Download - REAL-TIME OVERVIEW OF FIRES ASSISTED BY UNMANNED · PDF fileFULL AERODYNAMIC DESIGN AND TESTING Nowadays, the estimation of aerodynamic coefficientsis po-ssible to do by a few manners

Transcript
Page 1: REAL-TIME OVERVIEW OF FIRES ASSISTED BY UNMANNED · PDF fileFULL AERODYNAMIC DESIGN AND TESTING Nowadays, the estimation of aerodynamic coefficientsis po-ssible to do by a few manners

June 2011

EREA Associated Members:EREA Full Members:

CIRA ItalyDLR GermanyFOI SwedenILOT PolandINCASRomania

AIT AustriaVKI BelgiumVTT FinlandEREA Affiliate Members:AFIT Poland

INTA SpainNLR NetherlandsONERAFranceVZLU CzechRepublic

BREAKDOWN OF EREA 2009 EXPENDITURES FOR INTRAMURAL R&T,D

EREA IN NUMBERS - COMPARISON 2007, 2008, 2009

total expenditures for Intramural R&T,D aeronautics missiles space other aerospace other

1190 547 56 229 326 32

46% 5% 19% 27% 3%

year 2007 2008 2009

employees 4,500 4,360 5,000

internalaeronauticsresearch 366M€ 375M€ 625M€ *

annualinvestments 160M€ 175M€ 178M€

annualrevenuesfromEUprojects 44M€ 45M€ 52M€

numberofPhDthesis/year 190 170 175

numberofpublications 6,500 6,260 7,000

publishedinrefereedjournals 880 1,080 1,088

1

2

3

4

5

6

aeronautics 46%other aerospace 27%

space 19%

othe

r 3%

1

2

3

4

5

6

aeronautics 46%other aerospace 27%

space 19%

othe

r 3%

aeronautics:meansAirframesforaeroplanes,helicoptersandgliders,groundinstallations,pistonen-gines,turboprops,turbojets,jetengines,equipmentfortest,groundtrainingequipment,systemstobeinstalledinaircraft,theirsubsystemsandparts.Missiles:meansairframesfortacticalandballisticmissiles,groundinstallations,engines,equipmentfortest,groundtrainingequipment,systemstobeinstalledinmissiles,theirsubsystemsandparts.Space:meansairframesforspacevehicles,satellites,launchers,groundinstallations,rocketenginesorother,equipmentfortest,groundtrainingequipment,systemstobeinstalledinspacevehicles,satellites,launchers,theirsubsystemsandparts.Other Aerospace:meansconsultingAssessmentexcl.R&T,Devactivities.Other:meansothersectorslikeenergy,armament,groundtransportationetc.

Withalmost5000scientistsandengineersEREAre-searchestablishmentsrepresentamajorplayer in thesupplychain.ThescientificexcellenceofEREAmem-bersisshownthroughthemassivenumberofmorethan7 000 publications and almost 200 number of yearlyPhD thesis. Annual investments to RT&D and annualrevenues fromEUprojectsare inter-yearlyequally in-creasing.

institutional support

TOTAL: 1 190 M€

REAL-TIME OVERVIEW OF FIRES ASSISTED BY UNMANNED AIRCRAFT AND HELICOPTERS

EREA CONTRIBUTION TO THE “COMMON STRATEGIC FRAMEWORK FOR RESEARCH AND INNOVATION FUNDING”

Whenfirefightersarriveatthesceneofamajorforestorheathfire,theyneedtoobtainsituationalawarenessinformationasquicklyaspossible:whatistheexactlocationofthefireandwherearefellowfire-fighterslocated?Atpresent,thisinformationiseitherlackingorfiredepartmentcommandersre-ceivethisinformationrelativelylate.

Tosolvethisproblem, theNationalAerospaceLaboratory(NLR)and itspartnersinitiatedtheFire-Flyproject,inwhichfiredepartmentcommandersarepresentedwithreal-timeoverviewimageryoftheareawheretheforestfireislocated.Thisinformationcanthenbedisseminatedtocrisiscentres,thepolice,andotherfiredepartmentsandfire-fightersinthefield.OnWednesday,11May,thefiredepartmentsofSafetyRegionNorthandSouthGelderland,togetherwith theFire-Flyprojectpartners,demonstratedremotecontrolledaircraftandhelicoptersthatallowfirestobemoreeffectivelyfought.

