofSACSIVorasanindividualanalysisstep.ThismanualaddressesthefeaturesandcapabilitiesofthePreandSolvemodulesandincludestheprocedureusedtorunPostaspartofSACSIV.ThePostmanualaddressestheexecutionofthepostprocessorasaseparatestepandincludesadetaileddiscussionontheprogramcapabilities.

    1.2PROGRAMFEATURES

    SACSIVrequiresaSACSmodelfileoroutputstructuraldatafileforexecutionandcreatesacommonsolutionfilecontaininganalysisresults.

    SomeofthemainfeaturesandcapabilitiesofSACSIVare:

    1. Allowsspecificationofvariousinputoptions,analysisoptions,andoutputreportswithinthemodelfile.2. AllowsspecificationofpostprocessoroptionswithinthemodelfileandcanautomaticallyexecutePOST.3. CanaccessmemberpropertiesfromoneofvarioussectionpropertyfilesincludedwiththeSACSsystem,fromuserdefinedsectionpropertyfilesorfromsections

    definedwithinthemodelfile4. Supportsvariousbeamelementtypesincluding:

    a. Tubularb. Channelc. Angled. Teee. PlateGirderf. Prismaticg. Coneh. Box&StiffenedBoxi. StiffenedCylinderj. LaunchRunnerk. JackupLegl. DoubleAngle

    m. RectangularTuben. DoubleWebPlateGirdero. BoxedPlateGirderp. BoxedPlateGirderq. UnsymetricPlateGirder

    5. Supportsvarioussixdegreeoffreedomtriangularandquadrilateralplateelementtypesincluding:

    a. Isotropicb. Membranec. Sheard. Stiffenede. Corrugated

    6. Contains6,8and9nodetriangularandrectangularshellelements.7. Containsthefollowingsolidelementsshapes:

    a. 4nodetetrahedronb. 5nodepyramidc. 6nodewedged. 8nodebrick

    8. Beamandfiniteelementoffsets.9. Rotationalandtranslationalmemberreleases.

    10. Springsupportstogroundincludingatobliqueangles.11. Localandglobalelementloads.12. Memberlinearandconcentratedloadsinlocalorglobalcoordinatesystem.13. Jointloads.14. Thermalloads.15. Specifiedsupportdeflections.16. Supportstaperedsections.17. SupportstwoanalysistechniquesforplateelementsincludingDKTandtraditionalplatebeamstriptheory.

    SomeofPostmodulefeatureswhichcanbespecifieddirectlyinthemodelfileare:

    1. Membercheckcodeincluding:AISC,APIRP2A,Eurocode3,ISO,NorwegianPetroleumDirectorateandDanishOffshore,etc.2. APIandDNVhydrostaticcollapseanalysis.3. API2Uand2VBulletins4. Eulerbucklingcheckforsegmentedmembers.5. Automaticmemberredesign.6. Allowablestressmodifiers.7. Finiteelementcodecheckandstiffenerstressoutput.

    Note:RefertothePostUser=sManualforadetaileddiscussionofthepostprocessormodulecapabilities.

    1.3SACSIVMODELCOMPONENTS

    TheSACSIVmodelfileisthestandardinputforalltypesofanalysesintheSACSSystem.Theuserneedgenerateonlyonestructuralmodelthatcanbeusedinanytypeofanalysis.

  • ThemodelfilecanbegeneratedbyvariousSACSprogrammodules.Precede,DataGeneratororatexteditorisusedtocreatetheanalysisoptions,modelgeometryanduserdefinedloading.SeastateorWaveResponseisusedtogenerateenvironmentalloadingdataresultingfromwave,wind,current,deadweightandbuoyancy.Launch,FlotationorTowisusedtogenerateloadsinducedbyajacketlaunch,upendingsequenceoftransportationrespectively.Themodelfileismadeupofthefollowing:

    1. AnalysisOptions2. PostProcessorOptions3. MaterialandSectionPropertyData4. ElementData5. JointData6. LoadData

    1.4ANALYSISOPTIONS

    AnalysisoptionsmaybespecifiedinthemodelfileormaybedesignatedwhencreatingtherunfileusingtheExecutive.OptionsspecifiedinthemodelfileareinputontheOPTIONSinputlineasfollows:

    1. Unitsmustbespecifiedincolumns1415a.ENEnglishb.MNMetricwithKNforcec.MEMetricwithKgforce

    2. CreateSuperElement(column10)3. ImportSuperElement(column9)4. Consider/Ignorememberreleases(columns2122)5. Include/Excludesheareffects(columns2324)6. IncludePDeltaeffectsintheanalysis(columns1718)

    ThefollowingsampleinputdesignatesEnglishunits,astandardanalysis(columns1920blank)andincludesheareffects:

    Twoanalysistechniquesforplateelementsaresupported,,DKT(DiscreteKirchhofftheory)andtraditionalplatebeamstriptheory.Bydefault,DKTplatetheoryisused.EnterNDincolumns3637tousethetraditionalbeamstripmethod.

    Note:Forsomestructures,axialforcehasasignificanteffectonthelateralstiffnessoftheelements.ThePDeltaoptiongivesafirstorderapproximationoftheseeffects.UsingthePDeltaoptionrequiresspecifyingPDeltaloadcases(ie.theloadcasesusedtodeterminetheaxialforceinthemember)usingtheLCSELlinewiththe>PD=option.

    Twoanalysistechniquesforsolidelementsaresupported,traditionalconstantstrain3degreeoffreedomsolidsandisoparametric6degreeoffreedomsolids.Bydefault,constantstrain3DOFsolidsareused.Enter6incolumn71tousetheisoparametric6DOFsolids.

    Solidjointorderinghastwooptionsaswell.Bydefault,solidsjointsareorderedsuchthatflatplanesinsolidelementsbecomesolidfaces.AmorerobustorderingschemewhichallowssolidfacewarpagemaybespecifiedwithanRincolumn72.

    1.5POSTPROCESSOROPTIONS

    PostprocessoroptionsmaybespecifiedintheSACSmodelfilebutarenotrequired.ThepostprocessoroptionsspecifiedareusedasdefaultsbythePostandPostvueprogramsandmaybemodifiedinthePostinputfile.

    Note:APostinputfileisnotnecessaryifthepostprocessingoptionsspecifiedinthemodelfilearetobeused.

    Thefollowingisabriefdiscussionofthepostprocessingoptionsthatmaybespecifiedinthemodelfile.ThePostUsersManualaddressesthesefeaturesindetail.

    1.5.1MemberCheckCode

    ThecodethatmemberstressesaretobecheckedwithrespecttoisspecifiedontheOPTIONSlineincolumns2526.

    1.5.2MemberCheckLocations

    ThelocationsatwhichtochecknonsegmentedandsegmentedmembersarespecifiedontheOPTIONSlineincolumns2930and3132respectively.

    Fornonsegmentedmembers,thenumberofequallengthpiecesthememberistobedividedintoshouldbestipulated.Forsegmentedmembers,specifythenumberofpieceseachsegmentofthememberistobedividedinto.Ineithercase,thememberischeckedatthebeginningandendofeachpiece.

    1.5.3OutputReports

    ThedesiredoutputreportsaredesignatedontheOPTIONSinputline.Formemberreports,whenPTisenteredintheappropriatecolumns,allmembersarereportedunlessSKappearsontheindividualMEMBERline.WhenSEisspecifiedforamemberdetailreport,onlymemberswithRPontheMEMBERlinearereported.

    1.5.4RedesignParameters

    Ifautomaticredesignisdesired,theparametersaredesignatedontheREDESIGNinputlines.

    1.5.5HydrostaticCollapseParameters

    HydrostaticcollapseparametersarespecifiedontheHYDROinputline.Fullhydrostaticcheckincludingactualmemberstressesduetoaxialforces,bendingandhoopstresscanbeperformedbythePostprogram.

    1.5.6GroupingElementsbyUnityCheckRatio

    Elementswithunitycheckratiosthatfallwithinadefinedrangecanbeprintedtogetherasareportgroup.UptothreerangesmaybedefinedusingtheUCPARTinputline.

    Forexample,allelementswithunitycheckratiogreaterthan1.00canbereportedinthefirstreport,elementswithunitycheckratiobetween0.8and1.0inthesecondandelementswithunitycheckratiobetween0.5and0.8inthethirdreport.

    1.5.7AllowableStress/MaterialFactor

    ForAPI/AISCworkingstressanalysis,thecalculatedallowablestressesforaloadcase(orloadcombination)canbemodifiedbyspecifyingtheloadcasenameandtheappropriateallowablestressfactorontheAMODline.

  • ForNPDanalysis,thematerialfactorusedforallloadcasesisspecifiedusingtheAMODline.Onlyonematerialfactormaybespecifiedanditmustbedesignatedforthefirstloadcaseinthemodel,althoughitwillbeusedforallloadcases.mE

    ForDanishcodeanalysis,thefactorsmandEselectedontheGRUPlinecanbechangedforallmembersbyusingtheAMODline.Onlyonefactormaybespecifiedanditmustbedesignatedforthefirstloadcaseinthemodel,anditwillbeusedforallloadcases.Thisisusefulforblastanalysis.

    1.5.8ResistanceFactors

    TheresistancefactorsindicatedbyAPIareusedbydefaultwhenselectingLRFDcodes.TheusercanspecifythatresistancefactorsindicatedforAISCorAPIseismiccodesaretobeusedbyenteringCorSincolumn40ontheOPTIONSline.

    Forexample,thefollowinglinespecifiesthatresistancefactorsindicatedbyAISCaretobeused.

    1.5.9UserDefinedResistanceFactors

    TheusercanmodifytheresistancefactorstobeusedforLFRDanalysesusingtheRFLRFDline.Theresistancefactorsforyield,axialcompression,axialtension,bending,shearandhoopcapacitiesfortubularandnontubularmemberscanbeentered.

    Forexample,thefollowinglinespecifiesthat1.0istobeusedforaxialcompressionandtensionforbothtubularandnontubularmembers.

    Note:Whenspecifyingresistancefactors,thedefaultvaluesontheRFLRFDlineareusedforfieldsinwhichnooverridehasbeenspecified.

    1.5.10EuroCodeCheckOptions

    TheOPTIONSlinehasbeenupdatedtoincludethenewcodecheckoptionforEurocode3EN199311:2005enterE5atcolumn2526ofOPTIONSlineforthenewcode.Whenthiscodeisactivated,thenontubularmemberswillbecheckedforEurocode3:2005.Currently,thecrosssectionsofWideFlange,PlateGirder,WeldedBox,RolledRectangularTube,DoubleWebPlateGirder,andBoxedPlateGirderaresupported.ThetubularandconicalmemberswillbecheckedaccordingtoNorsokN0042004.ForEurocode3EN199311:v1992,theIDisstillECinOPTIONSlineasbefore.

    TheCODEEClinecanbeusedtomodifythedefaultEurocodecheckoption,shearareaoption,theresistancefactorsM0valueandtheM1value.ForEurocode3:2005,themethodforinteractionfactors,theoptionofnationalannexes,andthefactorofshearbucklingcanbemodifiedorselectedintheCODEline.Formoredetails,pleaserefertothelinedescriptioninthemanual.

    1.5.11SpanDesignation

    TheSPANinputlinecanbeusedtoidentifyanalyticalbeamelementsthatmakeupphysicalmembersforserviceabilityandcodecheckrequirementsbyenteringthejointsinorderofoccurrenceinthespan.Anynumberofmemberscanbeincludedinacontinuousline.CantilevermemberscanalsobeanalyzedbutmustbespecifiedbyenteringCincolumn14oftheSPANline.Momentdiscontinuitiesandmomentmemberendreleasesareallowedalongthecontinuousmember,however,forceendreleasesarenotallowed.

    Note:ThebeamelementlocalxaxesofallelementsdefinedintheSPANlinearerequiredtobeactinginthesamedirection.

    1.5.12AISC2005(13thEdition)Options

    InusingAISC2005,theuserhastwooptionscorrespondingtoASDdesignandLRFDdesign.IfoptionAAisselectedincolumns2526onOPTIONSline,thiswillactivatecodecheckbyASDmethodofAISC2005fornontubularmembersandWSDmethodofAPIRP2A21steditionfortubularmembers.IfoptionALisselectedthenthiswillactivatecodecheckbyLRFDmethodofAISC2005fornontubularmembersandLRFDmethodofAPIRP2ALRFD1steditionfortubularmembers.

    1.5.13PanelCodeCheckOptions

    Column35oftheOPTIONSlinecanbeusedforselectingcodechecksforstiffenedorunstiffenedpanels.EnterAforAPIBULL2VorDforDnVRPC201.CurrentlyonlyDnVRPC201codeofpracticeisimplemented

    TheDnVRPC201platepanelcodecouldbeusedinaccordancetoeithertheLRFDorWSDstandardsbyspecifyingtheappropriatecodecheckoptionsincolumn2526ofOPTIONSline.

