Modeling spin torque device

29
Modeling Spin Torque Device M τ τ τ ,m m MgO Fixed FM Free FM I MRAM V τ τ τ || || || || ,m Deepanjan Datta Dept of ECE, Purdue University Fert, Nature Mat. (2007) 1

description

Spin Torque Transfer (STT) devices that can switch the magnetization of a ferromagnetic layer using spin polarized electrons have generated much interest due to their write information without any external magnetic field. The bias behavior of spin torque applied to Magnetic Tunnel Junctions (MTJs) is critical for applications including high density magnetic random access memory (MRAM) devices. In this slides, we will present a Non-Equilibrium Green’s Function based transport for MTJ to investigate the bias dependence of torques. First, we use our model to show quantitative agreement with the diverse experimental aspects of STT devices namely (i) differential resistances, (ii) Tunnel magneto-resistance (TMR), and (iii) in-plane and (iv) out-of-plane torques. Second, based on our model, we analyze the reason why one of the ferromagnetic layers (free) experiences a larger torque when negative voltage is applied to the other magnetic layer (fixed). Third, we also propose an asymmetric STT structure that can lead to significant difference in the torques on two ferromagnetic contacts, even if they are identical. We couple our spin transport model with magnetization dynamics to explore the switching behavior of the MTJ device. Our preliminary results demonstrates the switching voltage asymmetry.

Transcript of Modeling spin torque device

Page 1: Modeling spin torque device

Modeling Spin Torque Device

M→

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

MRAM

V

→ττττ||||||||,m

Deepanjan Datta

Dept of ECE, Purdue University

Fert, Nature Mat. (2007)

1

Page 2: Modeling spin torque device

Motivation

Magnetics

Reading (MR)

Writing Spin Torque

Spintronics

Very Low M.R. (~ 2%)

Spin ValveMagnetic

Tunnel Junction

All Spin Logic

M→

m→

Cu

M→

m→

MgO

2

Purdue Group

Nature NANO 2010

TOSHIBAGRANDIS

Page 3: Modeling spin torque device

Outline of the Work

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

1. Quantum-Transport Modeling of MTJ device with NEGF

2. Quantitative agreement with Experiments

1. Explains Bias dependence of Torque

2. Asymmetric ST device & Non-reciprocal torque

1. Spin Transport + 1-LLG; Switching asymmetry

2. Spin Transport + multi-LLG; model for Oscillator

IEEE Trans Nano 2012

Current WorkIEDM 2010

3

Page 4: Modeling spin torque device

Outline of the Work

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

1. Quantum-Transport Modeling of MTJ device with NEGF

2. Quantitative agreement with Experiments

1. Explains Bias dependence of Torque

2. Asymmetric ST device & Non-reciprocal torque

1. Spin Transport + 1-LLG; Switching asymmetry

2. Spin Transport + multi-LLG; model for Oscillator

IEEE Trans Nano 2012

Current WorkIEDM 2010

4

Page 5: Modeling spin torque device

Magnetic Tunnel Junction

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMIMTJ:

z

x

y

Spin Transport Model:

Spin Transport: NEGF Model

Ef ∆ bU *oxm *

FMm

SII

M, m

VR

τ

MR (Reading)

Writinginput

Fitting parameters

output

τ⊥5

Page 6: Modeling spin torque device

Modeling Magnetic Tunnel Junction

( )* *L, R f b ox FMH, Σ E , , U , m , mf = ∆

Ef Ef

mox*

mFM* mFM

*

∆ ∆

UbbUV

M→

m→[H]

[ ]LΣ [ ]RΣ

S, LI

S, RI

I

Spin Torque:

S, L S, Rτ = I - I

S, Rˆ I || m

( )( )

S, L S, L

S, L

ˆ ˆτ = I - I .m m

ˆ ˆ = - m m I × ×

∆ ∆C, L E

Spin Transport: NEGF Model

Ef ∆ bU *oxm *

FMm

SII

mV

R

τ

Fitting parameters

τ⊥

S, FMI

6

Page 7: Modeling spin torque device

Experiment

Resistance vs. VoltageSankey, Nature Phys. (2008)

