Download - Mechanics of Biomaterials - University of Sydney

Transcript

The University of Sydney Slide 1

Mechanics of Biomaterials

Presented byAndrian SueAMME4981/9981Semester 1, 2016

Lecture 7

The University of Sydney Slide 2

Mechanics Models

The University of Sydney Slide 3

Last Week

– Using motion to find forces and moments in the body (inverse problems)

The University of Sydney Slide 4

This Week

– Using the forces and moments to determine the stresses

The University of Sydney Slide 5

Elastic Behaviour

Hooke’s Law (Uniaxial) 𝜎 = 𝐸ϡ– Strain is directly proportional to the stress (Young’s modulus)

Hooke’s Law (General) [𝜎] = [𝑆][πœ–]– Stress tensor [𝜎]– Strain tensor [πœ–]– Stiffness tensor [𝑆]

[πœ–] = [𝑆])*[𝜎] = [𝐢][𝜎]– Compliance tensor [𝐢] = [𝑆])*

The University of Sydney Slide 6

Stress Calculation

– Undeformed

– Cauchy Stress (True Stress) 𝑇 = -.

– Nominal Stress (Engineering Stress)

πœ– =Δ𝐿𝐿 =

𝑙 βˆ’ 𝐿𝐿 =

𝑙𝐿 βˆ’ 1 β†’ πœƒ =

𝑙𝐿 = 1 + πœ–

𝜎 =𝐹𝐴 =

πΏπ‘™π‘ŽπΏπ‘™π‘Ž

𝐹𝐴 =

π‘™π‘ŽπΏπ΄

πΏπ‘™πΉπ‘Ž =

𝑉def𝑉undef

πΏπ‘™πΉπ‘Ž =

π‘š/πœŒπ‘š/𝜌C

1𝑙/𝐿

πΉπ‘Ž =

𝜌C𝜌1πœƒ 𝑇

– Deformed

The University of Sydney Slide 7

Elastic Constants

Young’s Modulus, E– Relationship between tensile or compressive stress and strain– Only applies for small strains (within the elastic range)

*Assume linear, elastic, isotropic material

Biomaterial E (GPa)*Cancellous bone 0.49Cortical bone 14.7Long bone - Femur 17.2Long bone - Humerus 17.2Long bone - Radius 18.6Long bone - Tibia 18.1Vertebrae - Cervical 0.23Vertebrae - Lumbar 0.16

The University of Sydney Slide 8

Elastic Constants

Poisson’s Ratio, ν– Describes the lateral deformation in response to an axial load

𝜈 = βˆ’πœ–lateralπœ–axial

aFF

l Density ρ

L Ξ”L

r R

The University of Sydney Slide 9

Elastic Constants

Shear Modulus (or Lame’s second constant), G, μ– Describes the relationship between applied torque and angle of

deformation

𝐺 = πœ‡ =πœπ›Ύ =

ShearStressShearStrain

Bulk Modulus, K– Describes the resistance to uniform compression (hydrostatic pressure)

𝐾 = βˆ’Ξ”π‘ƒπ‘’ = βˆ’

Δ𝑃Δ𝑉/𝑉 β‰ˆ βˆ’π‘‰

πœ•π‘ƒπœ•π‘‰

Lame’s first constant, λ– Used to simplify the stiffness matrix in Hooke’s law

The University of Sydney Slide 10

Elastic Constants

– Young’s Modulus, E 𝐸 = X(Z[\]X)[\X = [(*\_)(*)]_)

_ = 2𝐺(1 + 𝜈)

– Poisson’s Ratio, Ξ½ 𝜈 = []([\X) =

[(Za)[) =

b]X βˆ’ 1

– Shear Modulus, G, ΞΌ 𝐺 = [(*)]_)]_ = b

](*\_)

– Bulk Modulus, K 𝐾 = bZ(*)]_)

– Lame’s Constant, Ξ» πœ† = ]X_*)]_ =

X(b)]X)ZX)b = b_

(*\_)(*)]_)

The University of Sydney Slide 11

Hooke’s Law: Tensor Representation

– Hooke’s Law: [πœ–] = [𝐢][𝜎] or [𝜎] = [𝑆][πœ–]