    ThePCODEinputlineforDnVRPC201codeofpracticemaybeusedtoinputuserdefinedparameters.CurrentlyalltheoptionsinthislineareonlyapplicabletoDnVRPC201codeofpractice.ThefollowinginputcanbedefinedonthePCODEline.

    a.Column1419:materialfactorM(default1.15).

    b.Column20:Methodselectionforeffectivewidthcalculationofgirdersinaccordancetosection8.4(Method2isthedefault).Thisoptionisonlyvalidfororthogonallystiffenedpanels.

    c.Column2125:EnteranallowableusagefactoraccordingtoWSDstandardifthepaneltobecheckedinaworkingstressdesignstandard(WSD)(default0.6).

    Note:IftheWSD(sometimesalsoreferredtoasASD)codeisselectedincolumns2526ofOPTIONSline,thentheplatepanelwillbecheckinaccordanceWSDstandardusingtheuserspecifiedusagefactorfromthePCODEline.Ifcolumns2125ofPCODElineareleftblank,thenthedefaultusagefactorof0.6willbeused.However,iftheLRFDcodeisselectedincolumns2526ofOPTIONSline,thentheplatepanelwillbecheckinaccordancetotheLRFDstandard.Inthiscase,theusagefactorfromcolumns2125ofPCODElinewillbeignoredevenifavaluehasbeenspecified.

    d.Columns2631:Thealphalimitfornonrectangularpanels(default10degrees).Ifthislimitexceededforanypanelthentheprogramwillissueawarningmessagetoremindtheuserthatanequivalentrectangularpanelusingalargerdimensionsparalleltostiffener(s)ofthefirststiffenedplateinthepanel

  • willbeusedforthecodecheck.

    e.Column3237:Limitforpanelcoplanarcheck(defaultto400,i.e.coplanarcheckwillbelimitedtopanellength/400andpanelwidth/400whicheverisless).

    1.5.14ISOcodecheckoptions

    ISO19902:2007codecheckontubularmembers,conicaltransitions,anddentedandgroutedmembershasbeensupported.IScodeoptioncanbeselectedonOPTIONSline.ISO199013:2010containsrequirementsandguidancefortopsidesstructures.Inordertospecifytheassociatedcodecheckoptionfornontubularstructuralmembers,CODEISlinemustbeused,whereusermaychooseEurocode3:2005,Eurocode3:1992,AISC13th2005LRFD,CanadianCSAS162009,andNS3472.Theresistancefactorsoftubularorconicalsectionsunderaxialtension,compression,bending,shearandhoopcompressioncanbemodifiedinCODEISline.Ifnecessary,thecorrespondingresistancefactorsforEurocode3codescanbeenteredinCODEECline,forAISC13thLRFDcodeinRFLRFDline,andforCanadiancodeinRFLRFDlinetoo.NotethatthebuildingcodecorrespondencefactorKcinISO199013isnotsupportedincodecheckandstillunderinvestigation.Formoredetails,pleaserefertotheassociatedlinedescriptionincardimage.

    1.5.15NorsokStandardN004codecheckoptions

    NorsokStandardN004"Designofsteelstructures"specifiesguidelinesandrequirementsfordesignanddocumentationofoffshoresteelstructuresandhasbeenupdatedtoRev3,2013.SACSsupportbothRev2,2004andRev3,2013intubularmembersandconicaltransitionscodecheck.EnterNSatcolumn2526ofOPTIONSlineforv2004and"NC"forthelatest2013code.ThenontubularmembersarecheckedbyNS3472for"NS"option,andbyEurocode3:2005for"NC"option.ForEurocode3code,thecorrespondingresistancefactorscanbeenteredinCODEECline.

    Note:SectionAnnexK.5.3GroutedconnectioninNorsokN004isnotsupportedinSACS.Forfatigueanalysis,pleaserefertoSACSFatiguemanualfordetails.Forsimpletubularjointdesign,pleaserefertoSACSJointCanmanual.

    1.5.16ALSloadcasesspecification

    Ingeneral,ULS(ultimatelimitstate)isthedefaultstateinmembers'LRFDcodecheck.InordertodoALS(accidentallimitstate)analysis,userneedstomodifytheassociatedresistancefactorsandrunaseparatedpostprocessinganalysis.SACSnowsupportspecifyingloadcasesasULSorALSinonepostprocessingmembercodecheck.ThisfeatureisperformedbyusingAMODlinesandworksonlyforNorsokStandardN004,Eurocode3,andISO19902codes.InAMODlines,loadcaseswithAMODvaluespecifiedto2.0areconsideredasALSwhosepartialresistancefactorsormaterialfactorsaremodifiedto1.0automaticallyincodechecktheloadcaseswithoutAMODvalue(default)orAMODvaluesetto1.0areULSwithappropriateresistancefactors.Notethat,NorsokStandardN004doesnotallowthematerialfactorMinULSloadcasetobemodified,whichequalsto1.15forEurocode3andISO19902,usermaydefineULSresistancefactorsinCODEECorCODEISline,respectively.

    1.6SELECTINGLOADCASESFOROUTPUT

    Theloadcasesforwhichoutputresultsaredesired,maybedesignatedinthemodelfileusingtheLCSELline.Foraparticularanalysistype,resultsonlyforloadcasesspecifiedforthattypearereported.

    Specifyloadcasesincolumns1775andtheanalysistypetowhichthelistofloadcasespertainincolumns78asfollows:

    STStandardstaticanalysisand/orPSIanalysisGPGapelementanalysisDYConverttomassforDynpacanalysisPDDesignatesgravityloadusedtodeterminePDeltaeffectsforsecondorderanalysisand/ormomentmagnifiersforconcreteelementsinfirstorderanalysis.

    LeavefunctionblankiftheloadcaseslistedaretobeusedforstandardSTanddynamicDYfunctions.

    Forexample,thefollowinglinesdesignatethatloadcasesGRAV,ST01andST02aretobeusedforstandardanalyses,whileloadcasesBOATandMISCaretobeconvertedtomasswhenrunningDynpac.

    Note:MorethanoneLCSELlinemaybeused.IfnoLCSELlineisspecified,allloadcasesareusedforstandardanalysis.

    1.6.1PDeltaLoadCases

    Thelateralstiffnessofanelementisafunctionofaxialforcesuchthataxialcompressionreducesthelateralstiffnesswhileaxialtensionincreasesthelateralstiffness.Fortypicallinearstaticanalysis,theeffectofaxialforceonthelateralstiffnessisnegligible.Forsomestructures,howevertheaxialforcedoeshaveasignificanteffectonthelateralstiffnessoftheelements.ThePDeltaoptiongivesafirstorderapproximationoftheseeffects.

    WhenusingthePDeltaoption,theprogramcalculatesthelateralstiffnessofeachmemberusingareferenceaxialforceobtainedfromtheloadcasesdesignatedasPDeltaloadcases.

    Forexample,ifmostoftheaxialloadintheelementsofastructureisduetodeadloadingorotherverticalloading,thecorrespondingloadcasesshouldbedesignatedasPDeltaloadcases.ThelateralstiffnessforeachmemberwillthenbedeterminedconsideringtheaxialforceduetothedesignatedPDeltaloadcases.

    ThefollowingdesignatesthatloadcasesDEAD,MISC,EQPTandAREAaretobeusedtoincludetheeffectsaxialloadhasonlateralstiffness.

    Note:Iftwodifferentdesignloadcasescausecompletelydifferentaxialloading,thenaseparateanalysismustberunforeachofthedesignloadcase.Forexample,ifonecasecausessignificantaxialcompressionwhileanothercausessignificantaxialtension,separateanalysesmustbeexecuted.

    1.6.2LargeDeflectionorPDeltaAnalysis

    WhenchoosingbetweenlargedeflectionorPDeltaoptionsforanalysis,somefactorsshouldbeconsidered.PDeltaanalysisgivesafirstorderapproximationoftheeffectofaxialforceonthelateralstiffnessofthestructure.Largedeflectionanalysisisahigherorderapproximation.Assuch,thePDeltaoptionisusefulforstructuresinwhichthelateraldeflectionislessthan10%ofthetotalstructureheight(groundsupportedstructures).Forexample,ina300footplatform/towerassembly,PDeltaanalysiswouldbevalidfortowerdeflectionsinanydirectionoflessthan30feet.PDeltaanalysisislimitedtothedeflectionofframedstructures(beams).Forstructuresconsistingofplates

  • orothersolidelements,PDeltaanalysisdoesnotapplyandtheuseofthisanalysiswillnotmakeanydifferenceintheresults.

    Largedeflectionanalysisisusedwhenloaddependentdeflectionsordiaphragmactioniscommon.UnlikePDeltaanalysis,largedeflectionanalysisislimitedtooneloadcaseperrun.Forexample,aplatedboilermightbeanalyzedwithlargedeflectionanalysis,beingasthelargeplatedeflectionswillcausetheboilerwallstobehavelikeadiaphragmwithmembraneactionratherthanalinearplatewithonlybendingstiffness.

    1.7FACTORINGLOADCASES

    LoadcasesmaybefactoredforparticulartypesofanalysesusingtheLCFACline.Specifyloadcasesincolumns1775,thefactortobeappliedincolumns1116andtheanalysistypetowhichtheloadfactorpertainsincolumns78asfollows:

    STStandardstaticanalysisand/orPSIanalysisDYConverttomassforDynpacanalysisLeavefunctionblankiftheloadcaseslistedaretobeusedforstandardSTanddynamicDYfunctions.

    Forexample,thefollowinglinesdesignatethatloadcasesBOATandMISCaretobefactoredby0.5whenconvertedtomassforDynpac.

    Note:MorethanoneLCFAClinemaybeused.Whenloadcasefactorsarespecified,theloadcaseisfactoredbeforebeingappliedtoanyloadcombinations.

    1.8MATERIALANDSECTIONPROPERTYDATA

    EachbeamandplateelementintheSACSmodelisassignedtoagroupwhichcontainsthematerialandsectionpropertydataforallelementsassignedtothatgroup.Elementswiththesamenumberofsegmentsandidenticalstructural,materialandcodecheckpropertiesmaybeassignedtothesamegroup.

    1.8.1SectionProperties

    Thefollowingsectiondetailsdefiningsectionpropertiesforbeamandfiniteelements.

    1.8.2NonTubularMembers

    SectionpropertiesfornontubularbeamelementsaredefinedbythesectionreferencedontheGRUPlineofthegrouptheelementisassignedto.Referencedsectionsthataredefinedinthesectionlibraryfileneednotbedefinedinthemodelfile.NontubularsectionsthatarenotdefinedinthesectionlibraryfilemustbedefinedinthemodelfileusingaSECTIONline.

    WhendefiningsectionpropertiesusingaSECTIONline,thesectionnameisdesignatedincolumns612,thesectiontypein1618andthedimensionsin5080.Crosssectiontypessupportedare:

    1. Tubular2. WideFlange3. CompactWideFlange4. Box5. Tee6. GeneralPrismatic7. Channel8. PlateGirder9. Angle

    10. Cone11. StiffenedBox12. StiffenedCylinder

    Stiffnesspropertiesarecalculatedfromthedimensionsinputbutmaybeoverriddenincolumns1948.Whenoverridingstiffness,allvaluesmustbeinput.

    Note:Iftheuserinputsanyofthecrosssectionproperties(column19to48ontheSECTline),theprogramwillusetheinputvalueofthecglocation.Otherwisetheprogramcomputesitusingthecrosssectiondimensions.Stiffnessvaluesforanglecrosssectionsmaynotbeoverridden.

  • ThefollowingsampledefinestheplategirdersectionPLGRD2referencedbygroupZB1andboxsectionRECTANG.Theboxsectionhasstiffnessvaluesspecified.SectionW24X76referencedbygroupW02isobtainedfromthesectionlibraryfile.

    Note:Whenusingsectionsdefinedinthesectionlibraryfile,thesectionlabelspecifiedonthemembergrouplinemustmatchthenameinthelibraryfileexactly.Also,sectionsdefinedinthelibraryfilemaybeoverriddenbydefiningthesamesectioninthemodelfile.

    Angle,teeandbulbcrosssectionsmaybeutilizedasstiffeningelements.Forexample,ifthestemofateecrosssectioniscontinuouslyconnectedtoaplateorgirderstructure,thentheteecrosssectionwillreinforcethestructuretowhichitisattached.Tospecifythatanangle,teeorbulbcrosssectionistoserveasastiffener,enterSincolumn15oftherelevantSECTline.ThefollowingdesignatesthatanglecrosssectionSTFANGLwillbeusedasacontinuouslyconnectedstiffenerinthemodel.

    Note:Onlyangle,teeandbulbsectionsusedasstiffenersmaybe

  • specifiedinthismanner.

    1.8.3TubularMembersFortubularsections,sectionpropertiescanbedefinedonaSECTIONlineorcanbecalculateddirectlyfromtheoutsidediameterandwallthicknessinputontheGRUPline.WhenasectionlabelisspecifiedontheGRUPline,thepropertiesaredeterminedfromtheinputonthecorrespondingSECTIONline.ThesectionlabelfieldshouldbeleftblankwhensectionpropertiesaretobedeterminedfromtheoutsidediameterandwallthicknessspecifiedontheGRUPline.

    ThefollowingdefinestubulargroupsBL1andBL2.ThepropertiesfromBL1aredesignatedontheGRUPlinewhilethepropertiesforgroupBL2areobtainedfromsectionCAN105definedusingasectionline.