ThefiredepartmentsofSafetyRegionNorthandSouthGelderlandarestudyingthepossibilitiesforunmannedaerialobservationsystemsandde-termining if these can be integrated with the fire departments’ informationsystems.TheFire-Flyprojectpresentsfiredepartmentcommanderswithareal-timeoverviewof incidents.Acameraonboardsends images tocrisiscentres,thepolice,andotherfiredepartmentsandfire-fightersinthefield,

sothatthefirecanbemoreeffectivelyfought.ThankstoFire-Fly,thefirede-partmentperformsmoreefficientlyandpeopleandresourcescanbemoreeffectivelydeployed.

Inthisproject,NLRisresponsibleforthetechnicalimplementationoftheobservationsystem,which includessystemdesignanddatastorage.Alsoparticipating in the project are Nieuwland, Delft Dynamics, Geodan andVNOG.

TheconsortiumofNLR,Nieuwland,DelftDynamics,GeodanandVNOGwilldemonstratethefinalproduct.

TheprojectfallsundertheauspicesoftheSocialInnovationAgenda(MIA)Safety.NLAgencyisimplementingthisschemeonbehalfoftheDutchgo-vernment.

Airtransport,afundamentalelementoftheUnion’sLisbonstrategy,has

provenitselfamajorcontributortotheEuropeaneconomy,supportingindu-

stryaswellasresearch,academicandpoliticalcommunities.Furthermore,

technologicalleadershipisbecomingakeyissuetomaintaincompetitive-

nessinaglobaleconomywithemergingcountriesplayinganincreasingly

relevantrole.

EREAResearchEstablishments,throughhighinvestmentsinresearch,

highlyskilledresearchersandengineersingoodcooperationbetweenin-

dustry,researchandacademia,contributeinsustainingtheEuropeantech-

nologicalleadershipinAeronauticsthatisbecomingmoreandmoreakey

issuetomaintaincompetitivenessinaglobaleconomywithemergingcoun-

triesplayinganincreasinglyrelevantrole.

MoreoverEREAResearchEstablishments,withtheirresearchandtest

InfrastructuresrepresentanessentialassetintheResearchandInnovati-

oncycle,beingabletotransformbasicscientificresearchknowledgeinto

competitiveproducts.

TheEREAStudyonAirTransportSystem,completed in the last year

andpresented to theAeronauticsCommunity during theAeroweek, and

wellreceivedbytheCommission,wasafirstsignificantcontributiontothe

developmentof theguidelinesof thenewCommonStrategicFramework

forResearchandInnovation,andtheCommissionOfficersarelookingwith

someinteresttotheoutcomeofthefollowonstudyEREAisproducingin

thesemonths.

AftertheCommissionpublishedonFebruary,the9ththeGreenPaper–

“FromChallengestoopportunitiestowardsaCommonStrategicFramework

forEUResearchandInnovationfunding”andopenedapublicconsultation

onthekeyissuestobetakenintoaccountforfutureEUResearchandInno-

vation programmes, the Research Establishments have been discussed

theirideasinthe“adhoc”WorkshoporganizedinMadrid,andagreedaco-

mmonpositionthatwasfiledbothansweringthequestionnaireandsending

totheCommissionthe“EREAPositionPaperonfutureCommonStrategic

FrameworkforResearchandInnovationfunding”.

TheEREAcommonpositiondocument,highlightstheneedforlongterm

politicalagendaswheneverdevelopmentshave longcyclesfromideasto

market(asforAeronauticsandAirtransport)andtheimportancetobuildthe

futureCSFuponassessmentofachievementsinFP7andongoingresearch

programmestoguaranteeprogressandsuccessofEuropeanpolicies,su-

ggestingtoextensivelyapplythe“ACARE-likeapproach”tootherIndustrial

sectors,basedonthequiteimportantresultsobtained.