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FM

-0.5 0 0.5

3

4

5

6

7

8

9

dV/d

I (k

ΩΩ ΩΩ)

Voltage (V)

-0.5 0 0.5

50

100

150

TM

R (%

)

Voltage (V)

71o

0o (Parallel)52o

180o

(Anti-Parallel)

×××× ××××

Theory

Ef = 2.25 eV∆ = 2.15 eVmFM

* = 0.8 mo

mox* = 0.18 mo

Ub = 0.77 eV

Spin Transport: NEGF Model

Ef ∆ bU *oxm *

FMm

SII

mV

R

τ

τ⊥

7

Page 8: Modeling spin torque device

Torque vs. Voltage

-200 0 200-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fie

ld-L

ike

Tor

que

(10

-19 J

)

Experiment

τ⊥

-1

0

1

2

3

4S

pin-

Tra

nsfe

r T

orqu

e (1

0-1

9 J)

-200 0 200

Experiment

||τ

Kubota, Nature Phys. (2008)

-200 0 200-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fie

ld-L

ike

Torq

ue (1

0-1

9 J)

Vb (mV)

Theory

-200 0 200Vb (mV)

8-200 0 200-1

0

1

2

3

4

Spi

n-T

rans

fer

Tor

que

(10

-19 J

)

Vb (mV)

Theory

-200 0 200Vb (mV)

Proc. IEDM, 2010

TNANO, 2012

Page 9: Modeling spin torque device

vs. Voltagedτ dV

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO Proc. IEDM, 2010

TNANO, 2012

Ralph, PRB (2009)Ralph, PRB (2009)

9

Page 10: Modeling spin torque device

Outline of the Work

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

10

1. Quantum-Transport Modeling of MTJ device with NEGF

2. Quantitative agreement with Experiments

1. Explains Bias dependence of Torque

2. Asymmetric ST device & Non-reciprocal torque

1. Spin Transport + 1-LLG; Switching asymmetry

2. Spin Transport + multi-LLG; model for Oscillator

IEEE Trans Nano 2012

Current WorkIEDM 2010

Page 11: Modeling spin torque device

Bias Dependence of

V

M→

→ττττ||||||||,m

m→

MgO

Fixed FM Free FM

-1

0

1

2

3

4

Spi

n-T

rans

fer

Tor

que

(10

-19 J

)

-200 0 200

||τ (V)

( )ˆ ˆ

Kubota, Nature Phys. (2008)

||τ

C

G - GP =

G + G

↑ ↓

↑ ↓

||,m CMτ P (E)∝

Polarization:PC

0 1

EF

∆∆∆∆

0

E (e

V)

-200 0 200Vb (mV)

11

( )sˆ ˆˆ ˆI ~ M + m + M ma b c ×

CM Pa ∝

Page 12: Modeling spin torque device

(1) When V > 0 is applied to Fixed FM

V > 0

M→

→ττττ||||||||,m

m→

MgO

Fixed FM Free FM

Fixed layer (M) Free layer (m)→ →

+ -

E (e

V)

12

EF

0 1

µR

0

qV > 0

0

|τ||,m (V > 0)|

+ -

µL = Ef

PCM

∆∆

Page 13: Modeling spin torque device

M→

m

→ττττ||||||||,m

→MgO

V < 0

(2) When V < 0 is applied to Fixed FM

Fixed FM Free FM

Fixed layer (M) Free layer (m)→ →

+-

E (e

V)

13

0 1

µL =

µR

00

|τ||,m (V < 0)|

qV < 0

+-

µL = Ef

PCM

∆ ∆

Page 14: Modeling spin torque device

,m ,mτ (V<0) > τ (V>0)

-1

0

1

2

3

4

Spi

n-T

rans

fer

Tor

que

(10

-19 J

)

-200 0 200Vb (mV)

||τ||,m CMτ P (E)∝

E (e

V)

Fixed layer (M) Free layer (m)→ →

14IEEE Trans Nano 2012

|τ||,m (V < 0)|

|τ||,m (V > 0)|

EF

0 1

µL =

0

(2)