    1.8.4GroutedTubularMembers

    Groutedsectionsaredefinedusingatubularsection.TheODandthicknessofeachoftheconcentrictubesmustbespecifiedontheSECTIONline.Forpurposeofdeterminingtheweight,theannulusisassumedtobefilledwithgrout(150#/ft3).Forstiffnesspurposes,however,thegroutintheannulusisignored.

    ThefollowingdefinesthegroutedleggroupGL2usingsectionGLEG103whichcontains103.ODand90.0ODconcentrictubulars.

    1.8.5DentedTubularMembers

    DentedtubularsectionsaredefinedusingaSECTIONlinewithDTBincolumns1618.TheODandthicknessofthetubularmustbespecifiedontheincolumns5055and5660,respectively.Thedentdepthandgroutfillratioareinputincolumns6166and6771.Ifthesectionisbentandthebendisnotaccountedforusingoffsetsoradditionaljoints,entertheoutofstraightnessincolumns7276.

    ThefollowingdefinesthedentedsectionDENT24as24x1.0withadentdepthof4inches.Nogroutisincluded.

    Note:ThedentpointsinthelocalZdirectionandissymmetricaboutthelocalXZplane.Thedentlengthisthelengthofthememberorthelengthofthesegment.ThelocalZdirectioncanbeorientedrelativetothedefaultusingachordangleincolumns3641ofthecorrespondingMEMBERline(orareferencejointincolumns4245).

    1.8.6SegmentedMembers

    Thesectionlabeldefiningthecrosssectionproperties,orthediameterandwallthicknessfortubularmembers,foreachofthemembersegmentsisspecifiedontheGRUPlinecorrespondingtothatsegment.SeetheexampleintheSegmentedMembersundertheMaterialPropertiesSection.

    1.8.7PlateElements

    SectionpropertiesofaplateelementaredeterminedfromthethicknessspecifiedonthePLATElineforisotropicplatesthatarenotassignedtoplategroupsortheappropriatePGRUPlineformembrane,shear,andcorrugatedplatesorforisotropicplatesassignedtoagroup.ThepropertiesofstiffenedplatesaredeterminedfromtheplatepropertiesspecifiedonthePGRUPlineandstiffenersspecifiedonthePSTIFinputline.

    ThefollowingdefinesplatesAAAAandAAAB.ThethicknessforAAAAisdefineddirectlyonthePLATElinewhileAAABisobtainedfromthePGRUPlinedefininggroupP01.

    1.8.8ShellandSolidElements

    SectionpropertiesofashellelementaredeterminedfromthethicknessspecifiedontheSHELLlineforisotropicshellsthatarenotassignedtoshellgroupsviatheSHLGRPline.Solidelementshavenosectionpropertiesparticulartotheelement.

    1.8.9MaterialProperties

  • 1.8.10MembersorBeamElements

    Forbeamelements,materialpropertiessuchasmodulusofelasticity,shearmodulus,yieldstress(andshearareafactorfortubulars),arespecifiedontheappropriateGRUPline.ThegrouptowhichthememberisassignedisdesignatedontheMEMBERline.

    ThefollowingdefinesthematerialpropertiesforgroupsBL1andBL2.

    Note:Bydefault,theplategirderflangeyieldstressisassumedtobethesameasthewebyieldstress.Entertheflangeyieldstressincolumns4145oftheGRUPlinedefiningtheplategirdergroupifdifferentfromthewebyieldstress.

    1.8.11TaperedMembers

    TaperednonsegmentedelementsmaybedefinedusingtwoGRUPlines.ThepropertiesofthebeginningofthetaperaredefinedusingaGRUPlinewithBincolumn9whilethepropertiesattheendofthetaperaredefinedusingaGRUPlinewithEincolumn9.

    Forexample,thefollowingdefinesataperedplategirderwiththebeginningdefinedbysectionPGIRD18andtheenddefinedbyPGIRD12.

    Note:Thesectiontypemustbethesameateachendofthetaperedsegment.

    ThepreviouscaseistheonlycaseinwhichmorethanoneGRUPlinecorrespondstoasinglesegmentmember.InthiscasedonotspecifyasegmentlengthoradifferenceinmaterialpropertiesinthetwoGRUPlines.Inallothercases,thenumberofconsecutiveGRUPlineswiththesamegroupnamecorrespondstothenumberofsegmentsinagroup.

    Ifataperedbeamisneededwhosetopflangeisparalleltothelinebetweentheendpointjoints,itisnecessarytoaddtwointermediatejointsandsplitthememberintothreemembers,thefirsttapered,thesecondconstantcrosssection,andthethirdtapered.Thisisdoneasfollows:

    TaperedsegmentedelementsaredefinedusingaGRUPlineforeachsegment.ThepropertiesofthegroupforthebeginningofthetaperaredefinedusingaGRUPlinewithBincolumn9whilethepropertiesofthegroupfortheendofthetaperaredefinedusingaGRUPlinewithEincolumn9.AGRUPlinewithaBincolumn9willstartataperwiththeendofthetapercrosssectionobtainedfromthenextGRUPline.AGRUPlinewithanEincolumn9willendataperwiththebeginningofthetaperdeterminedfromthepreviousGRUPline.

    Forexample,thefollowingdefinesataperedplategirderwiththebeginningdefinedbysectionPGIRD12.ThemiddlesectionisconstantdepthdefinedbyPGIRD18andtheendisdefinedbyPGIRD12.

  • Note:Thesectiontypemustbethesameforeachsegmentofthetaperedmember.

    Inasegmentedmember,theaxisofthememberbetweenthejointscorrespondstotheneutralaxisofeachsegmentinthemember.IntheprevioustaperedplategirderthetopandbottomflangesofthePGIRD12segmentwouldexpandtoreachthePGIRD18section.Inataperedsegmentedmember,thetopandbottomflangesarenotusuallyparalleltothelinebetweenmemberendpoints.

    1.8.12SegmentedMembers

    AseriesofGRUPlineswiththesamegrouplabelareusedtodefinethepropertygroupofasegmentedmember.Eachinputlinecorrespondstooneofthesegmentsofthatgroup.Materialpropertiesofthesegmentinadditiontothesegmentlengthmaybespecified.Forexample,groupLG1inthefigurebelowwouldbespecifiedusingthreegrouplinesasfollows:

    Note:Thesegmentlengthforoneofthesegmentswasleftblanksothatitcanbedeterminedbytheprogram.Thisinsuresthatthesumofallsegmentlengthswillequalthememberlength.

    Thesegmentlengthmayalsobeexpressedasafractionofthetotalmemberlength.Inthiscase,thefractionforeachsegmentmustbeenteredandthesummationofallsegmentlengthfractionsmustequalone.Ifanysegmentlengthisleftblank,itisassumedthattheremaininglengthsarelengthsratherthanfractions.

    1.8.13PlateElements

    MaterialpropertiesforplateelementsincludingYoungsModulus,PoissonsRatioandyieldstressarespecifiedontheappropriatePLATElineforisotropicplatesthatarenotassignedtoaplategrouporonthePGRUPlineformembrane,shear,corrugatedandstiffenedplatesorforisotropicplatesassignedtoaplategroup.Ifaplategroupistobeused,thegrouptowhichtheplateisassignedisdesignatedonthePLATElinedefiningtheelement.

    ThefollowingdefinesthepropertiesforplategroupP01.

    1.8.14ShellandSolidElements

    Materialpropertiesforshellandsolidelementswhicharenotinputingrouplines(SHLGRPorSLDGRP,respectively)areinputdirectlyontheSHELLorSOLIDlinedefiningtheelement.

    1.8.15StiffenerData

    1.8.16PlateGirders

    Bydefaultplategirdermembersareassumedtohavewebstiffenerspacingequaltothememberlength.Plategirderwebstiffenerspacingcanbedesignatedincolumns6569ontheGRUPlinedefiningtheplategirdergroup.

    ThefollowingdesignatesahybridplategirdergroupnamedPG2thatreferencessectionPG36100.Theflangeyieldstressis50,thewebyieldstressis36andthewebstiffenerspacingisdesignatedas24.

    1.8.17TubularMembers

    Tubularmemberscancontainringand/orlongitudinalstiffenersasdefinedontheSECSCYlineimmediatelyfollowingtheSECTlinedefiningthetubularproperties.Enterthelongitudinalstiffenersectionnameincolumns915andthespacingincolumns1620.

    Theringstiffenersectionisdefinedincolumns2127alongwiththeringspacingincolumns2832.

    Note:Thebasicsectionproperties(i.e.ODandthickness)ofastiffenedtubularsectionmustbedefinedusingaSECTIONline.

    Thefollowingdefinesastiffened48.0x1.0tubularsectionnamedSCY48X1withringstiffenersdefinedbysectionRSTIF1spacedat24.

  • Note:StiffenedtubularsectionscanbecodecheckedusingAPI2UBulletincriteriabyspecifyingPTincolumns6768ontheOPTIONSline.

    1.9ELEMENTDATA

    TheSACSsystemallowstheuseofbeam,plate,shelland/orsolidelementsinthemodel.

    1.9.1MembersorBeamElements

    BeamelementsarespecifiedonMEMBERlinesfollowingtheMEMBERheaderinputline.Beamelementsarenamedbythejointstowhichtheyareconnected.Inadditiontotheconnectingjoints,thepropertygrouplabelalongwithsomeoptionalpropertydataarespecifiedontheMEMBERline.Memberpropertiesspecified,suchasfloodcondition,Kfactors,averagejointthicknessanddensityoverridedataspecifiedontheGRUPline.

    Thefollowingdefinesmember101201andassignsittopropertygroupGL2.

    Note:Whenanaveragejointthicknessisentered,thememberlengthusedforEulerbucklingandhydrodynamicloadgenerationisshortedbytheaveragejointthickness.Anyexistingloadsarenotaffectednormodifiedwhenanaveragejointthicknessisspecified.

    1.9.2MemberLocalCoordinateSystem

    Eachmemberhasanassociatedlocalcoordinatesystemwhichloadsandstressesmaybedefinedwithrespectto.Thedefaultmemberlocalcoordinatesystemisdefinedas:

    ThememberlocalXaxisisdefinedalongthememberneutralaxisfromthefirstconnectingjointspecifiedtowardthesecondconnectingjoint.

    Formembersthatarenotvertical,i.e.localXaxisisnotparalleltoglobalZ,thelocalZaxisisdefinedasperpendiculartolocalXaxis,lyingintheplaneformedbytheglobalZandlocalXaxesandhavingapositiveprojectionalongtheglobalZaxis.TherighthandruleisusedtodeterminethelocalYaxis.ThelocalZaxisforverticalmembers,i.e.memberswhoselocalXaxisisparalleltoglobalZ,isparalleltotheglobalYaxisandinthepositiveYdirection.ThelocalYaxisisdeterminedbyusingtherighthandrule.Seefigurebelow.

    Thedefaultorientationofthememberlocalcoordinatesystemcanbeoverriddenbyspecifyingachord(beta)angleand/oralocalZaxisreferencejointontheMEMBERline.Whenachordangleisinput,thedefaultlocalcoordinatesystemisrotatedaboutthelocalXaxisbytheanglespecifiedfollowingtherighthandrule.TheZaxisreferencejointisusedwiththelocalXaxistodefinethelocalXZplane.ThelocalZaxisisdefinedsuchthatitisperpendiculartothememberandpositivetowardthereferencejoint.

    1.9.3MemberInternalLoadandStressSignConvention

    ThesignconventionusedbythePostprogrammoduleforreportingmemberinternalloadsandstressesisdependentonthememberlocalcoordinatesystemasfollows:

    1. Axialtensionispositiveatbothendsofthememberwhilecompressionisnegativeatbothends.2. Positivebendingatbothendsofthemembercausesthecenterofthemembertodeflectdownwardorinthenegativedirectionofthelocalcoordinatesystem.3. Positiveshearforceisinthedirectionofthepositivelocalmembercoordinateatthebeginningofthememberandinthenegativelocalmembercoordinateattheendof

    themember.4. Apositivetorsionvectorisoutwardatbothendsofthemember.

    Thefigurebelowshowspositiveloadsandmomentsalongwithpositivestressesatthememberbeginningandend.

  • 1.9.4MemberEndFixity

    Bydefault,theendsofamemberarefixedtotheconnectingjointsforallsixdegreesoffreedom.However,anyofthesixdegreesoffreedommaybereleasedfromtheconnectingjointbyspecifyinga1intheappropriatecolumnontheMemberDescriptionline.Degreesoffreedomareinthememberlocalcoordinatesystem.

    Forinstance,thestartofmember101102isfixedforaxialloadandshear.Thetorsion,momentYandmomentZdegreesoffreedomarethereforereleasedbyspecifying000111incolumns2328.Theendofthememberisfixedforalldegreesoffreedom.

    1.9.5MemberOffsets

    Memberoffsetsareusedtoshortenorlengthenthememberortomovethememberwhentheneutralaxisisnotlocatedonthelinebetweenitsconnectingjoints.Whenoffsetsarespecified,theprogramcreatesarigidlinkbetweentheneutralaxisofthememberendandtheconnectingjoint.