InordertomaintainEuropeanleadershipinresearchandinnovation,it

isimportantthattheentireinnovationprocess,frombasicresearch,upto

systemdemonstrationwill besupported,EREA recommendationsare to

maintainabalancedapproachbetweentop-downandbottom-upresearch

projects,andalso tokeepthesuccessful instruments(fromCollaborative

Researchprojects,toJTIsandotherPPPs)thatguaranteedgoodsuccess

andestablishedclosecooperationbetweenallresearchstakeholders(Uni-

versity,Research,IndustryincludingSMEs);moreoverintheaimtosupport

highertechnologyreadinesslevels(TRLs),anewandmoretechnicallyori-

entedfocusneedstobeusedunderESFRItoidentify,developandupgrade

infrastructuresdevotedtotestingandtechnicaldevelopment.

LastbutnotleastEREAcouldhaveakeyroleIncaseEUwillfundJoint

ProgrammingInitiativesbetweengroupsofMemberStates:anEREAJoint

TechnicalProgramme,aslaiddownintheEREAJointPositionPaperand

theassociationagreement (jointmanagingofprogrammesand facilities),

wouldbeawaytoefficientlyexploithumanresources,technicalexpertise,

researchanddemonstration infrastructures toachieveoptimisationof re-

searchand innovation results, reinforcingcooperationbetweenResearch

Establishments and achieving national and European funds going in the

samedirectionregardingresearchandinnovationgoals.

ThiseditionofEREANewslettersummer2011waseditedandprintedbyVZLU-

AeronauticalResearchandTestInstitute-Prague,CZECHREPUBLIC,www.vzlu.cz

*

Page 2: REAL-TIME OVERVIEW OF FIRES ASSISTED BY UNMANNED · PDF fileFULL AERODYNAMIC DESIGN AND TESTING Nowadays, the estimation of aerodynamic coefficientsis po-ssible to do by a few manners

FULL AERODYNAMIC DESIGN AND TESTINGNowadays, the estimation of

aerodynamic coefficients ispo-

ssible to do by a few manners

withusageofvariousempirical,

computational methods (panel

methods, CFD), wind tunnel

tests and flight measurements.

Atthepresenttimeispossibleto

observethetrendofthesubsti-

tutionofthemajorpartwindtunneltestingbytheadvancedCFDmethods.

Onlyafinalgeometry ismeasured inwind tunnel.Thisgeometrywasde-

signedandoptimizedbytheCFDmethodswhichreducetimeandthefinan-

cialdemandonthedevelopment.Thefinalpartofdevelopmentprocedureis

avalidationofpreviousprojectphasesbyflighttest.

Definingthestabilityandcontrolcharacteristicsofanairplaneareprobably

oneofthemostdifficultandmostexpensiveaspectsofanaircraftdevelop-

ment.Thedifficultiesarepartiallyduetothefactthatthestabilityandcontrol

phaseofdesignisextendedtotheveryendofthedevelopmentprocessand

sometimesevenbeyondit,causingoccasionallyunexpectedandexpensive

twistsalongtheprojectpathsrequiringchangesontheaircraft.Sincethese

canoccurintheverylatestagesoftheproject,theyareveryexpensiveand

oftencomewithdetrimentaleffecttotheexpectedperformance.Itistherefore

ofutmostimportancetobeabletopredictStabilityandcontrolcharacteristics

oftheaircraftintheearlystagesofitsdevelopment.

CFDresultofflowseparationonthecanard

aircraftmodelinthewindtunnel

Individualtypesofmethodswerestepbystepappliedonthedevelopment

ofthesmallunconventionalaircraft(fromhandbookmethoduptoflighttest).

Thehandbookandpanelmethodsprovideveryquickresponseonanygeo-

metricalchangesofpreliminarydesignof theaircraft.Theaccuracyof this

methodislowerthanCFDmethodorwindtunneltest.Ontheotherhandis

sufficientonthisearlystageofthisprocess.Withongoingstageoftheproject

itisneededtoimprovecurrentresults.CFDmethodswereusedforimproving

inputs forflightmechaniccalculation.Followingstep isusuallywind tunnel

measurementwhichprovidesthemostaccurateresultsofstaticaerodynamic

coefficientsanddampingderivativesaswell.

