Modeling spin torque device

Post on 02-Jul-2015

1.866 views 0 download

description

Spin Torque Transfer (STT) devices that can switch the magnetization of a ferromagnetic layer using spin polarized electrons have generated much interest due to their write information without any external magnetic field. The bias behavior of spin torque applied to Magnetic Tunnel Junctions (MTJs) is critical for applications including high density magnetic random access memory (MRAM) devices. In this slides, we will present a Non-Equilibrium Green’s Function based transport for MTJ to investigate the bias dependence of torques. First, we use our model to show quantitative agreement with the diverse experimental aspects of STT devices namely (i) differential resistances, (ii) Tunnel magneto-resistance (TMR), and (iii) in-plane and (iv) out-of-plane torques. Second, based on our model, we analyze the reason why one of the ferromagnetic layers (free) experiences a larger torque when negative voltage is applied to the other magnetic layer (fixed). Third, we also propose an asymmetric STT structure that can lead to significant difference in the torques on two ferromagnetic contacts, even if they are identical. We couple our spin transport model with magnetization dynamics to explore the switching behavior of the MTJ device. Our preliminary results demonstrates the switching voltage asymmetry.

Transcript of Modeling spin torque device

Modeling Spin Torque Device

M→

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

MRAM

V

→ττττ||||||||,m

Deepanjan Datta

Dept of ECE, Purdue University

Fert, Nature Mat. (2007)

1

Motivation

Magnetics

Reading (MR)

Writing Spin Torque

Spintronics

Very Low M.R. (~ 2%)

Spin ValveMagnetic

Tunnel Junction

All Spin Logic

M→

m→

Cu

M→

m→

MgO

2

Purdue Group

Nature NANO 2010

TOSHIBAGRANDIS

Outline of the Work

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

1. Quantum-Transport Modeling of MTJ device with NEGF

2. Quantitative agreement with Experiments

1. Explains Bias dependence of Torque

2. Asymmetric ST device & Non-reciprocal torque

1. Spin Transport + 1-LLG; Switching asymmetry

2. Spin Transport + multi-LLG; model for Oscillator

IEEE Trans Nano 2012

Current WorkIEDM 2010

3

Outline of the Work

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

1. Quantum-Transport Modeling of MTJ device with NEGF

2. Quantitative agreement with Experiments

1. Explains Bias dependence of Torque

2. Asymmetric ST device & Non-reciprocal torque

1. Spin Transport + 1-LLG; Switching asymmetry

2. Spin Transport + multi-LLG; model for Oscillator

IEEE Trans Nano 2012

Current WorkIEDM 2010

4

Magnetic Tunnel Junction

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMIMTJ:

z

x

y

Spin Transport Model:

Spin Transport: NEGF Model

Ef ∆ bU *oxm *

FMm

SII

M, m

VR

τ

MR (Reading)

Writinginput

Fitting parameters

output

τ⊥5

Modeling Magnetic Tunnel Junction

( )* *L, R f b ox FMH, Σ E , , U , m , mf = ∆

Ef Ef

mox*

mFM* mFM

*

∆ ∆

UbbUV

M→

m→[H]

[ ]LΣ [ ]RΣ

S, LI

S, RI

I

Spin Torque:

S, L S, Rτ = I - I

S, Rˆ I || m

( )( )

S, L S, L

S, L

ˆ ˆτ = I - I .m m

ˆ ˆ = - m m I × ×

∆ ∆C, L E

Spin Transport: NEGF Model

Ef ∆ bU *oxm *

FMm

SII

mV

R

τ

Fitting parameters

τ⊥

S, FMI

6

Experiment

Resistance vs. VoltageSankey, Nature Phys. (2008)

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FM

-0.5 0 0.5

3

4

5

6

7

8

9

dV/d

I (k

ΩΩ ΩΩ)

Voltage (V)

-0.5 0 0.5

50

100

150

TM

R (%

)

Voltage (V)

71o

0o (Parallel)52o

180o

(Anti-Parallel)

×××× ××××

Theory

Ef = 2.25 eV∆ = 2.15 eVmFM

* = 0.8 mo

mox* = 0.18 mo

Ub = 0.77 eV

Spin Transport: NEGF Model

Ef ∆ bU *oxm *

FMm

SII

mV

R

τ

τ⊥

7

Torque vs. Voltage

-200 0 200-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fie

ld-L

ike

Tor

que

(10

-19 J

)

Experiment

τ⊥

-1

0

1

2

3

4S

pin-

Tra

nsfe

r T

orqu

e (1

0-1

9 J)

-200 0 200

Experiment

||τ

Kubota, Nature Phys. (2008)

-200 0 200-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fie

ld-L

ike

Torq

ue (1

0-1

9 J)

Vb (mV)

Theory

-200 0 200Vb (mV)

8-200 0 200-1

0

1

2

3

4

Spi

n-T

rans

fer

Tor

que

(10

-19 J

)