    Theoffsetsdescribethelengthoftherigidlinkandmaybedescribedinlocalorglobalrectangularcoordinates.Thecoordinatesystemusedisspecifiedincolumn7ontheMEMBERline.Enter1forglobalcoordinatesystemor2forlocalcoordinatesystem.TheoffsetsaredefinedontheMEMBEROFFSETSlineimmediatelyfollowing

    Thefollowingdefinesoffsetsintheglobalcoordinatesystemformember203301.

    Note:Specifiedmemberendreleasesareappliedtotheconnectionbetweenthememberendandtherigidlink.

    1.9.6Kfactors/EffectiveBucklingLength

    Kfactorsoreffectivebucklinglength,butnotboth,maybespecifiedforbucklingaboutthelocalYandZaxes.KfactorsarespecifiedonthepertinentGRUPlineincolumns5259butmaybeoverriddenontheMEMBERlineincolumns5259.

    WhenKfactorsareused,theeffectivebucklinglengthiscalculatedastheKfactormultipliedbytheactualmemberlength.WheneffectivelengthsarespecifiedontheMEMBERline,Lmustbeinputincolumn47.TheeffectivebucklinglengthisthendeterminedusingtheKfactorfromtheGRUPlinemultipliedbucklinglengthspecified.

    Thefollowingdefinesmembers101201and201301.Theeffectivebucklinglengthformember101201isdeterminedusingtheKfactorsspecifiedforgroupT01sincenoKfactorsarespecifiedontheMEMBERline.Theeffectivelengthformember201301isdeterminedusingthebucklinglengthontheMEMBERlineandtheKfactorsspecifiedforgroupT01.

    1.9.7UnbracedLengthofCompressionFlange

    Thedistancebetweenbracingagainsttwistorlateraldisplacementofthecompressionflangeforuseincalculatingbendingallowablestressesfornontubularmembers,maybeinputontheGRUPorMEMBERlineincolumns6064.Thedefaultisthememberlength.

    Thefollowingdesignatesthattheunbracedlengthofthecompressionflangeformember101201is5.

  • Note:ValuesspecifiedontheMEMBERlineoverridevaluesspecifiedontheGRUPline.

    1.9.8ShearAreaFactorforTubularMembers

    Fortubularmembers,thefactorwithwhichtomultiplythecrosssectionareaforpurposesofshearstresscalculations,maybeinputontheGRUPlineincolumns6569orontheMEMBERlineincolumns6064.

    Thefollowingspecifiesashearareamodifierof0.5formember101501.

    1.9.9SkippingfromOutputReports

    AmembermaybeeliminatedfromoutputreportsbyinputtingSKontheMEMBERlineincolumns2021.IfSEwasdesignatedastheelementdetailreportoption,enterRPtohavethestressandunitycheckresultsreportedfortheparticularmember.Allmembersofagroupmaybeskippedfromoutputreportsbyspecifying9incolumn47oftheGRUPline.

    1.9.10MultipleMembersBetweenTwoJoints

    Amaximumoftwomembers,spanninginoppositedirection,areallowedbetweenthesametwojoints.Forexample,twomembersmaybemodeledbetweenjoints101and102,member101102andmember102101.However,allloadingappliedtothememberswillbeappliedtothefirstmemberspecified.Ingeneral,modelingtwomembersbetweenthesamejointsisapplicablewhenthesecondmemberisadummymemberusedonlytosimulateadditionalstiffness.

    1.9.11DefiningSpecialElementTypes

    1.9.12CableElement

    CableelementsaredefinedusingstandardbeamelementsexceptthatadditionalmemberdataisspecifiedontheMEMB2line.Thetensionusedtodeterminethecablestiffnessisinputincolumns814ontheMEMB2line.

    Thefollowingspecifiesatensionforceof10.0forcablemember101501.

    Note:EnterAincolumn16ontheMEMBERlineifadditionalmemberdataisspecifiedontheMEMB2line.

    1.9.13GapElement

    Elementscanbedesignatedastensiononly,compressiononly,noloadorfrictionelementsforGapanalyses.Thegapelementtypemaybedesignatedonthemembergrouplineincolumn30orontheMEMBERlineincolumn22usingT,C,NorF,Release6:Revision0SACSSACSIV219respectively.

    Note:Thegapelementtypeisonlyapplicablewhenrunningagapelementanalysisandisignoredforallotheranalysistypes.

    1.9.14XBraceorKBrace

    Bydefault,thebucklinglengthandKfactorsspecifiedontheGRUPandMEMBERlinesinthemodelareusedforunitycheckcalculationsforeachloadcase.

    MembersmakingupanXbraceorchordmembersofaKbracenotbracedoutofplanemaybedesignatedassuchusingtheMEMB2line.TheMEMB2lineallowsdesignationoftheKfactorand/orbucklinglengthtobeusedforloadcaseswherethememberispartofanXbraceorthechordofaKbrace.

    Note:TheXbraceorKbraceparametersareonlyappliedtotheaxisintheplaneoftheconnectionforloadcaseswherethememberisincompressionandthereferencemember(s)areintension.

    ThebracetypeXorKisdesignatedincolumn15.Thememberlocalaxis,YorZ,thatliesintheplaneoftheXbraceorKbraceisenteredincolumn16.Enterthereferencemember(s)thatwillbecheckedfortensionincolumns1732.TheKfactorand/orbucklinglengthtobeusedforloadcaseswherethememberispartofanXbraceorthechordofaKbraceisdesignatedincolumns3338and3945,respectively.

    Note:KbracesrequiretworeferencememberswhilethesecondreferencememberisoptionalforXbraces.

    Thefollowingexampledefinesparametersformembers101109and105109whicharechordmembersofaKbracewhoselocalYaxeslieinthebraceplane.ThediagonalorKbracemembersare109110and109112.Forloadcaseswherechordmembers101109and105109areincompressionandmembers109110and109112areintension,aKfactorof0.8andabucklinglengthof11.15istobeused.Forotherloadcases,theKfactorandbucklinglengthspecifiedinthemodelfilearetobeused.

  • Thisexampledefinesparametersformembers301309and307309whicharechordmembersofanXbraceandmembers303309,305310and310309whichmakeupthetwobraceelementsframingintothechord.ThememberslocalYaxeslieintheplaneofthebrace.Formembers301309and307309,aKfactorof0.9andabucklinglengthof8.71istobeusedforloadcaseswherethememberisincompressionandtheotherpairofmembersframingintothechord,303309and310309,areintension.Formembers303309,305310and310309,aKfactorof0.9andabucklinglengthof8.55istobeusedforloadcaseswherethememberisincompressionandmembers301309and307309areintension.Forotherloadcases,theKfactorandbucklinglengthspecifiedinthemodelfilearetobeused.

    1.9.15PlateElementsTheSACSsystemcontainsbothtriangularandquadrilateralorthotropicflatplateelements.Theelementisatrue6degreeoffreedomlinearstrainelement.Theorthotropicnatureoftheflatplateelementallowsforthemodelingofthefollowingplatetypes:Isotropic,Membrane,Shear,Stiffened&Corrugated.

    Theappendicescontainadetaileddiscussionofeachplateelementtype.

    1.9.16IsotropicPlatesForisotropicplateelements,theplatename,connectingjoints,thicknessandmaterialpropertiesmaybespecifiedontheappropriatePlateDescriptionline.Aplategroupisnotrequired.Ifaplategroupisspecified,thematerialpropertiesandthicknessareobtainedfromtheplategroupunlessoverriddenonthePLATEline.

    ThefollowingdefinesplatesAAAAandAAAB.ThepropertiesofplateAAAAaredefineddirectlyonthePLATElinewhileplateAAABobtainspropertiesfromgroupP01.

    1.9.17MembraneandShearPlates

    APLATElinecontainingtheplatename,connectingjointsandplatepropertygroupnameisusedtodefinetheplate.Theplatetype,thicknessandmaterialpropertiesarestipulatedontheappropriatePGRUPline.AnyplatematerialpropertiesinputonthePLATElineoverridethosespecifiedfortheplategroup.

    1.9.18StiffenedPlates

    APLATElinecontainingtheplatename,connectingjointsandplatepropertygroupnameisusedtodefineastiffenedplate.Theplatetype,materialproperties,stiffenersectionlabels,stiffenerdirection,location(top,bottomorboth)andspacingarespecifiedontheappropriatePGRUPinputline.MultiplePGRUPlineshavingthesamegrouplabelcanbeusedtodescribeplateswithmorethantwosetsofstiffeners.PlatematerialpropertiesinputonthePLATElineoverridethosespecifiedfortheplategroup.

    PlatestiffenercrosssectionsmaybeanyshapedefinablebytheSECTIONline.SpecialstiffenercrosssectionsnotavailableontheSECTIONlinemaybedefinedusingthePSTIFline.SectionsnotfoundinthesectionlibraryfilemustbedefinedinthemodelusingPSTIFlines.AnoutlineofPSTIFgeometryisshowninthediagramfollowing.

    ThefollowingsampleshowsplateAAAAdefinedbygroupP01.GroupP01isastiffenedplategroupwithW12X26runningalongthelocalXaxisat100.0spacing.W12X26isasectiondefinedinthesectionlibraryfile.

  • 1.9.19CorrugatedPlates

    Corrugatedplatesarespecialplateswithacombinationofbothinplaneandoutofplanestiffness.CorrugatedplatesaregivendirectlyonthePSTIFlinebyspecifyingfourparametersA,B,C,andDasshowninthefollowingfigure.

    ThefollowinginputdefinesacorrugatedplateAAABwithcorrugationsrunninginthelocalXdirection.Thethicknessoftheplateis0.25andthespacingCis12.TheAandBdimensionsare3and3,respectively.WiththestiffenerspacingunspecifiedonthePGRUPline,thestiffenerspacingdefaultstotheCdimension12.AspecificationofTorBfortoporbottomstiffenersisunnecessary.

    Note:AvonMisescheckversusanallowableof0.6Fyisusedtocheckthecorrugatedplate.Bucklingisnotincludedintheplatemodelorcodecheck.Ifbucklingcanoccur,theplatethicknessmayrequireadjustmenttolimittheplatecapacity.ThenormallimitationsapplysuchasaspectratioandgriddensityaswithanyFEmodel.Sincethecorrugatedplatehassignificantoutofplanestiffness,adjacentmembersareassumedtosharetheloadwiththecorrugatedplate.

    1.9.20PlateLocalCoordinateSystem

    Likebeamelements,eachplateelementhasanassociatedlocalcoordinatesystemwhichloadsandstressesmaybedefinedwithrespectto.TheplatelocalXaxisisdefinedattheplatecenterlinefromthefirstconnectingjointspecifiedtothesecondconnectingjoint.ThelocalXYplaneisdefinedbythefirstthreejointswithlocalYaxisperpendiculartothelocalXaxistowardthethirdjoint.TherighthandruleisusedtodefinethelocalZaxis.

  • Forexample,plateAAABconnectedtojoints614,615,627and626hasalocalXaxisfromjoint614tojoint615.ThelocalYaxisisperpendiculartothelocalXaxisinthedirectionofjoint627.

    1.9.21PlateOffsets

    Plateoffsetsmaybeusedwhentheplatescenterplaneisnotlocatedattheplaneformedbytheconnectingjointsorwhenoneoftheedgesdoesnotcorrespondtoalinebetweenthejointstowhichitisconnected.Plateoffsetscanalsobeusedtogeneratethetransitionbetweentheflatplatesandbeamelements.SeetheCommentaryforadetaileddiscussion.

    Whenanoffsetisstipulated,theprogramcreatesarigidlinkbetweentheplatecornerandtheconnectingjoint.Theoffsetsdescribethelengthoftherigidlinkandmaybedescribedinlocalorglobalrectangularcoordinates.ThecoordinatesystemusedisspecifiedonthePLATEline.

    LocalZoffsetsmaybespecifieddirectlyonthePGRUPlineincolumns3641.Forstiffenedplates,theautomaticoffsetoption,whichcalculatestheoffsetsuchthatthecenterplaneoftheplateitselfliesinthejointplane,maybeselectedbyenteringZincolumn10.AnylocalZoffsetsspecifiedareaddedtothecalculatedoffsets.

    ThefollowingdefinesplategroupsP01andP02containingalocalZoffsetof10.GroupP02isastiffenedplateandalsohastheneutralaxisoffsetoptiononsothattheoffsetismeasuredfromtheplatecenterinsteadoftheneutralaxis.

    OffsetsdefiningthelocationoftheplateedgesaredesignatedonthetwoPLATEOFFSETSlinesimmediatelyfollowingthePLATEinputline.Thefirstoffsetlinecontainstheoffsetsforthefirsttwojoints,andthesecondcontainstheoffsetsforthethirdandfourth(optional)joint(s).Thecoordinatesystemthattheoffsetsaredefinedwithrespecttoisdesignatedincolumn43onthePLATEline.Enter1forglobalcoordinatesor2forlocalcoordinates.

    ThefollowingdefinesplateAAABwithglobalXoffsetof10.0specifiedateachjoint.

    1.9.22SkippingfromOutputReports

    AplatemaybeeliminatedfromoutputreportsbyinputtingSKincolumns3132onthePLATEline.IfSEisdesignatedforelementdetailreportsontheOPTIONSline,enterRPincolumns3132tohavethestressandunitycheckresultsreportedfortheparticularplate.

