Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

25
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1

Transcript of Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

Page 1: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

1

Prof. David R. JacksonECE Dept.

Spring 2014

Notes 32

ECE 6341

Page 2: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

2

Laplace’s MethodConsider

b g x

aI f x e dx

0 0

0

0, ,

, ,

g x x a b

g x g x x a b

Assumptions:

Note: If there is no point where the derivative of the g function vanishes, then integration by parts may be used, in exactly the same manner as was done for the case when there was a j in the exponent (Notes 28).

(“saddle point”)

Page 3: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

3

Laplace’s Method (cont.)

b g x

aI f x e dx

0x

g x

x

0g x

a b

Page 4: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

4

Laplace’s Method (cont.)

00b g x g xg x

aI e f x e dx

1 23

0x

1 0 g x g xe

x

The exponential function behaves similar to a function as .

Page 5: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

5

Laplace’s Method (cont.)

00

0~

b g x g xg x

aI f x e e dx

2

0 0 0 0 0

1

2g x g x g x x x g x x x

2

0 0 0

2

0 0

1

21

2

g x g x g x x x

g x x x

Hence

Page 6: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

6

Laplace’s Method (cont.)

Hence

20 0

0

1

20~

b g x x xg x

aI f x e e dx

20 0

0

1

20~

g x x xg xI f x e e dx

Since only the local neighborhood of x0 is important, we can write

Next, let

00 2

g xs x x

0

2

g xds dx

Page 7: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

7

Laplace’s Method (cont.)

Next use

2

0

00

2~ g x sI f x e e ds

g x

2

se ds

Then

Hence

0

00

2~ g xI f x e

g x

Page 8: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

8

Laplace’s Method (cont.)

Summary

0

00

2~ g xI f x e

g x

b g x

aI f x e dx

0 0

0

0, ,

, ,

g x x a b

g x g x x a b

Page 9: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

9

Complete Asymptotic Expansion (Using Watson’s Lemma)

00b g x g xg x

aI e f x e dx

Let 2

0 s g x g x

0x

0s

x

0s

a b

2s2s g x

We adopt the convention of positive and negative s as shown in the figure, in order to make the mapping x(s) unique.

Page 10: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

10

Complete Asymptotic Expansion (cont.)

Let

20

b

a

Sg x s

S

dxI e f x s e ds

ds

dx sh s f x s

ds

20

b

a

Sg x s

SI e h s e ds

aS bS

0s s

Page 11: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

11

Assume 0,1,2

~ 0nn

n

h s a s s

as

(This is Watson’s Lemma.)

20

0,1,2

~b

a

Sg x n sn S

n

I e a s e ds

Then

20

b

a

Sg x s

SI e h s e ds

Complete Asymptotic Expansion (cont.)

Page 12: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

12

Since only the local neighborhood of s = 0 is important,

Because of symmetry,

20

0,1,2

~ g x n sn

n

I e a s e ds

20

00,2,4

~ 2 g x n sn

n

I e a s e ds

n even

Complete Asymptotic Expansion (cont.)

(The error made in extending the limits is exponentially small.)

Page 13: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

13

Denote

Use

2

0

n snI s e ds

2

2

t s

dt s ds

12

210 0

2

1

2 2

nn

t tn n

t dtI e t e dt

t

Complete Asymptotic Expansion (cont.)

Then we have

Page 14: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

14

Now use 1

01 ! x tx x t e dt

1

2

1 1

22

n n

nI

1

21 0

2

1

2

nt

n nI t e dt

Hence

Complete Asymptotic Expansion (cont.)

Page 15: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

15

20

00,2,4

~ 2 g x n sn

n

I e a s e ds

2

102

1 1

22

n sn n

nI s e ds

0

10,2 2

1~

2g x n

nn

a nI e

Hence

Recall that

Complete Asymptotic Expansion (cont.)

Page 16: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

16

Summary

0

10,2,4 2

1~

2g x n

nn

a nI e

b g x

aI f x e dx

0,2,4...

~ 0nn

n

h s a s s

as

20

dx ss g x g x h s f x s

ds

Complete Asymptotic Expansion (cont.)

Note: The hard part is determining the an coefficients!

0 0

0

0, ,

, ,

g x x a b

g x g x x a b

Assume

Then

Note: Integer powers are

assumed, since h(s) is assumed to

be analytic

Page 17: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

17

Leading term:

so that

0~ 0h s a h

0 01

2

1~

2

g x aI e

0

0~

g xI a e

1

2

Complete Asymptotic Expansion (cont.)

Note

Page 18: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

18

0 0a h

dx

h s f x sds

20

2

s g x g x

dss g x

dx

Recall that

and that

To find h(0), we must evaluate the derivative term. To do this, we

take the derivative with respect to x:

00

0s

dxh f x

ds

Note: At s = 0 (x = x0), this yields 0 = 0 (not useful).

Complete Asymptotic Expansion (cont.)

Page 19: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

19

2 2

22 2

ds d ss g x

dx dx

0 , ( 0)x x s At

2

02ds

g xdx

Take one more derivative:

2ds

s g xdx

Complete Asymptotic Expansion (cont.)

Page 20: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

20

Hence

We then have

0

2dx

ds g x

00

20h f x

g x

Therefore 0

00

2~ g xI f x e

g x

Complete Asymptotic Expansion (cont.)

Page 21: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

21

0

00

2~ g xI f x e

g x

or

Complete Asymptotic Expansion (cont.)

This agrees with the result from Laplace’s method.

Page 22: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

22

Watson’s Lemma (Alternative Form)

Here we do not necessarily assume integer powers in the

expansion of the function, and we also start the integral at s = 0.

0

sI h s e ds

~ 0nn

n

h s a s s asAssume

This one-sided form occurs when integrating along branch cuts in the complex plane (discussed later).

Page 23: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

23

Watson’s Lemma (Alternative Form) (cont.)

Then

Let

0

sI h s e ds

~ 0nn

n

h s a s s as

0

~ n sn

n

I a s e ds

t s

dt ds

(This is Watson’s Lemma.)

Assume

Page 24: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

24

Hence

0

0

1 0

1

1

11

n

n

n

n

n

sn

t

t

n

I s e ds

t dte

t e dt

1

1~ 1

nn n

n

I a

t s

dt ds

Watson’s Lemma (Alternative Form) (cont.)

Page 25: Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE 6341 1.

25

Summary

1

1~ 1

nn n

n

I a

0

sI h s e ds

~ 0nn

n

h s a s s as

Watson’s Lemma (Alternative Form) (cont.)

Assume

Then