Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

Post on 05-Jan-2016

215 views 2 download

Transcript of Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

1

Prof. David R. JacksonECE Dept.

Spring 2014

Notes 32

ECE 6341

2

Laplace’s MethodConsider

b g x

aI f x e dx

0 0

0

0, ,

, ,

g x x a b

g x g x x a b

Assumptions:

Note: If there is no point where the derivative of the g function vanishes, then integration by parts may be used, in exactly the same manner as was done for the case when there was a j in the exponent (Notes 28).

(“saddle point”)

3

Laplace’s Method (cont.)

b g x

aI f x e dx

0x

g x

x

0g x

a b

4

Laplace’s Method (cont.)

00b g x g xg x

aI e f x e dx

1 23

0x

1 0 g x g xe

x

The exponential function behaves similar to a function as .

5

Laplace’s Method (cont.)

00

0~

b g x g xg x

aI f x e e dx

2

0 0 0 0 0

1

2g x g x g x x x g x x x

2

0 0 0

2

0 0

1

21

2

g x g x g x x x

g x x x

Hence

6

Laplace’s Method (cont.)

Hence

20 0

0

1

20~

b g x x xg x

aI f x e e dx

20 0

0

1

20~

g x x xg xI f x e e dx

Since only the local neighborhood of x0 is important, we can write

Next, let

00 2

g xs x x

0

2

g xds dx

7

Laplace’s Method (cont.)

Next use

2

0

00

2~ g x sI f x e e ds

g x

2

se ds

Then

Hence

0

00

2~ g xI f x e

g x

8

Laplace’s Method (cont.)

Summary

0

00

2~ g xI f x e

g x

b g x

aI f x e dx

0 0

0

0, ,

, ,

g x x a b

g x g x x a b

9

Complete Asymptotic Expansion (Using Watson’s Lemma)

00b g x g xg x

aI e f x e dx

Let 2

0 s g x g x

0x

0s

x

0s

a b

2s2s g x

We adopt the convention of positive and negative s as shown in the figure, in order to make the mapping x(s) unique.

10

Complete Asymptotic Expansion (cont.)

Let

20

b

a

Sg x s

S

dxI e f x s e ds

ds

dx sh s f x s

ds

20

b

a

Sg x s

SI e h s e ds

aS bS

0s s

11

Assume 0,1,2

~ 0nn

n

h s a s s

as

(This is Watson’s Lemma.)

20

0,1,2

~b

a

Sg x n sn S

n

I e a s e ds

Then

20

b

a

Sg x s

SI e h s e ds

Complete Asymptotic Expansion (cont.)

12

Since only the local neighborhood of s = 0 is important,

Because of symmetry,

20

0,1,2

~ g x n sn

n

I e a s e ds

20

00,2,4

~ 2 g x n sn

n

I e a s e ds

n even

Complete Asymptotic Expansion (cont.)

(The error made in extending the limits is exponentially small.)

13

Denote

Use

2

0

n snI s e ds

2

2

t s

dt s ds

12

210 0

2

1

2 2

nn

t tn n

t dtI e t e dt

t

Complete Asymptotic Expansion (cont.)

Then we have

14

Now use 1

01 ! x tx x t e dt

1

2

1 1

22

n n

nI

1

21 0

2

1

2

nt

n nI t e dt

Hence

Complete Asymptotic Expansion (cont.)

15

20

00,2,4

~ 2 g x n sn

n

I e a s e ds

2

102

1 1

22

n sn n

nI s e ds

0

10,2 2

1~

2g x n

nn

a nI e

Hence

Recall that

Complete Asymptotic Expansion (cont.)

16

Summary

0

10,2,4 2

1~

2g x n

nn

a nI e

b g x

aI f x e dx

0,2,4...

~ 0nn

n

h s a s s

as

20

dx ss g x g x h s f x s

ds

Complete Asymptotic Expansion (cont.)

Note: The hard part is determining the an coefficients!

0 0

0

0, ,

, ,

g x x a b

g x g x x a b

Assume

Then

Note: Integer powers are

assumed, since h(s) is assumed to

be analytic

17

Leading term:

so that

0~ 0h s a h

0 01

2

1~

2

g x aI e

0

0~

g xI a e

1

2

Complete Asymptotic Expansion (cont.)

Note

18

0 0a h

dx

h s f x sds

20

2

s g x g x

dss g x

dx

Recall that

and that

To find h(0), we must evaluate the derivative term. To do this, we

take the derivative with respect to x:

00

0s

dxh f x

ds

Note: At s = 0 (x = x0), this yields 0 = 0 (not useful).

Complete Asymptotic Expansion (cont.)

19

2 2

22 2

ds d ss g x

dx dx

0 , ( 0)x x s At

2

02ds

g xdx

Take one more derivative:

2ds

s g xdx

Complete Asymptotic Expansion (cont.)

20

Hence

We then have

0

2dx

ds g x

00

20h f x

g x

Therefore 0

00

2~ g xI f x e

g x

Complete Asymptotic Expansion (cont.)

21

0

00

2~ g xI f x e

g x

or

Complete Asymptotic Expansion (cont.)

This agrees with the result from Laplace’s method.

22

Watson’s Lemma (Alternative Form)

Here we do not necessarily assume integer powers in the

expansion of the function, and we also start the integral at s = 0.

0

sI h s e ds

~ 0nn

n

h s a s s asAssume

This one-sided form occurs when integrating along branch cuts in the complex plane (discussed later).

23

Watson’s Lemma (Alternative Form) (cont.)

Then

Let

0

sI h s e ds

~ 0nn

n

h s a s s as

0

~ n sn

n

I a s e ds

t s

dt ds

(This is Watson’s Lemma.)

Assume

24

Hence

0

0

1 0

1

1

11

n

n

n

n

n

sn

t

t

n

I s e ds

t dte

t e dt

1

1~ 1

nn n

n

I a

t s

dt ds

Watson’s Lemma (Alternative Form) (cont.)

25

Summary

1

1~ 1

nn n

n

I a

0

sI h s e ds

~ 0nn

n

h s a s s as

Watson’s Lemma (Alternative Form) (cont.)

Assume

Then