    1.9.23PlateModelingConsiderations

    Unlikebeamelements,flatplateelementsarenotclosedformsolutions.Therefore,therearelimitationstothegeometryandmeshsizethatarenecessarytogenerateaccuratestressesanddeflections.ThefollowingsuggestionsaremadefortheuseofflatplatesintheSACSsystem:

    1. Theaspectratio(widthversusheight)forplateelementssubjectedtooutofplanebendingshouldbelimitedto6to1forthreenodeplatesand3to1forfournodeplates.Iftheprimaryplateloadisintheplaneoftheplatethentheaspectratiocanbeincreasedto10to1forthreenodeplatesand5to1forfournodeplates.

    2. Interiorangleswithinaplateshouldnotexceed180degrees.3. Fournodeplatesarelimitedto3degreesofoutofplanetolerancebetweentheRelease6:Revision0SACSSACSIV225fournodessuchthattheanglebetweenthe

    normalstoanytriangularportionsofthefournodeplatecannotexceedthisvalue.4. Fordetailedstresses,ameshsizeoffournodesbyfournodeswillaccuratelyrepresentaflatplateforbothstiffnessandstresscalculations.Acoarsermeshspacingwill

    resultinrelativelyaccuratestiffnessrepresentationbutstresscalculationsmaynotrepresentlocalstressvariationswithintheplate.5. Becausefournodeplatesarerepresentedinternallyby4threenodeplates,a4nodeplateisinherentlymoreaccuratethana3nodeplate.6. Platestressesfortraditionalbeamstriptheoryplatesareonlyreportedatthegeometriccenteroftheplate.PlatestressesforDKTplatesarereportedatthecorner

    jointsandthegeometriccenter.Platestressesreportedatthegeometriccenterofplatesaretheoreticallymoreaccuratethanthoseatcornerjoints.

    1.9.24ShellElements

    TheSACSprogramcontains6nodetriangular,and8or9noderectangularisoparametric

  • shellelements.Shellelementscanhaveconstantthicknessorthicknessmaybespecifiedateachnode.Rigidlinkoffsetscanbemodeledateachnodetoallowforconnectioneccentricities.

    Materialpropertiesincludingmodulusofelasticity,Poissonsratio,yieldstress,coefficientofthermalexpansionanddensityarespecifiedeitherontheSHLGRPlineorontheSHELLlineitself.Shellthickness,ifconstant,maybespecifiedeitherontheSHLGRPlineorontheSHELLline.Forshellswithvaryingthickness,thethicknessateachnodeisspecifiedontheSHELLTHICKlineimmediatelyfollowingtheSHELLlinedefiningtheelement.

    1.9.25ShellLocalCoordinateSystem

    Fortriangularshellelements,thelocalXaxisisdefinedfromnodeonethroughnodethree.

    ThelocalYaxisisperpendiculartothelocalXaxisandliesintheplaneformedbynodesone,threeandfive.TherighthandruleisusedtodeterminethelocalZaxis.ThelocalXaxisforarectangularshellisdefinedbynodesoneandthree.ThelocalYaxisisperpendiculartothelocalXaxisandliesintheplaneformedbynodesone,threeandseven.ThelocalZaxisisdeterminedbytherighthandrule.Adetaileddiscussiononshellelementsislocatedintheappendices.

    1.9.26IntegrationPoints

    ThenumberofGaussianIntegrationpointsalongtheelementsurfaceisspecifiedeitherontheSHLGRPlineorontheSHELLlineitself.TheuserspecifiesFine,MediumorCoarseintegrationcorrespondingto13points,7pointsor3pointsrespectivelyfortriangularshells,or4x4,3x3or2x2meshrespectivelyforrectangularshells.Therearealsotwointegrationpointsthroughtheelementthicknessforbothtriangularandrectangularshellelements.

    1.9.27ShellOffsets

    Shelloffsetscanbemodeledateachnodetoallowforconnectioneccentricities.TheoffsetsarespecifiedontheSHELLOFFSETlineinglobalcoordinates.Twooffsetlinesarerequiredfor6nodeelementsandthreearerequiredforeightorninenodeelements.

    1.9.28ShellElementReport

    IfPTisdesignatedintheelementdetailreportfieldontheoptionsline,thestressdetailsforashellelementmaybeskippedbyinputtingSontheSHLGRPorSHELLline.IfSEorisdesignatedintheelementdetailreportfieldontheoptionsline,allshellelementdetailswillbeskipped.

    1.9.29SolidElements

    TheSACSprogramcontains4nodetetrahedron,5nodepyramid,6nodewedgeand8nodebricksolidfiniteelementshapes.Theelementsareconstantstrainelementsanddonotrestrainrotationatthenodes.Thesolidname,connectingjointsandmaterialpropertiesincludingmodulusofelasticity,Poissonsratio,yieldstress,coefficientofthermalexpansionanddensityarestatedeitherontheSLDGRPlineorontheSOLIDlineitself.

    Beingasthesesolidfiniteelementsdonotcontaininherentrotationalstiffness,therotationaldegreesoffreedomforjointscontainedwithinonlysolidelementswillbeconstrained.SACSautomaticallygeneratestheconstraintsofrotationaldegreesoffreedomforjointswhichareexclusivelycontainedinsolids.Withtheextraconstraintsonsolidjoints,therewillbeextrareactionforcesgeneratedinthePostoutputfortheseconstraineddegreesoffreedom.

    Inherentrotationaldegreesoffreedominsolidelementsmaybemodeledbyspecifying6incolumn71oftheOPTIONSline.Theseelementsareacondensationofhigherorderisoparametricsolidelements,withtherotationaldegreesoffreedombeingobtainedfrommidsidenodetranslationaldegreesoffreedom.

    Jointorderinginsolidelementsisfree.Assuch,arbitraryjointordermaybeinputwiththeprogramdeterminingsolidfaces.Therearetwooptionsforjointordering:(1)thedefaultmethodwhichrequiresflatsolidfacesand(2)amorerobustschemeallowingsolidfacewarpage.Thesecondscheme,whichisspecifiedwithanRincolumn72oftheoptionsline,hastheadditionalfeatureofallowingtheprogramtobypassjointorderingforanysolidwhenanNisspecifiedincolumn44oftheSOLIDline(orcolumn

  • 14oftheSLDGRPline).WiththedefaultjointorderingmethodanNspecifiedincolumn44oftheSOLIDline(orcolumn14oftheSLDGRPline)willmeanthatonly8nodebricksolidelementsarenotreordered.Thedefaultjointorderingforsolidsisshowninthefigure.

    1.9.30SolidLocalCoordinateSystem

    ThelocalXaxisisdefinedbynodesoneandtwo.ThelocalXYplaneisdefinedbynodesone,twoandthree.ThelocalYaxisisperpendiculartothelocalXaxis,positiveinthedirectionofnodethree.TherighthandruleisusedtodeterminethelocalZaxis.

    1.9.31SolidOffsets

    SolidoffsetscanbespecifiedtoaccountforeccentricitiesorelementtransitionsontheSOLIDOFFSETlinefollowingtheSOLIDlinedefiningtheelement.

    Normallyoffsetsareusedtolocatetheelementrelativetotheconnectingjointsusingarigidlink.Offsetscanalsobeusedtogeneratetransitionsbetweensolidelementsandisoparametricshells,flatplates,andmembers.Forexample,ifafournodefaceofasolidelementisconnectedtoabeamorplateelement,thesolidfaceshouldbedescribedusingonlytwojointslyingatthecenteroftheface.Twojointsshouldbespecifiedasthefourconnectingjoints(i.e.101,102,102,101).Offsetsarethenspecifiedateachconnectingjointtooffsetthejointstothecornersoftheelement.Theresultingoffsetsolidelementwillformafull6degreeoffreedomtransitionconnectionbetweentheelements.

    1.10JOINTS

    JointsaredefinedontheJOINTinputlinewhichcontainsthejointname,globalcoordinatesandfixity.

    1.10.1JointCoordinates

    TheX,YandZglobaljointcoordinatesmaybeinputinfeet,inchesorfeetplusinchesforEnglishunitsorinmeters,centimetersormeterspluscentimetersformetricunits.Forexample,ajointwithanXcoordinateof25.50feetmaybeenteredas25.5feet,306.0inchesor25.0feetand6.0inchesasillustratedbythefollowingthreeJOINTlines:

    AjointwithanXcoordinateof25.5metersmaybeenteredas25.5meters,2550.0centimetersor25.0metersand50.0centimetersasillustratedbytheinputlinesbelow:

    1.10.2JointSupport/Fixity

    Thejointsupportconditionorfixityofeachofthesixdegreesoffreedom(X,YandZtranslationandrotation)isspecifiedontheJOINTlineincolumns5560.

    Bydefault,eachdegreeoffreedomisassumedfree.Ablankor0indicatesthatthedegreeoffreedomisfree.

    1.10.3FixedtoGround

    A1indicatesthatthedegreeoffreedomisfixedtoground.Forapinnedsupport,afixityof111orPINNEDshouldbespecified.Afixedsupportcanbespecifiedas111111orFIXEDincolumns5560.

    Thefollowingshowsjoint297aspinned(i.e.111)andjoint298fixedforXandYtranslationandforrotationabouttheglobalZaxis(i.e.110001).

    Note:Jointswithspringsupportsortowhichprescribeddisplacementsaredefinedmustbefixedtogroundforanydegreeoffreedomtowhichaspringvalueordisplacementisassigned.

    1.10.4PileheadSupports

    Jointsthroughwhichalinearstructureisconnectedtoanonlinearsystemarecalledpileheadsupports.Thestiffnessandloadmatricesofthelinearstructurearecondenseddowntothepileheadjointsinordertoaccountfortheeffectsofthelinearstructureinthenonlinearanalysis.ThisisrequiredwhenusingthePSImoduletoaccountforthenonlinearpile\soilinteraction.AjointisdesignatedasapileheadjointbyspecifyingPILEHDincolumns5560ontheJOINTline.

    Thefollowingshowsjoint299asapileheadsupport.

  • Note:Forstaticlinearanalysis,jointswithPILEHDstipulatedasthesupportconditionareassumedtobefixedsupports.

    1.10.5SpringSupports

    Anyoralldegreesoffreedomofajointmaybedesignatedasatranslationorrotationelasticspringprovidedthatthedegreeoffreedomisdesignatedasfixed(i.e.1)ontherespectiveJointDescriptionline.ThespringconstantsforsprungdegreesoffreedomarespecifiedontheJointElasticSupportinputlineincolumns1253followingtheJointDescriptionlineandareenteredwithrespecttothesupportjointcoordinatesystem.Thesupportjointcoordinatesystemistheglobalcoordinatesystembydefault.

    Thefollowingdefinesjoint297asapinnedsupportwithaspringconstantof1000.0fortheverticaldirection(Ztranslationdegreeoffreedom).

    Whenallthreetranslationaland/orrotationaldegreesoffreedomaredesignatedassprings,thesupportjointcoordinatesystemmayberedefinedusingtworeferencejointsspecifiedincolumns7376and7780ontheJointElasticSupportline.ThesupportjointlocalXaxisisdefinedbythesupportjointandthefirstreferencejoint.ThelocalXZplaneisdefinedbythesupportjointandthereferencejointswiththelocalZaxisperpendiculartothelocalXaxis.

    Forexample,joint297isdefinedaspinnedwithaspringconstantof100.0alongalinebetweenjoints297and505(supportlocalX).ThejointsupportcoordinatesystemXZplaneisdefinedusingjoint702.

    Note:Degreesoffreedommustbesprungasasetwhenthesupportcoordinatesystemisredefinedbyreferencejoints.Therefore,sincethelocalYandZdegreesoffreedomaretobefixed,theywereassignedaveryhighspringconstant.

    1.10.6RetainedforDynamics

    Fordynamicanalysis,unrestraineddegreesoffreedomareconsideredasslavedegreesoffreedom.Specify2intheappropriatecolumntodesignateafreeDOFasamasterDOFfordynamics.

    Forexample,joint297isfreeforstaticanalysisbuttranslationXandYdegreesoffreedomareconsideredmasterorretaineddegreesoffreedomformodeshapeextraction.

    1.10.7MasterDegreesofFreedom

    ThedisplacementcharacteristicsofajointmaybeappliedtootherjointsusingtheMASTERline.Thislinespecifiesmasterdegreesoffreedomforwhichallcoupledjointswillhaveidenticaldisplacements.Thisisusefulinmodelingrigidstructuralelementswhichattachtoabodyandsupplyuniformdisplacementforseveraljointsinastructure.Asaruleofthumb,coupledjointsshouldnotbecoupledforalldegreesoffreedomtypically,distinctpointsmaybeforcedtodisplacesimilarlybutmaynotrotatesimilarly.Thefollowingexamplespecifiesthatjoints22,23,24and25havethesameX,YandZdisplacement(1incolumns13,15and17,respectively)asmasterjoint20.

    Note:Adegreeoffreedomforaparticularjointmaynotbecoupledtomorethanonemasterjoint.Similarly,amasterjointmaynotbecoupledtoanothermasterjoint.