Flighttestisabranchofaeronauticalengineeringthatdevelopsandga-

thersdataduringflightofanaircraftandthenanalyzesthedatatoevaluate

theflightcharacteristicsoftheaircraftandvalidateitsdesign.Flighttestwas

focusedonestimationofaerodynamicparametersanddeterminationofflying

qualities.

Software forcalculationofnonlinearflightmechanicswasdevelopedon

basis of aircraft

design procedu-

re. This program

solvesflightstabi-

lityandcontrolla-

bilityusingresults

fromotherstages

ofprocess. If this

procedure is fo-

llowed step by

stepitwillreduce

timeandfinancial

demands on the

development.

modelduringflighttest

comparisonofflightmeasuredandestimatedparameters;aerodynamicderivationsvs.

stepsofoptimization

Torendertheairmovementsvisible,theflowinthewindtunnelmuchbeseededwithveryfinesubmicronicparticles,andillumina-tedbyalaserlightsheet.Theseparticlesfollowthestreamlinesofthevortex,andscatterthelaserlightreachingthecameradetector.

The raw imagephotography (figure1)wasobtainedwhilede-veloping theDoppler GlobalVelocimetry technique (DGV).DGVcanbeusedtoestablishtheflowvelocityatallpointsofthezoneilluminatedbythelaserandtodrawamapofvelocity(figure2).

DopplerGlobalVelocimetryisaplanarlaservelocimetrytech-niquebasedontheDopplerEffect.Themeasurementareaisma-terializedbyalasersheet,thelightscatteredbyseedingparticlesisfrequency-shiftedwithregardtotheincidentlight.TheparticlevelocityisthencalculatedfromthesimplifiedDopplerformula:

wheref0isthelaseremittedfrequency,Vthespeedofthepar-ticleandcthespeedofthelight.

This optical technique has been used successfully in thesubsonic F2 wind tunnel for the investigation of wake vortex

DGV, DOPPLER GLOBAL VELOCIMETRY OR THE PHOTO-GRAPHY OF VELOCITY BY LASER

Over the past few years, ONERA has performed DGV (Doppler Global Velocimetry) measurements in wind tunnels, testing di-fferent configurations with the aim of improving the technique and making it available in an industrial context.

Figure1-Photograph,takeninF2windtunnel,ofthewakevortexofanaircraftattheendoftheairfoil.DopplerGlobalVelocimetryisusedtomeasurethe

velocityofflowateachpointofaplane,illuminatedbylaser.

Figure2-MapoftheintensityofthevelocityofthewakevortexobtainedbyDGV.Thevelocitygetshighertowardthecentreofthevortex.

ofawingmodel.Another experiment has been carried out in the F1 subsonic

windtunnel forwakevortexcharacterizationofanaircraft in lan-dingconfiguration.

The comparison of the results obtained by DGV to those ob-tainedbyclassicalopticalmethodssuchasLDVisverysatisfacto-ryandhasdemonstratedthegoodaccuracyofDGV.DGV today

Today, DGV is getting more and more mature in wind tunnelapplications, but it is also in competition with another velocime-try optical method, the Particle Image Velocimetry. (PIV), whichdoesnotusethecoherencepropertiesoflaserlight:andwhichis,moreeconomicalandlesscomplextoimplement,whilerequiringpowerfulcomputers.However, forsomeuses,DGVhasdecisiveadvantages,suchas:pointmeasurementsathighrate,measure-mentofthevelocityofdropletsinaspray,three-componentathighsupersonic,etc…

MoreoverDGVisatechniquewithgreateducationalvalueandisstillpopularwithstudents.

Thereareseveralforcesandmomentsactingonthestructureoftheairplaneduringitsflightindisturbedearth’satmo-sphere.Becauseofthenatureoftheinteractions,theycanbedividedinto two groups. First group of airframe loadings is connected withthe influenceof themediumsurroundingandaffecting theexternalsurfacesoftheairplane.Secondone,speakinggenerally,internalin-teractionsoftheairframeandelasticityforces.Boththeycreateaero-elasticity.

