Development and Certification of De-Icing and Anti-Icing...

Post on 01-Oct-2020

2 views 1 download

Transcript of Development and Certification of De-Icing and Anti-Icing...

Development and Certification of De-Icing and Anti-Icing Solutions

04.09.2008 1D. Sinan Körpe

Supervisor: Assoc. Prof. Dr. Serkan ÖZGENCo-Supervisor: Assoc. Prof. Dr. Yusuf ULUDAĞ

OUTLINE

�Motivation

� Introduction

�Development of De-Icing and Anti-Icing Solutions

�Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

�Results and Discussions

04.09.2008 D. Sinan Körpe 2

Motivation

�Chemical Engineering aspect• To learn the aspects of chemicals on physical and

rheological properties of liquids,

• To produce these chemicals that are widely used in industry .

�Aerospace Engineering aspect• To understand the behavior of the two-layer flows.

�Economical aspect• To produce the solutions that are imported.

04.09.2008 D. Sinan Körpe 3

Effects of ice on Aircraft performance

04.09.2008 D. Sinan Körpe 4

Introduction

04.09.2008 D. Sinan Körpe 5

Introduction

Required Properties� Viscosity behavior• Holdover (at rest)• Flow-off (at acceleration)• Polymer

� Lower Freezing temperature• Propylene glycol, Ethylene glycol

� Lower Surface tension• Surfactants (wetting agents)

� Higher Material Compatibility• Anti-corrosion

Flat Plate Elemination Test

04.09.2008 D. Sinan Körpe 6

Introduction

Flat plate lemination test simulation

04.09.2008 D. Sinan Körpe 7

Development of De-Icing and Anti-Icing Solutions

The effect of the functional chemicals on the properties of Type-1 fluids

Chemical Typec Viscosity (cP)

(@ 20 oC)

Surface Tension (mN/m)

(@ 25 oC)

Freezing Point

(oC)

S and pH 8-15 50 -26

S and C 8-15 36 -26

pH and C 8-15 40 -26

S, pH and C 8-15 37 -26

04.09.2008 D. Sinan Körpe 8

Development of De-Icing and Anti-Icing Solutions

The effect of the chemical additives on properties of Type-1 fluids when they are used together

04.09.2008 D. Sinan Körpe 9

Development of De-Icing and Anti-Icing Solutions

Rheological behavior of 1% of HMPA solutions by weight Rheological behavior of 2% of HMPA solutions by weight

Rheological behavior of 4% of HMPA solutions by weight

04.09.2008 D. Sinan Körpe 10

Development of De-Icing and Anti-Icing Solutions

The change of zero shear viscosity of the 0.075 wt % HMPA solutions with pH

The rheological behavior of HMPA solutions at 0.064 wt % concentration with different glycol-water content.

The surface tension change of HMPA solution (0.067 wt %) with addition of AOT

Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

04.09.2008 D. Sinan Körpe 11

Sketch of laminar-turbulent transition

04.09.2008 D. Sinan Körpe 12

Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

{ ''''''4''2'''''

3n'''2'' UU)1n()22(n)U(

Rei

UU))(cU( χ−+χα+χα−χ

α=χ−χα−χ−

[ ]2''''''2'2 )U)(2n(nUnU)U(4 −++α+

]U)2n(UU[nUU)2n(22''''''2''''2 −+α+χα−+

General Orr-Sommerfeld Equation

04.09.2008 D. Sinan Körpe 13

Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

index behaviour flow then

indexy consistenc flow thek

itycosvis

k 1n

=

=

γ•=µ −

04.09.2008 D. Sinan Körpe 14

Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

Flow Geometry

Laminar Boundary Layer �

04.09.2008 D. Sinan Körpe 15

Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

Turbulent Boundary Layer�

)ofilePrSkanFalkner(0fff2 ''''' −=+

**1

*2*2*1 usyfordybay)y(U υ≥++=

( ) **1

***1

2*1 usy0foryu)y(U υ≤≤υ=

)2(Ri

1U))(cU( 4''2''''''

12''

1 φα+φα−φα

=φ−φα−φ−

Orr-Sommerfeld equation for upper fluid

04.09.2008 D. Sinan Körpe 16

Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

Flow Geometry

04.09.2008 D. Sinan Körpe 17

Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

( )( ) )n)2n(2n(rRei

macU 4''2''''

1n22''

2 χα+χα−+χα

=χα−χ−−

Orr-Sommerfeld equation for lower fluid

04.09.2008 D. Sinan Körpe 18

Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

Flow Geometry

04.09.2008 D. Sinan Körpe 19

)0()0( χ=φ

)aa(Uc)0(

)0()0( 120

'' −−φ=χ−φ

))0()0((mna)0()0( 2''1n2

''2 χα+χ=φ+φα −

[ ][ ] )Uc(SF)1r(Rei

)0()n4()0(nma))0(a)0()Uc((rRei

)3)0(())0(a)0()UcRe((i

022

'2'''1n22

'0

'2'''1

'0

−φα+−α=

χα−−χ+χ+χ−α+

φα−φ−φ+φ−α

Mathematical Model and Solution Method for Two-Layer Flow’s Linear Stability Analysis

=

0

0

0

0

B

B

A

A

cccc

cccc

cccc

cccc

4

3

2

1

44434241

34333231

24232221

14131211

Results of parametric study

04.09.2008 D. Sinan Körpe 20

Effect of viscosity ratio, m (l=1,r=1, S=0, F=0)

04.09.2008 D. Sinan Körpe 21

Results of parametric study

Effect of viscosity ratio, m on TS curve (l=1,r=1, S=0, F=0)

04.09.2008 D. Sinan Körpe 22

Results of parametric study

Effect of viscosity ratio, S (l=0.5,r=1, m=5, F=0)