    1.11LOADING

    TheSACSsystemsupportsloadingappliedatjointsandtomembers,platesandshellelements.LoadinginformationisgenerallyspecifiedafterallgeometryinformationinthemodelfileandmaybespecifiedbytheuserorgeneratedbyoneoftheSACSprogrammodules.AlinewithLOADspecifiedincolumns14isusedtosignalthebeginningoftheloadingsectionofthemodel.

  • 1.11.1LoadConditions

    RelatedloadingisusuallygroupedintoaLoadConditionorLoadCasewithauniquenamedesignation.Loadcasesarenamedusingupto4characters(numericoralphanumeric).

    TheLoadConditionHeaderline,labeledLOADCN,signalsthebeginningoftheloadconditionspecifiedincolumns810.AllloadinginformationpertainingtothedesignatedloadconditionfollowsontheLOADlinesimmediatelyafter*.

    Note:Platetemperatureloadandjointspecifieddeflectionsareexceptions.Seediscussionlaterinthissection.

    1.11.2MemberDistributedLoadsandMoments

    MemberdistributedloadsarespecifiedusingtheLOADlinetitledMemberDistributedLoadsbydesignatingtheappropriatememberjointnamesincolumns815andUNIFincolumns6669forloadandDMOMincolumns6669formoment.LoadingmaybespecifiedinthedirectionoftheglobalormemberlocalX,YorZcoordinateaxes.Ingeneral,thefollowingdatashouldbespecifiedfordistributedloadsormoments:

    1. Thedistancefromthestartofthemembertothepositionthattheloadstarts,2. Themagnitudeperunitlengthoftheloadatthestartposition,3. Thedistancefromthestartpositiontothepositionthattheloadends,and4. Themagnitudeperunitlengthoftheloadattheendposition.

    Ifthestartoftheloadcoincideswiththestartofthemember,thenthestartpositionoftheloadneednotbespecified.Furthermore,iftheendoftheloadcoincideswiththeendofthemember,thenthedistancefromtheloadstarttotheloadendneednotbespecified.

    Thefollowingdesignatesadistributedloadformember101102appliedintheglobalZdirection.Theloadbegins1.0fromthebeginningofthememberwithamagnitudeof2.5k/ftandisappliedalongthememberfor5.0ft.Thefinalvalueis7.5k/ft.Member102103hasadistributedmomentaboutthelocalXaxis.Themomentatthebeginofthememberis0andincreaseslinearlyto10.0atthememberend.

    Note:Thebeginningpositionoftheloadingormomentismeasuredfromthememberendandnotfromthebeginjoint.Theeffectsofoffsetsshouldbetakenintoconsiderationwhenspecifyingthisposition.

    1.11.3MemberConcentratedLoadsandMoments

    MemberconcentratedloadsormomentsarespecifiedontheLOADlinetitledMemberConcentratedLoadsbydesignatingthememberjointnamesincolumns815andCONCorMOMTincolumns6669.Concentratedloadsormomentsmaybespecifiedwithrespecttotheglobalormemberlocalcoordinateaxes.ThedistancefromthebeginendofthemembertotheloadmustbespecifiedandshouldtakeintoconsiderationanymemberoffsetsalongthememberlocalXaxisatthebeginend.

    ThefollowingdefinesaconcentratedloadintheglobalZdirectiononmember101102.Theloadmagnitudeis57.0andisappliedadistanceof4.5fromthebeginningofthemember.Also,amomentof345.isappliedaboutthelocalZaxisofmember101102atthesamelocation.

    1.11.4MemberTemperatureLoads

    Membertemperatureloadsarestipulatedbydesignatingthememberconnectingjoints,thecoefficientofthermalexpansionandTEMPintheappropriatecolumnsontheLOADlinetitledMemberTemperatureLoad.ConstanttemperaturechangesorlineartemperaturegradientsalongthememberlocalX,YorZaxismaybespecifiedwithrespecttotheambienttemperature.

    FortemperaturechangesalongthelocalYorZaxis,thechangeattwosurfacesataspecifieddistanceapartareinput.Thedistancebetweenthetwosurfacesaremeasuredalongthememberlocalaxisspecifiedabouttheneutralaxis.Forchangesalongthememberaxis,thetemperaturechangeatthebeginningandendofthememberarespecified.

    Note:Whenspecifyingthetemperaturechangesalongthemember,1.0shouldbeinputasthedistancebetweenthetemperaturesurfaces.

    TheinputlinesforcasesA,B,C,DandEillustratedinthefigureaboveformember12wheredzis20,dyis8andthecoefficientofexpansionis0.65xE05followrespectively:

  • 1.11.5JointLoads

    LoadsonjointsaredesignatedusingtheLOADlinetitledJointLoads.Thejointname,forcesactingintheglobalX,YorZdirectionsand/ormomentsabouttheglobalX,YorZaxisarestipulated.GLOBandJOINarespecifiedincolumns6164and6669respectively.

    ThefollowingdefinesaforceintheglobalYdirectionof50.0andamomentabouttheZaxisof345.0injoint123.

    1.11.6JointSpecifiedDisplacements

    Forceddisplacementsforjointdegreesoffreedomdesignatedasfixedtoground,maybespecifiedusingtheJOINTlinenamedJointSpecifiedDeflection.TheJointSpecifiedDeflectionlineshouldfollowimmediatelyafterthedefiningJointDescriptionlineinthemodelfile.Thejointname,thespecifiedtranslationsand/orrotationswithrespecttotheglobalcoordinatesystemandPERSETmustbespecified.TheloadconditiontowhichthedeflectionsapplyorALLforallloadconditionsisstipulatedincolumns6972.

    Thefollowingdesignatesadisplacementof3.5intheglobalZdirectionatjoint123inloadcaseMISC.

    Note:ThedegreeoffreedombeingdisplacedusingthePERSETlinemustbefixedtoground.

    1.11.7PlatePressureLoads

    PlatepressureloadscanbeapplieddirectlytotheplateusingtheLOADPRESlines.Pressureloadingcanbeappliedtoindividualplatesortoplategroupsasuniformpressureoralinearlyvaryingpressure.

    1.11.8UniformPressure

    Foruniformpressure,thepressureisdesignatedincolumns1723andthekeywordUNIFisspecifiedincolumns6669.Specifyeithertheplatenameorplategroupnameincolumns811or1315,respectively.

    Thefollowingappliesauniformpressureloadof100toplateA001andallplatesingroupPLT.

    1.11.9VaryingPressure

    Forlinearingvaryingpressure,thepressureatthejointsisspecifiedincolumns1744andthekeywordJTJTisspecifiedincolumns6669.Specifyeithertheplatenameorplategroupnameincolumns811or1315,respectively.

    ThefollowingappliesavaryingpressureonplateU002.

    1.11.10SubmergedPressure

    PressureloadsduetoheadcanbeapplieddirectlytoplateelementsusingtheLOADPRESlinewiththeSUBMkeywordspecifiedincolumns6669.

    Entereithertheplatenameorplategroupincolumns811or1315,respectively.Thesurfaceelevationandwaterdensityareenteredincolumns1723and2430,respectively.

    1.11.11PlateThermalLoads

    PlatethermalortemperatureloadsarespecifiedontheLOADPTEMlinesintheloadingsectionofthemodel.Temperatureloadingmaybespecifiedforindividualplatesbyenteringtheplatenameincolumns811orforplategroupsbyenteringthegroupnameincolumns1315.Thecoefficientofthermalexpansionandplatetemperaturechangeswithrespecttotheambienttemperaturearerequired.

    1.11.12UniformTemperature

    UniformtemperaturechangeisdesignatedbytheUNIFkeywordincolumns6669andauniformtemperaturespecifiedincolumns1723.

    ThefollowingshowsplateD100andallplatesingroupAAAwithauniformtemperatureof135inloadcaseT135.

  • 1.11.13VaryingTemperature

    AtemperaturechangeateachjointisdesignatedbytheJTJTkeywordincolumns6669.Thetemperatureateachjointisinputincolumns1744.

    1.11.14SurfaceTemperature

    SurfacetemperatureloadingisspecifiedusingtheTPBMkeywordincolumns6669.Entertheuppersurfaceandlowersurfacetemperaturesincolumns1723and2430,respectively.

    ThefollowingshowsplateD101andallplatesingroupABCwithanuppersurfacetemperatureof100andalowersurfacetemperatureof75inloadcaseloadcaseT135.

    1.11.15ShellPressureLoads

    GeneralshellpressureloadsappliedatthejointsarestipulatedontheLOADSPGlinetitledShellPressureLoadlocatedwithintheappropriateloadconditiondata.Thepressureisappliedtoeitheroneshell,arangeofshellsorallshellswithinthemodel,byspecifyingoneshellname,twoshellnamesornoshellname.Thepressureateachoftheshelljointsisdesignatedincolumns1880.

    ConstantorlinearlyvaryingpressurewithinashellelementmaybespecifiedontheLOADSPCline.Byspecifyingoneshellname,twoshellnames,ornotspecifyingashellname,theShellVariablePressurelinecanapplytooneshell,arangeofshellsorallshellswithinthemodel.Forconstantpressure,thepressureisspecifiedincolumns1824.Forvaryingpressure,thepressuregradientsinthedirectionofeachoftheglobalaxesarespecifiedincolumns2545.

    1.11.16ShellTemperatureLoads

    ShelltemperatureloadsarespecifiedwithintheloadconditiondatausingtheLOADlinetitledShellTemperatureLoad.Constanttemperature,temperaturevaryingatmidsurface,thetopsurfaceorthebottomsurfacemaybespecifiedbySTC,STM,STTorSTBrespectively.Theshellname,ornamesforarangeofshells,towhichtheloadistobeappliedalongwiththetemperaturechangeateachjointarespecified.Ifnoshellnameisspecified,theloadingisappliedtoallshellsinthemodel.Forconstanttemperature,typeSTC,thetemperaturechangeatthefirstjointonlyisrequired.

    1.11.17LoadCombinations

    LoadcombinationsconsistingofbasicloadconditionsorpreviouslydefinedloadcombinationsaredefinedusingtheLCOMBinputline.LoadcombinationlinesfollowthebasicloadconditionsinthemodelandmustbeinitiatedwithaLCOMBheaderline.

    Note:BasicloadcasesmaynotbedefinedaftertheLCOMBheaderline.

    Theloadcombinationnamemustbeauniquenamenotusedbyabasicloadcaseorbyanothercombination.Theloadcasesorcombinationsmakinguptheloadcombinationalongwiththeappropriateloadfactorstobeappliedarespecified.TheloadcombinationdefinitionmaybecontinuedbyrepeatingtheLCOMBlinewiththecombinationnamespecifiedincolumns710,sothatuptofortyeightloadcomponentsmaybespecified.

    ThefollowingdefinesaloadcombinationnamedST03consistingof100%ofloadcaseMISC,110%ofDEADand85%of7.

    Note:Forastandardstaticanalyses,loadcombinationsarenotsolvedinthesolutionphase.Resultsareobtainedbysuperpositionofthebasicresultsduringpostprocessing.BecausePSIanalyseshavenonlinearsolutions,resultsforonlyloadcombinationsandbasicloadcasesspecifiedontheLCSELlineareobtained.

    2.0SACSIVTROUBLESHOOTING

    2.1MODELSINGULARITY

    Modelsingularityisthecommontermusedtodescribeproblemswithinastiffnessmatrixthatmaylimittheaccuracyofthesolutionorpreventitentirely.Inmatrixtheory,astructuralmodelmatrixmustbePositiveDefiniteforittobeinverted.SomecommonreasonsforastructuralmodelmatrixbecomingNonPositiveDefiniteareasfollows:

    1. Portionofstructureorentirestructuretranslatingasarigidbodyinspace.2. Portionofstructureorentirestructurerotatingasarigidbodyinspace.3. Ajointconnectedtothestructureistranslatingorrotatinginspacebecauseaparticularendfixityforallmembersconnectingtothejointisreleased,thereforethejoint

    canmoveorspinfreely.4. Memberorplatestructuralpropertiesarezeroforallelementsconnectingtoajointsothatthejointiseffectivelyunrestrained.

    Whenusingacomputertoperformasolution,thereexistsafinitenumberofdigitsthatcanbeusedtodefineanyonenumber.Duringnumericalprocedureswithintheprogram,accuracymaybelostduetotherelativesizeofthenumbersusedinthemathematicaloperations.SACSIVdeterminestheaccuracylostduringsolutionandreportsitastheMaximumNumberofSignificantDigitslostintheoutputlistingfile.Ingeneral,solutionswithsixorfewersignificantdigitslostaresufficientlyaccuratewhilesolutionswithtwelveormoresignificantdigitslostarenot.

    Itispossibleforthesolutiontolosesufficientaccuracysuchthatthesolutionbecomestrivialorthestructurebecomesmathematicallyunstable(matrixisNonPositiveDefinite).Commonreasonsforastructuralmodeltoloosesignificantaccuracyorbecomemathematicallyunstablefollow:

    1. Verystiffelementattachedtoaverysoftelement.2. Astiffstructureattachedtogroundthrougharelativelysoftspringsystem.3. Astructurewithlittlestiffnessattachedtogroundthrougharelativelystiffspringsystem.