Vb (mV)

Theory

-200 0 200Vb (mV)

Proc. IEDM, 2010

TNANO, 2012

vs. Voltagedτ dV

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO Proc. IEDM, 2010

TNANO, 2012

Ralph, PRB (2009)Ralph, PRB (2009)

9

Outline of the Work

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

10

1. Quantum-Transport Modeling of MTJ device with NEGF

2. Quantitative agreement with Experiments

1. Explains Bias dependence of Torque

2. Asymmetric ST device & Non-reciprocal torque

1. Spin Transport + 1-LLG; Switching asymmetry

2. Spin Transport + multi-LLG; model for Oscillator

IEEE Trans Nano 2012

Current WorkIEDM 2010

Bias Dependence of

V

M→

→ττττ||||||||,m

m→

MgO

Fixed FM Free FM

-1

0

1

2

3

4

Spi

n-T

rans

fer

Tor

que

(10

-19 J

)

-200 0 200

||τ (V)

( )ˆ ˆ

Kubota, Nature Phys. (2008)

||τ

C

G - GP =

G + G

↑ ↓

↑ ↓

||,m CMτ P (E)∝

Polarization:PC

0 1

EF

∆∆∆∆

0

E (e

V)

-200 0 200Vb (mV)

11

( )sˆ ˆˆ ˆI ~ M + m + M ma b c ×

CM Pa ∝

(1) When V > 0 is applied to Fixed FM

V > 0

M→

→ττττ||||||||,m

m→

MgO

Fixed FM Free FM

Fixed layer (M) Free layer (m)→ →

+ -

E (e

V)

12

EF

0 1

µR

0

qV > 0

0

|τ||,m (V > 0)|

+ -

µL = Ef

PCM

∆∆

M→

m

→ττττ||||||||,m

→MgO

V < 0

(2) When V < 0 is applied to Fixed FM

Fixed FM Free FM

Fixed layer (M) Free layer (m)→ →

+-

E (e

V)

13

0 1

µL =

µR

00

|τ||,m (V < 0)|

qV < 0

+-

µL = Ef

PCM

∆ ∆

,m ,mτ (V<0) > τ (V>0)

-1

0

1

2

3

4

Spi

n-T

rans

fer

Tor

que

(10

-19 J

)

-200 0 200Vb (mV)

||τ||,m CMτ P (E)∝

E (e

V)

Fixed layer (M) Free layer (m)→ →

14IEEE Trans Nano 2012

|τ||,m (V < 0)|

|τ||,m (V > 0)|

EF

0 1

µL =

0

(2)

(1)

PCM

µL = Ef

µR

µR

qV < 0

0

qV > 0

∆ ∆

Non-reciprocal Torque

1.5x 10

14

→→→→

1.5x 10

14

ττττ→→→→

M→

m

→ττττ||||||||,m

→MgO

V

→ττττ||||||||,M

M→

MgO

V

→ττττ||||||||,M

m

→ττττ||||||||,m

→Non-magnetic

metal

-0.2 -0.1 0 0.1 0.2-1.5

-1

-0.5

0

0.5

1

ττ ττ || (x

10-1

9 J.m

-2)

-Vb (Volt)

ττττ||||||||,m

ττττ||||||||,M

→→→→

→→→→

-0.2 -0.1 0 0.1 0.2-1.5

-1

-0.5

0

0.5

1

ττ ττ || (x

10-1

9 J.m

-2)

-Vb (Volt)

ττττ||||||||,m

ττττ||||||||,M

→→→→

→→→→

15IEEE Trans Nano 2012

Bias Dependence of

V

M→

m→

MgO →ττττ⊥⊥⊥⊥,m

Fixed FM Free FM

-200 0 200-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fie

ld-L

ike

Tor

que

(10

-19 J

)

τ⊥

τ (V)⊥

, m CM Cmτ P (E) P (E) ⊥ ∝

-200 0 200Vb (mV)

CM Cm P P c ∝

16

( )sˆ ˆˆ ˆI ~ M + m + M ma b c ×

(1) When V > 0 is applied to Fixed FM

V > 0

M→

m→

MgO →ττττ⊥⊥⊥⊥,m

Fixed FM Free FM

E (e

V)

E (e

V)

Fixed layer (M) Free layer (m)→ →

+ -

17

µR

µL = EF

0 1 00

qV > 0

01

PCm

+ -

µL = Ef

PCM

∆ ∆

(2) When V < 0 is applied to Fixed FM

M→

MgO

V < 0

m→

→ττττ⊥⊥⊥⊥,m

Fixed FM Free FM

Fixed layer (M) Free layer (m)→ →

+-

E (e

V)

E (e

V)

18

µR

µL = EF

0 1 0 1qV < 0

+-

µL = Ef

PCmPCM

00

∆ ∆

, m CM Cmτ P (E) P (E) ⊥ ∝

-200 0 200Vb (mV)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fiel

d-Li

ke T

orqu

e (1

0-1

9 J)

τ⊥

E (e

V)