(1)

PCM

µL = Ef

µR

µR

qV < 0

0

qV > 0

∆ ∆

Page 15: Modeling spin torque device

Non-reciprocal Torque

1.5x 10

14

→→→→

1.5x 10

14

ττττ→→→→

M→

m

→ττττ||||||||,m

→MgO

V

→ττττ||||||||,M

M→

MgO

V

→ττττ||||||||,M

m

→ττττ||||||||,m

→Non-magnetic

metal

-0.2 -0.1 0 0.1 0.2-1.5

-1

-0.5

0

0.5

1

ττ ττ || (x

10-1

9 J.m

-2)

-Vb (Volt)

ττττ||||||||,m

ττττ||||||||,M

→→→→

→→→→

-0.2 -0.1 0 0.1 0.2-1.5

-1

-0.5

0

0.5

1

ττ ττ || (x

10-1

9 J.m

-2)

-Vb (Volt)

ττττ||||||||,m

ττττ||||||||,M

→→→→

→→→→

15IEEE Trans Nano 2012

Page 16: Modeling spin torque device

Bias Dependence of

V

M→

m→

MgO →ττττ⊥⊥⊥⊥,m

Fixed FM Free FM

-200 0 200-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fie

ld-L

ike

Tor

que

(10

-19 J

)

τ⊥

τ (V)⊥

, m CM Cmτ P (E) P (E) ⊥ ∝

-200 0 200Vb (mV)

CM Cm P P c ∝

16

( )sˆ ˆˆ ˆI ~ M + m + M ma b c ×

Page 17: Modeling spin torque device

(1) When V > 0 is applied to Fixed FM

V > 0

M→

m→

MgO →ττττ⊥⊥⊥⊥,m

Fixed FM Free FM

E (e

V)

E (e

V)

Fixed layer (M) Free layer (m)→ →

+ -

17

µR

µL = EF

0 1 00

qV > 0

01

PCm

+ -

µL = Ef

PCM

∆ ∆

Page 18: Modeling spin torque device

(2) When V < 0 is applied to Fixed FM

M→

MgO

V < 0

m→

→ττττ⊥⊥⊥⊥,m

Fixed FM Free FM

Fixed layer (M) Free layer (m)→ →

+-

E (e

V)

E (e

V)

18

µR

µL = EF

0 1 0 1qV < 0

+-

µL = Ef

PCmPCM

00

∆ ∆

Page 19: Modeling spin torque device

, m CM Cmτ P (E) P (E) ⊥ ∝

-200 0 200Vb (mV)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Fiel

d-Li

ke T

orqu

e (1

0-1

9 J)

τ⊥

E (e

V)

E (e

V)

Fixed layer (M) Free layer (m)→→

V > 0

,m ,mτ (V 0) τ (V 0) ⊥ ⊥< = >

0 1

µL = EF

0 1

V > 0

V < 0

19IEEE Trans Nano 2012

µR

µR

PCmPCM

µL = Ef

qV > 0

00

∆∆

qV < 0

Page 20: Modeling spin torque device

Outline of the Work

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FMI

20

1. Quantum-Transport Modeling of MTJ device with NEGF

2. Quantitative agreement with Experiments

1. Explains Bias dependence of Torque

2. Asymmetric ST device & Non-reciprocal torque

1. Spin Transport + 1-LLG; Switching asymmetry

2. Spin Transport + multi-LLG; model for Oscillator

IEEE Trans Nano 2012

Current WorkIEDM 2010

Page 21: Modeling spin torque device

StandardSTT Device

Coupling of Spins and Magnets

V I • Magnets

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Fixed FM Free FM

Purdue GroupNature NANO 2010

APL 2011

TNANO 2012

V I

Dynamics of Magnets:

LLG EquationSpin-

TorqueMagnetization

m sI

• Magnets

inject spins

• Spins

turn magnets

21

Spin Transport:NEGF

Page 22: Modeling spin torque device

V

M→

→ττττ||||||||,m

→ττττ⊥⊥⊥⊥,m

m→

MgO

Spin Transport + LLG

Oscillator

Voltage

m1

m2

STTSTT

Switching

22-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-1

-0.5

0

0.5

1

m

Voltage (V)

VC-

VC+

P

AP

AP →→→→ P P →→→→ AP

Voltage (V) -0.27 V 0.38 V

Nat. Phys ’08

GND

m1

m3dipolar

Page 23: Modeling spin torque device

V

Proposal for Asymmetric STT device

||,m ||,Mτ ( V) τ ( V) ± ≠ ∓

Explanation of Bias dependence for Spin

TorqueQuantitative model for R(V), TMR (V), (V)

and (V)τ

τ⊥

Summary

Spin Transport:NEGF

mI

I

23

Switching Asymmetry for AP → P & P → AP

New Model for Oscillator with

Transport + multi-LLG

Dynamics of Magnets:

LLG Equation

m

Magnetization Spin-Torque

sI

Page 24: Modeling spin torque device

Please refer

D. Datta et. al., “Voltage Asymmetry of Spin-Transfer Torques,”

24

D. Datta et. al., “Voltage Asymmetry of Spin-Transfer Torques,” IEEE Trans on Nanotechnology, vol. 11, pp. 261-272 (2012)

Page 25: Modeling spin torque device

Back-up Slides

25

Back-up Slides

Page 26: Modeling spin torque device

Free Layer

Voltage

Tunnel Barrier

Co60Fe20B20

Co60Fe20B20

MgO

Ta

Ti

MTJ Device Stack

26

AFM Layer

GND

Pinned layerCo70Fe30

Ru

PtMn/ IrMn

Ta

TaN/ SiO2

Page 27: Modeling spin torque device

Assumptions:m *Effective mass inside

Band Diagram of MTJ

V

M→

m→[H]

[ ]LΣ [ ]RΣ

I

( )* *L, R f b ox FMH, Σ E , , U , m , mf = ∆

27

1. PBC along transverse direction so that all k||are decoupled as parallel1-D wire.

2. k|| for each mode is conserved throughoutthe device.

∆EFM,t

Ef

∆ ∆

mFM* mFM

*

mox*

Ub

Ef

∆Eox,t

Equilibrium Fermi Level

Effective mass insideFerromagnet

Barrier height of insulator

Effective mass insideinsulator

Page 28: Modeling spin torque device

Asymmetry of τ (V)⊥

0

0.1

0.2

τ ⊥ /

Hk

0

0.1

0.2

τ ⊥ /

Hk

Theory EC, R - EC, L = δ

δ > 0δ < 0

Se-Chung Oh, Nature Phys. (2009)

τ ⊥ /

Hk

28

Cm , m CMif P (E) ~ constant τ P (E)⊥ ∝

Like-wise in , introduces an asymmetry in ||τ (V) CMP (E) τ (V)⊥

-0.4 -0.2 0 0.2 0.4Applied Voltage (V)

-0.4 -0.2 0 0.2 0.4Applied Voltage (V)

δ < 0

Applied Voltage (V)

, m CM Cmτ P (E) P (E) ⊥ ∝

Page 29: Modeling spin torque device

Asymmetric Device: ,m ,mτ (V 0) τ (V 0) ⊥ ⊥< ≠ >

-0.4 -0.2 0 0.2 0.4

0

0.1

0.2

τ ⊥ /

Hk

Applied Voltage (V)

0

0.1

0.2

τ ⊥ /

Hk

-0.4 -0.2 0 0.2 0.4Applied Voltage (V)

Theory EC, R - EC, L = δ

δ > 0δ < 0

Free layer (m)→

E (e

V)

E (e

V)

29

EFµL =

|ττττ⊥⊥⊥⊥,m (V > 0)|

|ττττ⊥⊥⊥⊥,m (V < 0)|

µR

µR

0

qV < 0

qV > 0 δδδδ

∆∆∆∆

∆∆∆∆

V

00 1

0 1

Fixed layer (M)→

PCm

PCM