  • 2.2DEBUGGINGTHEMODEL

    IfSACSIVdetectsaNonPositiveDefinitediagonalterminthestiffnessmatrix,itwillindicatetherowofthematrixwhereitoccurred.Ifthevalueisbetweenzeroand0.0001itwillberesetto1.0,therowandcolumnwhereitoccurredwillbenulledandthesolutionwillcontinue.Ifthediagonalvalueislessthan0.0001theprogramterminatesexecutionandreportsthecriticaljointdegreeoffreedom.

    Forinstanceswhereanunrestrainedportionofthestructureactsasamechanismforsingularitytooccur,thelastjointofthemechanism,inoptimizedorder,isreported.Ifthereportedjointisindeedrestrained,theInterpretedInputEchoReportcanbeusedtoisolatethecriticalportionofthestructure.TheinterpretedJointDataListportionofthereportcontainsthejointdegreeoffreedomandmatrixrowlocationlistinthefollowingformat:

    1. ThedegreesoffreedomforeachjointinthestiffnessmatrixarereportedasrotationX,YandZfollowedbytranslationX,YandZ.2. Foreachjoint,thebeginningrownumberpertainingtotherotationXdegreeoffreedomislistedinthereport.TherownumberspertainingtorotationY,andZand

    translationX,YandZareobtainedbyadding1,2,3,4,and5respectivelytotherowreportedforthejointrotationXdegreeoffreedom.

    Thecriticalrowlocationisreportedinthesolutionlistingfile.

    3.0COMMENTARY

    3.1ANGLECROSSSECTIONS

    TheorientationofananglesectionisdeterminedfromthesignsoftheAandBdimensionsinputontheSECTinputline.

    Note:PositiveBdimensionisinthenegativelocalYaxisdirection.

    SACSIVusespropertiesaboutthememberprincipalaxesforstiffnesscalculations.Normally,thecrosssectioninputlocalaxesareaxesofsymmetryandarethereforeprincipalaxes.Forangles,however,theinputaxesarenotprincipalaxes.Therefore,theinertiapropertiescalculatedabouttheinputaxesmustbetransformedtotheprincipalaxesbytheprogramusingthefollowing:

    Theshearareasabouttheprincipalaxesareusedinmemberstiffnesscalculationsandaretakenas:

    wheretheIViandQViarewithrespecttothemprincipalaxis.

    BendingstressandEulerbucklingstressarecalculatedwithrespecttotheprincipalaxes.Theeffectivebucklinglengthfactors,KyandKz,areinputwithrespecttothelocalcoordinates.TheprogramtransformstheinputKfactorsintotheprincipalaxessystemtoobtainthefactorstobeusedinEulerbucklingcalculations,from:

  • K1,2=PrincipalaxeseffectivelengthfactorsKy,z=Inputeffectivebucklinglengthfactors=Anglebetweeninputaxesandprincipalaxes

    Theshearstressatanypointiscalculatedwithrespecttothelocalcoordinatesystemusingthefollowingequation:

    Iy,Iz,Iyz=InertiapropertieswithrespecttoYandZaxesVy,Vz=ShearinYandZdirectionst=ThicknessQy,Qz=FirstmomentsaboutYandZaxesofportionofthecrosssectionareabetweenthepointandthefreeedge(Shadedareainfigurebelow).

    Tensileandcompressivestressesareevaluatedatpoints1,2,3,4and5shownintheaboverightfigure.Shearstressesaredeterminedatthepointsofmaximumshearstressineachleg.Thesepointsarelocatedautomaticallyforeachloadcase.

    Note:Althoughprincipalaxesareusedinstiffness,bendingstressandEulerbucklingcalculations,theoutputresultsarereportedwithrespecttothelocalcoordinateaxes.

    3.2FLATPLATECROSSSECTIONS

    TheSACSIVprogramcontainsbothtriangularandquadrilateralorthotropicflatplateelements.Theseelementsarederivedfromclassicalflatplatetheorytechniquesbyincorporatinganempiricaltheorythatincludesaconstantstraininplaneextensionalandshearmodel,anedgebeamrepresentationforoutofplanebendingandshearmodelandaninplanetorsionmodel.Thiscombinationresultsinatrue6degreeoffreedomlinearstrainelementthathasexcellentconvergenceproperties.

    3.2.1IsotropicPlates

    Theisotropicplateelementisafull6degreeoffreedombendingelementthatassumesconstantinplaneandoutofplanepropertiesinalldirections.Thiselementisapplicableforplateswithconstantthicknessandmaterialproperties.

    3.2.2MembranePlates

    Themembraneplateelementissimilartotheisotropicplateelementexcepttheoutofplanebendingandshearstiffnessissettozero.Theoutofplanedeflectionsandrotationsarenotrestrained.Thiselementisapplicablewhenthebendingstiffnessoftheplateisnotcoupledtothesupportingframeorthebendingstiffnessoftheplateisincludedinthesupportingstructureelements.

    3.2.3ShearPlates

    Shearplateshaveonlyinplaneshearstiffnesswithallothercomponentsofstiffnesssetequaltozero.Thiselementcanbeusedtorepresentshearwallsorageneralshearstiffnessforcoarsefiniteelementmeshrepresentation.

    3.2.4StiffenedPlates

    StiffenedplatesarerepresentedbyanisotropicplatewithadditionaloutofplanebendingandshearstiffnessincludedtorepresentparallelmemberelementsattachedtotheplateintheplatelocalXandYcoordinatedirections.Theadditionalbendingandshearstiffnessdoesnothavebiaxialcoupling(theXstiffenersarenotcoupledtotheYstiffeners).

    Thestiffenedplateelementcontainstheflatplatepropertiesandtheaveragememberstiffenerpropertiesinbothlocalcoordinatesincludingtheplacementoftheplaterelativetothemembersstiffeners.Theoutofplanebendingstiffnesscalculationforthestiffenersassumesaneffectiveplatewidthactingwiththestiffenersforcalculatinganaverageadditionalmomentofinertiaduetothestiffeners.Theeffectiveplatewidthislimitedtothesmalleroftheparallelstiffenerspacingor30timestheplatethickness.

    Stiffenedplateelementsareeffectiveforincludingthestiffnessofplatesandmembersinoneelementwithoutmodelinganexcessivenumberofjointsand/orbeamelements.Thepropertiesreportedforthestiffenedplatearetheeffectivesmearedproperties.Themaximumstressesarereportedfortheflatplateportionandthestiffenersseparately.

    3.2.5CorrugatedPlates

    Thecorrugatedplateisaspecialcombinationofbothinplaneandoutofplanestiffness.Acorrugatedplatehasextensionalstiffnessinthedirectionofthecorrugationsandnoextensionalstiffnessacrossthecorrugations.Inplaneshearisassumedtobefullyeffective.Theoutofplanebendingandshearstiffnessiszerowhenbendingacrossthecorrugations.Inthedirectionofthecorrugations,theoutofplanebendingandshearstiffnessisduetotheeffectivebeampropertiesofthecrosssection.Nobiaxialbendingcouplingisallowedandtheinplanetorsionalpropertiesareassumedtobefullyeffective.

    Note:Whenusingcorrugatedplates,thesumoftheinplaneareaduetotheeffectiveplatethicknessandthestiffenersmustequalthetotalinplaneareaofthecorrugatedpanelinthedirectionofthecorrugations.

    3.2.6PlateElementTransitiontoBeamElement

  • Plateoffsetscanbeusedtomodeltransitionpointsbetweenplateandbeamelements.Anytwoadjacentplatenodescanbespecifiedasthesamejointname.Plateoffsetsspecifiedateachplatenodecanthenbeusedtoseparatethenodesandplacethemindifferentspatialpositions.Thiswillresultinoneedgeiftheplatebeingdescribedbythemotionofonejointwhichcanbeconnectedtoabeamelement.Forexample,whenmodelingatubularmemberwithafiniteelementmesh,thereisusuallyatransitionpointwherebeamelementtheorybecomessufficientlyaccurate.Atthispoint,alloftheplateelementsmustbeattachedtoasinglecentraljointwhichisthebeginningjointofthebeamelement.TheplateelementsareconnectedtothecentralJointwithoffsetssuchthattheendsoftheplatesarelocatedatthesurfaceofthetubular.Thetransitionjointwilldefinethecompletedisplacementofthecrosssectionatthatpointandwillassureproperinternalloadtransfer.Also,thecrosssectionofthetubularatthetransitionwillremainplaneduringdeformationwhichisaconstraintofnormalbeamtheory.

    3.3SHELLELEMENTS

    TheSACSIVprogramcontains6,8and9nodetriangularandrectangularIsoparametricShellElementsbasedonderivationsbyBathe[Bathe,KlausJurgen,FiniteElementProceduresInEngineeringAnalysis,PrenticeHall,NewJersey,1982].Theseelementsareconsideredindustrystandardsandareavailableinmostlargescalefiniteelementprograms.

    ThelocationofthestresspointsalongtheshellsurfacedependsintheselectionofthenumberofGaussianIntegrationpointsspecifiedforeachshell.Thestressescanbecalculatedatthecenteroftheshelland/oratthecornerGaussianpointsasshowninthefigures.Thedefaultforeachshellisthehavethestressdeterminedattheshellcenteronly.Theshelltotalinplanedirectandshearstressesarereportedinthelocalplatecoordinatesystemattheupper,middleandlowersurfacesandtheprincipalstressesandmaximumshearstressesarereportedfortheupperandlowersurface.

    TheunitycheckcalculationsarebasedonmaximumvonMisesstressforinplanestressesattheupper,middleandlowershellsurface.Shellbucklingisnotincludedintheunitycheckcalculation.TheunitycheckformulationscanbefoundintheusersmanualofthePOSTprogrammodule.

    3.3.1ShellElementTransitiontoBeamElement

    Isoparametricshelloffsetsarenormallyusedtolocatetheneutralaxisoftheshellrelativetotheconnectingstructure.Theycanalsobeusedtogeneratethetransitionbetweentheisoparametricshellsandbeamelements.

    Anythreenodesthatdescribethesideofashellcanbeconnectedtothesamejoint.Usingshelloffsets,thecoincidentnodescanbeseparatedandplacedindifferentspatialpositions,resultinginonesideoftheshellbeingdescribedbythemotionofonejointwhichcanbeconnecteddirectlytoabeamelement.

    Forexample,whenmodelingatubularmemberwithshellelements,thereisusuallyatransitionpointwherebeamelementtheorybecomessufficientlyaccurate.Atthispoint,alloftheshellelementsmustbeattachedtoasinglecentraljointwhichisthebeginningjointofthebeamelement.Theshellelementsareconnectedtothecentraljointwithoffsetssuchthattheendsoftheshellsarelocatedatthesurfaceofthetubular.Thetransitionjointwilldefinethecompletedisplacementofthecrosssectionatthatpointandwillassureproperinternalloadtransfer.Also,thecrosssectionofthetubularatthetransitionwillremainplaneduringdeformationwhichisaconstraintofnormalbeamtheory.

    3.4SOLIDELEMENTS

    TheSACSIVprogramcontains4,5,6and8nodeSolidFiniteElementsthatrepresenttetrahedron,pyramid,wedgeandbrickshapedelements,respectively.TheSolidElementsarebasedonaconstantstraintheoryandtheelementsdonotrestrainrotationatthenodes.Thepyramid,wedgeandbrickelementsarebuiltfromthebasictetrahedronelement.

    3.4.1SolidTransitiontoShell,PlateorBeamElements

    Solidelementoffsetscanbeusedtogeneratethetransitionbetweenthesolidelementsandisoparametricshells,flatplatesand/orbeamelements.IfafournodefaceofasolidelementisconnectedtoaoneortwodimensionalelementthenthefournodefaceshouldbedescribedbyonlytwoJoints.thesetwoJointsshouldlieonatthecenterofthefaceoftheSolidElement.TheupperandloweredgesofthefacewillbedescribedbythesametwoJointsandwillincludeoffsetstolocatethemcorrectlyinspace.TheresultingOffsetSolidElementwillformafull6degreeoffreedomtransitionconnectionbetweentheelements.

    4.0SAMPLEPROBLEMS

    ThesampleproblemsillustratevariouscapabilitiesoftheSACSIVprogrammodule.Twoseparateanalysesaredetailed.

    1. Thefirstsampleproblemisajackettypestructureconsistingoftubular,wideflange,angleandconecrosssectionbeamelementsandflatplateelements.Inadditiontopropertiesspecifiedinthemodelfile,sectionpropertiesdefinedintheAISCsectionlibrarywerereferenced.Thissamplecontainsmemberandplateoffsetsalongwithmemberendreleases.Fourbasicloadconditions,comprisedofjointloads,memberuniformloads,memberconcentratedloadsandjointspecifieddisplacements,andtwoloadcombinationswerespecified.

    2. SampleProblem2illustratestheuseofshellandsolidelements.Threebasicloadcasesconsistingofjointloads,linearlyvaryingshellpressureloadsandvaryingshelltemperatureloadswerespecifiedinadditiontotwoloadcombinations.

    SAMPLEPROBLEM1

    SampleProblem1isthejackettypestructureshownfixedatthebottomofthepiles.Cone,tubular,wideflangeandanglecrosssectionbeamelementsandflatplateelementsaremodeled.Flatplate,tubular,angleandconesectionpropertiesaredefinedinthemodelfilewhilewideflangepropertiesareobtainedfromtheAISCsectionlibraryfile.