– Stress Tensor: [𝜎] =𝜎dd 𝜎de 𝜎df𝜎ed 𝜎ee 𝜎ef𝜎fd 𝜎fe 𝜎ff

or [𝜎] =𝜎** 𝜎*] 𝜎*Z𝜎]* 𝜎]] 𝜎]Z𝜎Z* 𝜎Z] 𝜎ZZ

– Strain Tensor: [πœ–] =πœ–dd πœ–de πœ–dfπœ–ed πœ–ee πœ–efπœ–fd πœ–fe πœ–ff

or [πœ–] =πœ–** πœ–*] πœ–*Zπœ–]* πœ–]] πœ–]Zπœ–Z* πœ–Z] πœ–ZZ

– In this form, [𝜎] and [πœ–] are 2nd order tensors– In this form, [𝐢] and [𝑆] are 4th order tensors– Too difficult to determine [𝐢] and [𝑆]

The University of Sydney Slide 12

Hooke’s Law: Matrix Representation

– Hooke’s Law: {πœ–} = [𝐢]{𝜎}

πœ– =

πœ–*πœ–]πœ–Zπœ–iπœ–jπœ–k

=

πœ–**πœ–]]πœ–ZZ2πœ–]Z2πœ–*Z2πœ–*]

[𝐢] =

𝐢** 𝐢*] 𝐢*Z𝐢]* 𝐢]] 𝐢]Z𝐢Z* 𝐢Z] 𝐢ZZ𝐢i* 𝐢i] 𝐢iZ𝐢j* 𝐢j] 𝐢jZ𝐢k* 𝐢k] 𝐢kZ

𝐢*i 𝐢*j 𝐢*k𝐢]i 𝐢]j 𝐢]k𝐢Zi 𝐢Zj 𝐢Zk𝐢ii 𝐢ij 𝐢ik𝐢ji 𝐢jj 𝐢jk𝐢kj 𝐢kj 𝐢kk

𝜎 =

𝜎*𝜎]𝜎Z𝜎i𝜎j𝜎k

=

𝜎**𝜎]]𝜎ZZ𝜎]Z𝜎*Z𝜎*]

– In this form, {𝜎} and {πœ–} are 1st order vectors– In this form, [𝐢] is a 2nd order tensor– Much easier to determine [𝐢]– This is called the Voigt notation – reduces the order of the symmetric tensor

The University of Sydney Slide 13

Constitutive Material Models

The University of Sydney Slide 14

Constitutive Material Models

[𝐢] =

𝐢** 𝐢*] 𝐢*Z𝐢]* 𝐢]] 𝐢]Z𝐢Z* 𝐢Z] 𝐢ZZ𝐢i* 𝐢i] 𝐢iZ𝐢j* 𝐢j] 𝐢jZ𝐢k* 𝐢k] 𝐢kZ

𝐢*i 𝐢*j 𝐢*k𝐢]i 𝐢]j 𝐢]k𝐢Zi 𝐢Zj 𝐢Zk𝐢ii 𝐢ij 𝐢ik𝐢ji 𝐢jj 𝐢jk𝐢kj 𝐢kj 𝐢kk

Constitutive Model Number of Independent Components in [C]

Anisotropy 21Orthotropy 9Transverse Isotropy 5Isotropy 2

The University of Sydney Slide 15

Anisotropy

– Most general form of Hooke’s law– 21 independent components– Example: wood

{πœ–} = [𝐢]{𝜎}

πœ–**πœ–]]πœ–ZZ2πœ–]Z2πœ–*Z2πœ–*]

=

𝐢** 𝐢*] 𝐢*Z𝐢]* 𝐢]] 𝐢]Z𝐢Z* 𝐢Z] 𝐢ZZ𝐢i* 𝐢i] 𝐢iZ𝐢j* 𝐢j] 𝐢jZ𝐢k* 𝐢k] 𝐢kZ

𝐢*i 𝐢*j 𝐢*k𝐢]i 𝐢]j 𝐢]k𝐢Zi 𝐢Zj 𝐢Zk𝐢ii 𝐢ij 𝐢ik𝐢ji 𝐢jj 𝐢jk𝐢ki 𝐢kj 𝐢kk

𝜎**𝜎]]𝜎ZZ𝜎]Z𝜎*Z𝜎*]

– Symmetric matrix: 𝐢*] = 𝐢]*,𝐢*Z = 𝐢Z*,𝑒𝑑𝑐.