Varyingloadingsfromflowdisturbancescausechangingaerodyna-micloads.Thisleadtoliftingsurfacesvibrations(wings,tailplane)aswellasbiggerassemblieslikeaircrafttailwithtailplane.Farthermore,forcesproducedbywingvibrationsare transferred through joints tothefuselageinducingitsbendingor/andtwistingcausingprematurewearandtearofelementsandassemblies.DeflectionsofwingalongtheairplanenormalaxisOzcanproduceadditionalforcesonaileronswhichmaydeliverbiggerwingdeflectionsandloadsinlateralcontrolsystem.Exceedingpermissibleloadsduringflightmayleadtoperma-nentairframedeformation.Loadssurpassingmaximumpermissibleloadingcauseairframefailureandcrash.

Spatialmotionoftheairplanetreatedasa6DOFrigidbodyisde-scribed by a system of twelve nonlinear ordinary differential equa-tions. Solving it employs approximate methods based on computertechnology.Anassumptionismadethatalloftheairframeelementsoccupyinvariantpositiontowardoneanotherthroughthewholetimeoftheanalysis.Thisisonesufficientconditiontodeterminemassandaerodynamic forcesandmomentscoefficientsactingon theaircraftduringsteadyflight.

In order to analyze the influence of wing transverse vibrations,using the computer code solving motion equations, many cases oflifting surfaces vibrations may be simulated. Because of complexstructureof thewingcausingdifficulties inestimatingvibrationsfre-quenciesandamplitudesandalackofairplanein-flightexperimentaldata,someofmentionedabovevalueswereevaluated.

During conducted simulations, originally airplane performs rectili-nearsteadyflightwithgivenconstantspeedinsmoothconfiguration.Theinitialturbopropenginesthrustinanalyzedtimewasdeterminedonthebaseofsteadyflightcondition.Staticpitchingmomentiscom-pensatedby thehorizontal control surfacedeflectiondependingontheflightspeed.Thesystemoftwelvenonlinearordinarydifferentialequationswasusedtoperformanalysis.

In the wing vibration simulation the model of M28“Bryza” Polish

medium utility airplane with strut-braced wing was used. Along thespan,thewinghasvaryingcross-sectionareas(differentmomentsofinertia),massaswellasvaryingaerodynamicloads.Someassumpti-onweremadeinordertosimplifythemodelofwingvibrations.Ben-dingmomentcauseswing„paraboliclike“deflection.Thewingoscilla-teswithgiven frequencyandamplitude. Ineach iteration,averticalcomponentzelofwingelementpositionandverticalvelocityVzareevaluated.Foreachwingelementthecoefficientsofdrag,lift,pitchingmomentaredetermined.

On thebasisof thenumerical simulation results, it ispossible tostatethatdisturbednumericalmodelofM28“Bryza”airplaneremainsstablebecausethemotionparametersreturntotheirsprimaryvalues:longitudinalstabilityvelocity,AOAandpitchanglereturntofixedvalues; lateralstability rollanglereturnsto “0” andyawangle isstabilizedatthecertainlevel.

Itcanbefoundthatthe“incounter-phase”wingvibrationshavecon-siderableinfluenceonflightparameters.Becauseofthelongitudinaland lateralmotionscoupling,arisingside-slipangleproducebiggerparametersvariations. Inbothcases,a littlealtitude loss isnoticed.During thewingvibrations, thereareoscillationsofallmotionpara-meters, resulting inunfavourableworkconditions formanyonboardsystems,forinstanceautopilotsystem.

THE INFLUENCE OF WING TRANSVERSE VIBRATIONS ON DYNAMIC PARAMETERS OF AN AIRCRAFT

g

g

Figure-Systemofcoordinates

PART OF THIS ACTIVITY HAS BEEN PERFORMED IN CLOSE COOPERATION WITH DLR.

Δf=f0/c(V)