  • Offsetsarespecifiedforjackettubularmemberssothatbracesaremodeledtothefaceofthechordanda2"gap(atthechordface)existbetweenbraces.W12deckwideflangemembersmodeledintheglobalYdirectionareoffsetsothattheyarelyingontopofW24maingirderswiththeneutralaxisatelevation40.0.Platesareoffsetsothattheneutralaxisislocatedatelevation42.Anglemembersonthedeckaremodeledtoresistonlyaxialloadandshearbydesignatingmemberendreleases.

    Fourbasicloadconditionsandtwoloadcombinationsarespecified.LoadCaseLIVEconsistofmemberuniformloadsrepresentingliveload.LoadCaseEQPTcontainsjointloadsandmemberconcentratedloadsrepresentingequipmentloads.Thethirdloadcase,LATXcontainsjointlateralloadsandLoadCaseDISPisusedtospecifysupportdisplacements.

    PartsoftheSACSmodelfileisshownbelowfollowedbyadescriptionofselectedportions.

  • ThefollowingisadescriptionofselectedinputlinesintheSACSmodelfileforSampleProblem1.Theinputlinesarereferencedbytheletterintheleftmarginoftheinputlisting.

    Note:Forasteriskeditems(*),seePostprogrammanualforadetaileddiscussiononpostprocessingoptions.

    A. TheOPTIONSlinespecifiestheanalysisoptions,namely.A. Englishunitsaredesignatedby'EN'incolumns1415.B. Bydefaultastaticanalysisisdesired(columns1920areblank).C. SDincolumns2324specifiesthatsheareffectsaretobeconsideredinmembers.D. *ElementcodecheckwillbebasedonAISC/APIcode(UCincolumns2526).E. *Nonsegmentedbeamelementswillbedividedintotwopostprocessingsegmentsandeachsegmentofsegmentedelementswillbeconsideredasapost

    processingsegmentby2and1incolumns30and32.F. AninterpretedechoofthemodelisrequestedbyPTincolumns4142.G. *Unitycheckrange,stressforcontrollingloadcase,internalloadandjointreactionreportsarerequestedwhenperformingcodecheck.

    B. *OnlyresultsforloadcasesCMB1andCMB62aretobereportedasspecifiedontheLCSELline.C. *TheelementUCrangesarespecifiedontheUCPARTline.D. *AllowablestressesforloadcaseCMB2aretobefactoredby1.333asspecifiedontheAMODline.E. NontubularcrosssectionsnotdefinedinthesectionlibraryfilearedefinedbySECTlinesfollowingtheSECTheader.Thefirstlinedefinespropertiesofsection

    CON4436asfollows:A. Thesectiontowhichtheinformationappliesisspecifiedincolumns612.B. SectionCON4436isdesignatedasaconesectionbyCONincolumns1618.C. Becausenostiffnesspropertiesarespecifiedincolumns1948,theywillbecalculatedbySACSIV.D. ThelargerOD,thicknessandsmallerODarespecifiedincolumns5055,5660and6166respectively.

    F. PropertiesaredefinedonGRUPinputlinesfollowingtheGRUPheaderline.ThepropertiesforallmembersassignedtogroupDK1aredefinedontheGRUPlinewithDK1specifiedincolumns68.

    A. ThecrosssectionisaW24X94wideflangewhosepropertiesaredefinedinthesectionlibraryfile.B. Theelasticmodulus,shearmodulusandyieldstressarespecifiedincolumns3135,3640and4145respectively.C. *Columns47,5255and5659definethedefaultmemberclassification,KyandKzfactorsforcodecheck.D. Thematerialdensityis490.0#/ft3asspecifiedincolumns7176.

    G. ThepropertiesformembersassignedtogroupDK3aredefinedbytheGRUPlinewithDK3specifiedincolumns68.A. ThecrosssectionpropertiesaredefinedbysectionL3X3whichisdefinedinthemodelfile.

    H. ThepropertiesofmembersassignedtogroupLG1varyalongthelengthofthemember.ByinputtingthreeGRUPlinesforgroupLG1,themembersaredividedintothreesegmentseachwithpropertiesdefinedforeachsegment.

    A. Thepropertiesforthefirstsegment**aredefinedbythefirstGRUPLG1line.Thelinespecifiesoutsidediameter48.0,wallthickness1.5andyieldstress50.0ksi.Thelengthofthefirstsegmentis6.98asspecifiedincolumns7780.

    B. Themiddlesegmentisatubularwith48.0outsidediameter,1.0wallthicknessand36.0yieldstress.Nosegmentlengthisspecified**.C. Thelastsegmentisatubularwith48.0outsidediameter,1.5wallthicknessand50.0yieldstress.Thesegmentlengthis5.55asspecifiedincolumns7780.

    **Note:Thefirstsegmentspecifiedcorrespondstothesegmentstartingatthememberstartjoint.Also,thelengthofonesegmentshouldalwaysbeleftblank.Theprogramwilldeterminethelengthoftheblanksegmentforeachmemberofthegroupindividually,thusallowingmembersofdifferentlengthstobeassignedtothesamegroup.

    I. ThepropertiesformembersassignedtogroupMD1arespecifiedontheGRUPlinewithMD1incolumns68.A. TheODandthicknessfortubularsectionsarespecifieddirectlyontheGRUPline.TheODisspecifiedas18.00andthicknessas0.75incolumns1823and25

    29respectively.Theprogramwillcalculatethecrosssectionproperties.J. MembersaredefinedintheinputfilefollowingtheMEMBERheaderline.MembersaredefinedusingaMEMBERinputlineandarenamedbythestartandendjoints.

    Member101201isdefinedasfollows:A. Thestartandendjointsarespecifiedincolumns811and1215.B. ThememberisassignedtogroupLG1(columns1719).

    K. Member101112isdefinedbytheMEMBERlinewith101and112specifiedincolumns911and1315asfollows:A. AMEMBEROFFSETSlinedefiningoffsetsinglobalcoordinateswillfollowasdesignatedby1incolumn7.B. ThepropertygroupisMH1andKyandKzare0.80.C. TheMEMBEROFFSETSlinespecifiesanoffsetintheglobalXdirectionof24.0atthestartjoint.

    L. Member520501isadeckmemberassignedtogroupDK2withglobaloffsetsspecified(1incolumn7).A. ThememberisaW12X65(definedbygroupDK2)withtheunbracedlengthofcompressionflangespecifiedas0.01incolumns6064.B. BecausethemembersitsonthetopflangeoftheW24itcrosses,itisoffset18.0"intheglobalZatthestartandendofthememberbytheMEMBEROFFSET

    line.

  • M. Thememberdefinedbyjoints525and503isassignedtogroupDK3whichisdefinedasan3x3xdangle.A. Offsetswillbedefinedwithrespecttothememberlocalaxisasdesignatedby2incolumn7.B. ThememberendsarereleasedforlocalYandZmomentatthestartandlocalX,YandZmomentattheendasspecifiedby000011and000111incolumns

    2328and2934respectively.C. Thememberlocalcoordinatesystemisrotated90

  • SAMPLEPROBLEM2

    SampleProblem2illustratestheuseofninenodeshellandeightnodesolidfiniteelements.Threebasicloadcasesconsistingofjointloads,linearlyvaryingshellpressureloadsandvaryingshelltemperatureloadswerespecifiedinadditiontotwoloadcombinations.

    FollowingistheSACSmodelfileforthissampleproblemandadescriptionofselectedportions.

  • ThefollowingisadescriptionofselectedinputlinesintheSACSmodelfileforSampleProblem2.Theinputlinesarereferencedbytheletterintheleftmarginoftheinput

  • listing.

    Note:Forasteriskeditems(*),seePostprogrammanualforadetaileddiscussiononpostprocessingoptions.

    A. TheOPTIONSlinespecifiestheanalysisoptions,namely:A. EnglishunitsaredesignatedbyENincolumns1415.B. Bydefaultastaticanalysisisdesired(columns1920areblank).C. *ElementcodecheckwillbebasedonAISC/APIcode(UCincolumns2526).D. *AnelementdetailedstressreportisrequestedbyPTincolumns5556.

    B. *Onlyresultsforloadcombinations4and5aretobereportedasspecifiedontheLCSELline.C. ASHELLheaderlinedesignatesthatshellelementdefinitionsfollow.ThefirstSHELLinputlinedefinesthepropertiesofshellS212asfollows:

    A. TheshellnameS212isdesignatedincolumns710.B. Theconnectingjointsarespecifiedincolumns1247.ShellS212isaninenodeshelldefinedbyjoints212,213,214,224,234,233,232,222and223,where

    joint223isthecenterjoint.ThelocalXaxisisdefinedbyjoints212and214,thelocalYisperpendiculartothelocalXandparalleltothelineformedbyjoints214and234.

    C. Aconstantthicknessof2.5"isassignedby0incolumn6(constant)and2.5incolumns5355.D. TheModulusofelasticity,Poissonsratio,yieldstress,materialdensityandcoefficientofthermalexpansionarespecifiedincolumns5761,6265,6670,7175

    and7680.D. SolidelementsaredefinedonSOLIDinputlinesfollowingtheSOLIDheaderline.ThegeometryandpropertiesforsolidelementD101aredefinedonthefirst

    SOLIDlineasfollows:A. ThesolidnameD101isdesignatedincolumns710.B. Theconnectingjointsarespecifiedincolumns1243.SolidD101isaneightnodebrickelementdefinedbyjoints101,102,202,201,111,112,212,and211.C. Amodulusofelasticityof3,640ksiisassignedby3.64incolumns5761.ThedefaultPoissonsratioandyieldstressareused.D. Thematerialdensityisspecifiedas150.0#/ft3incolumns7175.

    E. TheJOINTheaderlinesignalsthebeginningofjointdefinitions.ThefirstJOINTlinedefinesthecoordinates**ofjoint101(101specifiedincolumns810).

    **Note:Jointcoordinatesmaybedefinedindecimalsoffeet(meters)orinfeet(meters)plusinches(centimeters).Forthissample,coordinatesareexpressedinfeetplusinches.

    A. TheXcoordinateofjoint101is9ftasdesignatedby9.incolumns1218.B. TheYcoordinateis5'0.276"or5.023'(5.00276mifmodelunitsaremetric)asdesignatedby5.incolumns1925and0.276incolumns4046.C. TheZcoordinateis0.(0incolumns2632).D. Joint101isasupportjointwithallsixdegreesoffreedomrestrained(111111incolumns5560).

    F. Joint112isdefinedbyJOINTlinewith112incolumns810.A. TheX,YandZcoordinatesaredefinedincolumns1253.B. TheX,YandZrotationaldegreesoffreedomarerestrainedby000111incolumns5560.

    Note:Becausesolidelementsdonothaverotationalstiffness,therotationaldegreesoffreedomforjointsconnectedexclusivelytosolidelementsmustbefixed.

    G. TheloadingportionoftheinputbeginswiththeLOADheaderline.Loadcondition1isdesignatedincolumn10oftheLOADCNinputline.H. Loadcase1consistofloadsonjoints212,213,214,215,216,222,223,224,225,226,232,233,234,235and236.Joint212isloadedasfollows:

    A. TheJOINlabelincolumns6669designatesthetypeofloadingasajointload.B. Thejointtobeloadedisdesignatedincolumns911.C. Aloadof0.735istobeappliedintheglobalZdirectionasindicatedincolumns3137.

    I. Loadcase2containsavaryingnormalpressureloadactingonshellsS212andS214.TheLOADinputlinespecifiesthefollowing:A. ThetypeofloadisdesignatedasanormalpressureloadbySPCincolumns68.B. AllshellnamesfromS212throughS214aretobeloadedbythisinputline(S212andS214incolumns1013and1417).C. Thenormalpressureattheoriginjoint(i.e.firstjointspecifiedontheSHELLline)is10.4psiinthelocalZdirectionasspecifiedby10.4incolumns1824.D. Thenormalpressuredecreasesby0.866psiperfootinthelocalYdirection(0.866incolumns3238).

    J. Loadcase3containsshelltemperatureloadsonthetopandbottomsurfacesofshellsS212andS214.Thetopsurfaceoftheshellisexposedtoatemperaturelowerthantheambienttemperaturewhilethebottomsurfaceisattheambienttemperature.

    A. ThetypeofloadisdesignatedasashelltemperatureloadatthetopsurfacebySTTincolumns68.B. AllshellnamesfromS212throughS214aretobeloadedbythisinputline(S212andS214incolumns1013and1417).C. Thetemperatureatthetopsurfacerelativetotheambienttemperatureateachoftheshelljointsisspecifiedincolumns1880.D. Thetemperatureatthebottomsurfacerelativetoambienttemperatureisspecifiedincolumns1880oftheSHELLlinewithSTBdesignatedincolumns68.

    K. Loadcombinationsmadeupofoneormoreloadcasesand/orcombinationsaredefinedaftertheLCOMBheaderline.Loadcase4isacombinationconsistingofloadcase1multipliedby1.1and100.0percentofloadcase2.

    Theoutputfilefortheanalysisislistedonthefollowingpages.TheoutputforthepostprocessorisincludedandisdiscussedindetailinthePostprogrammodulemanual.