The University of Sydney Slide 16

Orthotropy

– Material possesses symmetry about three orthogonal planes– 9 independent components

– 3 Young’s moduli: 𝐸*,𝐸],𝐸Z– 3 Poisson’s ratios: 𝜈*] = 𝜈]*,𝜈]Z = 𝜈Z], 𝜈Z* = 𝜈*Z– 3 shear moduli: 𝐺*],𝐺]Z, 𝐺Z*

– Example: cortical bone

πœ–**πœ–]]πœ–ZZ2πœ–]Z2πœ–*Z2πœ–*]

=

1𝐸*

βˆ’πœˆ*]𝐸*

βˆ’πœˆ*Z𝐸*

0 0 0

βˆ’πœˆ*]𝐸]

1𝐸]

βˆ’πœˆ]Z𝐸]

0 0 0

βˆ’πœˆ*Z𝐸Z

βˆ’πœˆ]Z𝐸Z

1𝐸Z

0 0 0

0 0 01𝐺]Z

0 0

0 0 0 01𝐺Z*

0

0 0 0 0 01𝐺*]

𝜎**𝜎]]𝜎ZZ𝜎]Z𝜎*Z𝜎*]

1

2

3

The University of Sydney Slide 17

Orthotropy

– Example: cortical bone

– Large variations in property values are not necessarily (although may possibly be) due to experimental error

Component ValuesE1 6.91–18.1 GPaE2 8.51–19.4 GPaE3 17.0–26.5 GPaG12 2.41–7.22 GPaG12 3.28–8.65 GPaG12 3.28–8.67 GPaΞ½ij 0.12–0.62

The University of Sydney Slide 18

Transverse Isotropy

– 5 independent components– Young’s moduli: 𝐸* = 𝐸], 𝐸Z– Poisson’s ratios: 𝜈*] = 𝜈]*, 𝜈]Z = 𝜈Z] = 𝜈Z* = 𝜈*Z– Shear modulus: 𝐺]Z = 𝐺Z*, 𝐺*] =

bq](*\_qr)

– Example: skin

πœ–**πœ–]]πœ–ZZ2πœ–]Z2πœ–*Z2πœ–*]

=

1𝐸*

βˆ’πœˆ*]𝐸*

βˆ’πœˆ*Z𝐸*

0 0 0

βˆ’πœˆ*]𝐸*

1𝐸*

βˆ’πœˆ*Z𝐸*

0 0 0

βˆ’πœˆ*Z𝐸Z

βˆ’πœˆ*Z𝐸Z

1𝐸Z

0 0 0

0 0 01𝐺Z*

0 0

0 0 0 01𝐺Z*

0

0 0 0 0 02(1 + 𝜈*])

𝐸*

𝜎**𝜎]]𝜎ZZ𝜎]Z𝜎*Z𝜎*]

1

23

The University of Sydney Slide 19

Isotropy

– 2 independent components

– Young’s modulus: 𝐸 = 𝐸* = 𝐸] = 𝐸Z– Poisson’s ratio: 𝜈 = 𝜈*] = 𝜈]Z = 𝜈Z*, 𝐺 = 𝐺]Z = 𝐺Z* = 𝐺*] =

b](*\_)

– Example: Ti-6Al-4V

πœ–**πœ–]]πœ–ZZ2πœ–]Z2πœ–*Z2πœ–*]

=

1𝐸 βˆ’

𝜈𝐸 βˆ’

𝜈𝐸 0 0 0

βˆ’πœˆπΈ

1𝐸 βˆ’

𝜈𝐸 0 0 0

βˆ’πœˆπΈ βˆ’

𝜈𝐸

1𝐸 0 0 0

0 0 02(1 + 𝜈)

𝐸 0 0

0 0 0 02(1 + 𝜈)

𝐸 0

0 0 0 0 02(1 + 𝜈)

𝐸

𝜎**𝜎]]𝜎ZZ𝜎]Z𝜎*Z𝜎*]