E (e

V)

Fixed layer (M) Free layer (m)→→

V > 0

,m ,mτ (V 0) τ (V 0) ⊥ ⊥< = >

0 1

µL = EF

0 1

V > 0

V < 0

19IEEE Trans Nano 2012

µR

µR

PCmPCM

µL = Ef

qV > 0

00

∆∆

qV < 0

Outline of the Work

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

20

1. Quantum-Transport Modeling of MTJ device with NEGF

2. Quantitative agreement with Experiments

1. Explains Bias dependence of Torque

2. Asymmetric ST device & Non-reciprocal torque

1. Spin Transport + 1-LLG; Switching asymmetry

2. Spin Transport + multi-LLG; model for Oscillator

IEEE Trans Nano 2012

Current WorkIEDM 2010

StandardSTT Device

Coupling of Spins and Magnets

V I • Magnets

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FM

Purdue GroupNature NANO 2010

APL 2011

TNANO 2012

V I

Dynamics of Magnets:

LLG EquationSpin-

TorqueMagnetization

m sI

• Magnets

inject spins

• Spins

turn magnets

21

Spin Transport:NEGF

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Spin Transport + LLG

Oscillator

Voltage

m1

m2

STTSTT

Switching

22-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

m

Voltage (V)

VC-

VC+

P

AP

AP →→→→ P P →→→→ AP

Voltage (V) -0.27 V 0.38 V

Nat. Phys ’08

GND

m1

m3dipolar

V

Proposal for Asymmetric STT device

||,m ||,Mτ ( V) τ ( V) ± ≠ ∓

Explanation of Bias dependence for Spin

TorqueQuantitative model for R(V), TMR (V), (V)

and (V)τ

τ⊥

Summary

Spin Transport:NEGF

mI

I

23

Switching Asymmetry for AP → P & P → AP

New Model for Oscillator with

Transport + multi-LLG

Dynamics of Magnets:

LLG Equation

m

Magnetization Spin-Torque

sI

Please refer

D. Datta et. al., “Voltage Asymmetry of Spin-Transfer Torques,”

24

D. Datta et. al., “Voltage Asymmetry of Spin-Transfer Torques,” IEEE Trans on Nanotechnology, vol. 11, pp. 261-272 (2012)

Back-up Slides

25

Back-up Slides

Free Layer

Voltage

Tunnel Barrier

Co60Fe20B20

Co60Fe20B20

MgO

Ta

Ti

MTJ Device Stack

26

AFM Layer

GND

Pinned layerCo70Fe30

Ru

PtMn/ IrMn

Ta

TaN/ SiO2

Assumptions:m *Effective mass inside

Band Diagram of MTJ

V

M→

m→[H]

[ ]LΣ [ ]RΣ

I

( )* *L, R f b ox FMH, Σ E , , U , m , mf = ∆

27

1. PBC along transverse direction so that all k||are decoupled as parallel1-D wire.

2. k|| for each mode is conserved throughoutthe device.

∆EFM,t

Ef

∆ ∆

mFM* mFM

*

mox*

Ub

Ef

∆Eox,t

Equilibrium Fermi Level

Effective mass insideFerromagnet

Barrier height of insulator

Effective mass insideinsulator

Asymmetry of τ (V)⊥

0

0.1

0.2

τ ⊥ /

Hk

0

0.1

0.2

τ ⊥ /

Hk

Theory EC, R - EC, L = δ

δ > 0δ < 0

Se-Chung Oh, Nature Phys. (2009)

τ ⊥ /

Hk

28

Cm , m CMif P (E) ~ constant τ P (E)⊥ ∝

Like-wise in , introduces an asymmetry in ||τ (V) CMP (E) τ (V)⊥

-0.4 -0.2 0 0.2 0.4Applied Voltage (V)

-0.4 -0.2 0 0.2 0.4Applied Voltage (V)

δ < 0

Applied Voltage (V)

, m CM Cmτ P (E) P (E) ⊥ ∝

Asymmetric Device: ,m ,mτ (V 0) τ (V 0) ⊥ ⊥< ≠ >

-0.4 -0.2 0 0.2 0.4

0

0.1

0.2

τ ⊥ /

Hk

Applied Voltage (V)

0

0.1

0.2

τ ⊥ /

Hk

-0.4 -0.2 0 0.2 0.4Applied Voltage (V)

Theory EC, R - EC, L = δ

δ > 0δ < 0

Free layer (m)→

E (e

V)

E (e

V)

29

EFµL =

|ττττ⊥⊥⊥⊥,m (V > 0)|

|ττττ⊥⊥⊥⊥,m (V < 0)|

µR

µR

0

qV < 0

qV > 0 δδδδ

∆∆∆∆

∆∆∆∆

V

00 1

0 1

Fixed layer (M)→

PCm

PCM