04.09.2008 D. Sinan Körpe 23

Results of parametric study

Effect of n (l=0.5,r=1, m=5, F=0,S =0)

04.09.2008 D. Sinan Körpe 24

Results of parametric study

Effect of n on TS curve (l=0.5,r=1, m=5, F=0,S =0)

04.09.2008 D. Sinan Körpe 25

Results of parametric study

( )( ) )n)2n(2n(rRei

macU 4''2''''

1n22''

2 χα+χα−+χα

=χα−χ−−

04.09.2008 D. Sinan Körpe 26

Comparision of De-Icing and Anti-IcingSolutions’ Wave Characteristics

Viscosity measurement for G2 fluid at 200C Variation of density with temperature for G2 soluition

Variation of surface tension with temperature for G2 soluition

04.09.2008 D. Sinan Körpe 27

Comparision of De-Icing and Anti-Icingsolutions’ Wave CharacteristicsFluid

Temperature

(0C)

Viscosity

(cP)

Surface

Tension

(mN/m)

Density

(kg/m3)

T1 20 24.5 40.17 1040.4

T1 0 68.8 42.09 1051.7

T1 -10 148 43.05 1056.7

T2 20 1138.1*γ-0.374 36.21 1038.2

T2 0 1230*γ-0.295 37.31 1056.1

T2 -10 1093.2*γ-0.227 37.86 1061.8

G1 20 18.9 38.45 1070.2

G1 0 34.8 40.09 1083.1

G1 -10 57.1 40.86 1088.6

G2 20 1722*γ-0.484 38.15 1038.2

G2 0 5499*γ-0.608 39.90 1056.1

G2 -10 8018*γ-0.643 40.78 1061.8

Air[40] 20 0.0182 - 1.204

Air[40] 0 0.0171 - 1.292

Air[40] -10 0.0167 - 1.304

04.09.2008 D. Sinan Körpe 28

Comparision of De-Icing and Anti-Icingsolutions’ Wave Characteristics

Temperature

(0C)

Thickness

(mm)

Critical

Reynolds

Number

Critical

Wind Speed

(m/s)

Critical

Wavelength

(mm)

Critical

Wave Speed

(mm/s)

20 2.4 1796.2 11.3133 32.41 1.00

20 1.8 1175.3 9.8701 35.43 0.39

20 1.2 864.3 10.8875 31.63 0.22

0 2.4 1945.37 10.7281 30.03 1.18

0 1.8 1265.4 9.3044 39.71 0.40

0 1.2 940.6 10.3743 30.56 0.25

-10 2.4 2012.9 10.4370 28.94 1.66

-10 1.8 1303.6 9.0123 34.17 0.63

-10 1.2 973.5 10.0953 30.35 0.34

04.09.2008 D. Sinan Körpe 29

Comparision of De-Icing and Anti-Icingsolutions’ Wave Characteristics

Recr variation at -100C

04.09.2008 D. Sinan Körpe 30

Comparision of De-Icing and Anti-Icingsolutions’ Wave Characteristics

Recr variation at -100C

04.09.2008 D. Sinan Körpe 31

Comparision of De-Icing and Anti-Icingsolutions’ Wave Characteristics

Recr variation at d2* =2.4 mm

04.09.2008 D. Sinan Körpe 32

Comparision of De-Icing and Anti-Icingsolutions’ Wave Characteristics

Recr variation at d2* =2.4 mm

04.09.2008 D. Sinan Körpe 33

Comparision of De-Icing and Anti-Icingsolutions’ Wave Characteristics

Ucr* variation at -100C

04.09.2008 D. Sinan Körpe 34

Comparision of De-Icing and Anti-Icingsolutions’ Wave Characteristics

Ucr* variation at -100C

04.09.2008 D. Sinan Körpe 35

Comparision of De-Icing and Anti-Icingsolutions’ Wave Characteristics

Ucr* variation at d2* =2.4 mm

04.09.2008 D. Sinan Körpe 36

Comparision of De-Icing and Anti-Icing solutions’ Wave Characteristics

Ucr* variation at d2* =2.4 mm

04.09.2008 D. Sinan Körpe 37

Comparision of De-Icing and Anti-Icing solutions’ Wave Characteristics

λ* variation at -100C

04.09.2008 D. Sinan Körpe 38

Comparision of De-Icing and Anti-Icing solutions’ Wave Characteristics

λ* variation at -100C

04.09.2008 D. Sinan Körpe 39

Comparision of De-Icing and Anti-Icing solutions’ Wave Characteristics

λ* variation at d2* =2.4 mm

04.09.2008 D. Sinan Körpe 40

Comparision of De-Icing and Anti-Icing solutions’ Wave Characteristics

λ* variation at d2* =2.4 mm

04.09.2008 D. Sinan Körpe 41

Comparision of De-Icing and Anti-Icing solutions’ Wave Characteristics

cr* variation at -100C

04.09.2008 D. Sinan Körpe 42

Comparision of De-Icing and Anti-Icing solutions’ Wave Characteristics

cr* variation at -100C

04.09.2008 D. Sinan Körpe 43

Comparision of De-Icing and Anti-Icing solutions’ Wave Characteristics

cr* variation at d2* =2.4 mm

04.09.2008 D. Sinan Körpe 44

Comparision of De-Icing and Anti-Icing solutions’ Wave Characteristics

cr* variation at d2* =2.4 mm

�For G2 (Anti-Icing) solution• Decrease the viscosity ratio

• Change the pH value

• Decrease the surfactant ratio of the solution

04.09.2008 D. Sinan Körpe 45

04.09.2008 D. Sinan Körpe 46

THANK YOU

�Supported by a research grant from TÜBĐTAK,

project number:106M219