1

2

3

The University of Sydney Slide 20

Hooke’s Law (Isotropic): Stress-Strain Relationship

𝜎 = 𝑆 πœ– ⇔ 𝜎tu = πœ†π‘‘π‘Ÿ πœ– 𝛿tu + 2πœ‡πœ–tu

π‘‘π‘Ÿ πœ– = πœ–dd + πœ–ee + πœ–ff 𝛿tu = x1𝑖𝑓𝑖 = 𝑗0𝑖𝑓𝑖 β‰  𝑗

𝜎dd =b

*\_ *)]_[ 1 βˆ’ 𝜈 πœ–dd + 𝜈 πœ–ee + πœ–ff ]

𝜎ee =b

*\_ *)]_[ 1 βˆ’ 𝜈 πœ–ee + 𝜈 πœ–ff + πœ–dd ]

𝜎ff =b

*\_ *)]_[ 1 βˆ’ 𝜈 πœ–ff + 𝜈 πœ–dd + πœ–ee ]

𝜎de =b

*\_πœ–de

𝜎ef =b

*\_πœ–ef

𝜎fd =b

*\_πœ–fd

or

𝜎dd = πœ† πœ–dd + πœ–ee + πœ–ff + 2πΊπœ–dd𝜎ee = πœ† πœ–dd + πœ–ee + πœ–ff + 2πΊπœ–ee𝜎ff = πœ† πœ–dd + πœ–ee + πœ–ff + 2πΊπœ–ff

𝜎de = 2πΊπœ–de𝜎ef = 2πΊπœ–ef𝜎fd = 2πΊπœ–fd

The University of Sydney Slide 21

Hooke’s Law (Isotropic): Strain-Stress Relationship

πœ– = 𝐢 𝜎 ⇔ πœ–tu =1 + 𝜈𝐸

𝜎tu βˆ’πœˆπΈπ‘‘π‘Ÿ 𝜎 𝛿tu

π‘‘π‘Ÿ 𝜎 = 𝜎dd + 𝜎ee + 𝜎ff 𝛿tu = x1𝑖𝑓𝑖 = 𝑗0𝑖𝑓𝑖 β‰  𝑗

πœ–dd =*b[𝜎dd βˆ’ 𝜈 𝜎ee + 𝜎ff ]

πœ–ee =*b[𝜎ee βˆ’ 𝜈 𝜎ff + 𝜎dd ]

πœ–ff =*b[𝜎ff βˆ’ 𝜈 𝜎dd + 𝜎ee ]

πœ–de =*\_b

𝜎de

πœ–ef =*\_b

𝜎ef

πœ–fd =*\_b

𝜎fd

or

πœ–dd =*b[𝜎dd βˆ’ 𝜈 𝜎ee + 𝜎ff ]

πœ–ee =*b[𝜎ee βˆ’ 𝜈 𝜎ff + 𝜎dd ]

πœ–ff =*b[𝜎ff βˆ’ 𝜈 𝜎dd + 𝜎ee ]

πœ–de =*]X𝜎de

πœ–ef =*]X𝜎ef

πœ–fd =*]X𝜎fd

The University of Sydney Slide 22

Biomechanics

The University of Sydney Slide 23

Biomechanics Methods

There are three methods that can be used to determine the biomechanical responses to loads:

1. Analytical method (Mechanics of Solids 1 and 2)

2. Biomechanical experimentation (testing)

3. Numerical techniques (FEM)

The University of Sydney Slide 24

Analytical Method: General Case

πœ–}}πœ–~~πœ–ff2πœ–~f2πœ–f}2πœ–}~

=

1𝐸}

βˆ’πœˆ~}𝐸~

βˆ’πœˆf}𝐸f

0 0 0

βˆ’πœˆ}~𝐸}

1𝐸~

βˆ’πœˆf~𝐸f

0 0 0

βˆ’πœˆ}f𝐸}

βˆ’πœˆ~f𝐸~

1𝐸f

0 0 0

0 0 01𝐺~f

0 0

0 0 0 01𝐺f}

0

0 0 0 0 01𝐺}~

𝜎}}𝜎~~𝜎ff𝜎~f𝜎f}𝜎}~

z (3)

y (2) x (1)

ez

et

en

The University of Sydney Slide 25

𝜎ff = βˆ’-οΏ½οΏ½

πœ–}}πœ–~~πœ–ff2πœ–~f2πœ–f}2πœ–}~

=

1𝐸}

βˆ’πœˆ~}𝐸~

βˆ’πœˆf}𝐸f

0 0 0

βˆ’πœˆ}~𝐸}

1𝐸~

βˆ’πœˆf~𝐸f

0 0 0

βˆ’πœˆ}f𝐸}

βˆ’πœˆ~f𝐸~

1𝐸f

0 0 0

0 0 01𝐺~f

0 0

0 0 0 01𝐺f}

0

0 0 0 0 01𝐺}~

00𝜎ff000

=

βˆ’πœˆf}𝜎ff𝐸f

βˆ’πœˆf~𝜎ff𝐸f𝜎ff𝐸f000

z (3)

y (2) x (1)

ez

et

en

Fz Fz

Analytical Method: Pure Axial Load

The University of Sydney Slide 26

Analytical Method: Pure Bending

𝜎ff = ±���e���

𝜎ff = ±���d���

z (3)

y (2) x (1)

ez

et

en

Mxx

z (3)

y (2) x (1)

ez

et

en

Myy

The University of Sydney Slide 27

Analytical Method: Eccentric Axial Load

Using the principle of superposition

𝜎ff = βˆ’-οΏ½οΏ½ Β±

οΏ½οΏ½οΏ½eοΏ½οΏ½οΏ½

Β± οΏ½οΏ½οΏ½dοΏ½οΏ½οΏ½

= 𝐹f βˆ’*οΏ½ Β±

eοΏ½eοΏ½οΏ½οΏ½Β± dοΏ½d

οΏ½οΏ½οΏ½

𝜎 = βˆ’ -οΏ½

𝜎 = ±�e�

z (3)

y (2) x (1)

ez

et

enFz Fz ( )y~,x~

x

y

The University of Sydney Slide 28

Example: Analytical Method

Determine the maximum compressive stress on the bone, given F=200N, M=10Nm, the outer diameter of the bone is do=5cm, and the inner diameter of the bone is di=3cm.

Using the principle of superposition:

𝜎 = βˆ’οΏ½eοΏ½ βˆ’

-� [𝐼 = �

i (π‘ŸοΏ½i βˆ’ π‘Ÿti), 𝐴 = πœ‹ π‘ŸοΏ½] βˆ’ π‘Ÿt] ]

𝜎 = βˆ’ *CΓ—C.C]jοΏ½οΏ½Γ— C.C]jοΏ½)C.C*jοΏ½ βˆ’

]CCοΏ½Γ— C.C]jr)C.C*jr

𝜎 = βˆ’1.095π‘€π‘ƒπ‘Ž

F FMM

The University of Sydney Slide 29

Biomechanical Experimentation: Femoral Testing

Three-pointBending

Four-pointBending

FemoralNeck Test

The University of Sydney Slide 30

Numerical Techniques: Bovine Femur Modelling

Bovine Femur Sample CT Scanning ScanIP Modelling

Angela Shi, 2010 (Thesis)

The University of Sydney Slide 31

Experimentation & Numerical Techniques: Bovine Femur

Specimen from bovine femur sample

in-vitro experimental setup

ScanCAD model

Angela Shi, 2010 (Thesis)

The University of Sydney Slide 32

Experimentation & Numerical Techniques: Bovine Femur

XFEM fracture analysis

Angela Shi, 2010 (Thesis)

The University of Sydney Slide 33

Numerical Techniques: Inhomogeneity of Bone

HU

E

pCEHU ρρ =β†’βˆ

Material relationAngela Shi, 2010 (Thesis)

The University of Sydney Slide 34

Experimentation & Numerical Techniques: Femur Fracture

– In-vitro test of cadaver model – eXtend FEM (XFEM) in Abaqus

Angela Shi, 2010 (Thesis)

The University of Sydney Slide 35

Numerical Techniques: Dental Prostheses

– Whole Jaw Model

– Partial Jaw Model

CT Image Segmentation Sectional Curves CAD Model FE Model

PDLMolar

The University of Sydney Slide 36

Numerical Techniques: Dental Prostheses

– 3 unit, all ceramic dental bridge

Solid Model Von Mises Stress

The University of Sydney Slide 37

Summary

– Mechanics models– Elastic constants

– Constitutive material models– Number of independent components required to describe the material

model– Biomechanics

– Determining the biomechanical response to loads through analytical methods, biomechanical experimentation, and numerical techniques