Mechanics of Biomaterials - University of Sydney

37
The University of Sydney Slide 1 Mechanics of Biomaterials Presented by Andrian Sue AMME4981/9981 Semester 1, 2016 Lecture 7

Transcript of Mechanics of Biomaterials - University of Sydney

The University of Sydney Slide 1

Mechanics of Biomaterials

Presented byAndrian SueAMME4981/9981Semester 1, 2016

Lecture 7

The University of Sydney Slide 2

Mechanics Models

The University of Sydney Slide 3

Last Week

โ€“ Using motion to find forces and moments in the body (inverse problems)

The University of Sydney Slide 4

This Week

โ€“ Using the forces and moments to determine the stresses

The University of Sydney Slide 5

Elastic Behaviour

Hookeโ€™s Law (Uniaxial) ๐œŽ = ๐ธฯตโ€“ Strain is directly proportional to the stress (Youngโ€™s modulus)

Hookeโ€™s Law (General) [๐œŽ] = [๐‘†][๐œ–]โ€“ Stress tensor [๐œŽ]โ€“ Strain tensor [๐œ–]โ€“ Stiffness tensor [๐‘†]

[๐œ–] = [๐‘†])*[๐œŽ] = [๐ถ][๐œŽ]โ€“ Compliance tensor [๐ถ] = [๐‘†])*

The University of Sydney Slide 6

Stress Calculation

โ€“ Undeformed

โ€“ Cauchy Stress (True Stress) ๐‘‡ = -.

โ€“ Nominal Stress (Engineering Stress)

๐œ– =ฮ”๐ฟ๐ฟ =

๐‘™ โˆ’ ๐ฟ๐ฟ =

๐‘™๐ฟ โˆ’ 1 โ†’ ๐œƒ =

๐‘™๐ฟ = 1 + ๐œ–

๐œŽ =๐น๐ด =

๐ฟ๐‘™๐‘Ž๐ฟ๐‘™๐‘Ž

๐น๐ด =

๐‘™๐‘Ž๐ฟ๐ด

๐ฟ๐‘™๐น๐‘Ž =

๐‘‰def๐‘‰undef

๐ฟ๐‘™๐น๐‘Ž =

๐‘š/๐œŒ๐‘š/๐œŒC

1๐‘™/๐ฟ

๐น๐‘Ž =

๐œŒC๐œŒ1๐œƒ ๐‘‡

โ€“ Deformed

The University of Sydney Slide 7

Elastic Constants

Youngโ€™s Modulus, Eโ€“ Relationship between tensile or compressive stress and strainโ€“ Only applies for small strains (within the elastic range)

*Assume linear, elastic, isotropic material

Biomaterial E (GPa)*Cancellous bone 0.49Cortical bone 14.7Long bone - Femur 17.2Long bone - Humerus 17.2Long bone - Radius 18.6Long bone - Tibia 18.1Vertebrae - Cervical 0.23Vertebrae - Lumbar 0.16

The University of Sydney Slide 8

Elastic Constants

Poissonโ€™s Ratio, ฮฝโ€“ Describes the lateral deformation in response to an axial load

๐œˆ = โˆ’๐œ–lateral๐œ–axial

aFF

l Density ฯ

L ฮ”L

r R

The University of Sydney Slide 9

Elastic Constants

Shear Modulus (or Lameโ€™s second constant), G, ฮผโ€“ Describes the relationship between applied torque and angle of

deformation

๐บ = ๐œ‡ =๐œ๐›พ =

ShearStressShearStrain

Bulk Modulus, Kโ€“ Describes the resistance to uniform compression (hydrostatic pressure)

๐พ = โˆ’ฮ”๐‘ƒ๐‘’ = โˆ’

ฮ”๐‘ƒฮ”๐‘‰/๐‘‰ โ‰ˆ โˆ’๐‘‰

๐œ•๐‘ƒ๐œ•๐‘‰

Lameโ€™s first constant, ฮปโ€“ Used to simplify the stiffness matrix in Hookeโ€™s law

The University of Sydney Slide 10

Elastic Constants

โ€“ Youngโ€™s Modulus, E ๐ธ = X(Z[\]X)[\X = [(*\_)(*)]_)

_ = 2๐บ(1 + ๐œˆ)

โ€“ Poissonโ€™s Ratio, ฮฝ ๐œˆ = []([\X) =

[(Za)[) =

b]X โˆ’ 1

โ€“ Shear Modulus, G, ฮผ ๐บ = [(*)]_)]_ = b

](*\_)

โ€“ Bulk Modulus, K ๐พ = bZ(*)]_)

โ€“ Lameโ€™s Constant, ฮป ๐œ† = ]X_*)]_ =

X(b)]X)ZX)b = b_

(*\_)(*)]_)

The University of Sydney Slide 11

Hookeโ€™s Law: Tensor Representation

โ€“ Hookeโ€™s Law: [๐œ–] = [๐ถ][๐œŽ] or [๐œŽ] = [๐‘†][๐œ–]

โ€“ Stress Tensor: [๐œŽ] =๐œŽdd ๐œŽde ๐œŽdf๐œŽed ๐œŽee ๐œŽef๐œŽfd ๐œŽfe ๐œŽff

or [๐œŽ] =๐œŽ** ๐œŽ*] ๐œŽ*Z๐œŽ]* ๐œŽ]] ๐œŽ]Z๐œŽZ* ๐œŽZ] ๐œŽZZ

โ€“ Strain Tensor: [๐œ–] =๐œ–dd ๐œ–de ๐œ–df๐œ–ed ๐œ–ee ๐œ–ef๐œ–fd ๐œ–fe ๐œ–ff

or [๐œ–] =๐œ–** ๐œ–*] ๐œ–*Z๐œ–]* ๐œ–]] ๐œ–]Z๐œ–Z* ๐œ–Z] ๐œ–ZZ

โ€“ In this form, [๐œŽ] and [๐œ–] are 2nd order tensorsโ€“ In this form, [๐ถ] and [๐‘†] are 4th order tensorsโ€“ Too difficult to determine [๐ถ] and [๐‘†]

The University of Sydney Slide 12

Hookeโ€™s Law: Matrix Representation

โ€“ Hookeโ€™s Law: {๐œ–} = [๐ถ]{๐œŽ}

๐œ– =

๐œ–*๐œ–]๐œ–Z๐œ–i๐œ–j๐œ–k

=

๐œ–**๐œ–]]๐œ–ZZ2๐œ–]Z2๐œ–*Z2๐œ–*]

[๐ถ] =

๐ถ** ๐ถ*] ๐ถ*Z๐ถ]* ๐ถ]] ๐ถ]Z๐ถZ* ๐ถZ] ๐ถZZ๐ถi* ๐ถi] ๐ถiZ๐ถj* ๐ถj] ๐ถjZ๐ถk* ๐ถk] ๐ถkZ

๐ถ*i ๐ถ*j ๐ถ*k๐ถ]i ๐ถ]j ๐ถ]k๐ถZi ๐ถZj ๐ถZk๐ถii ๐ถij ๐ถik๐ถji ๐ถjj ๐ถjk๐ถkj ๐ถkj ๐ถkk

๐œŽ =

๐œŽ*๐œŽ]๐œŽZ๐œŽi๐œŽj๐œŽk

=

๐œŽ**๐œŽ]]๐œŽZZ๐œŽ]Z๐œŽ*Z๐œŽ*]

โ€“ In this form, {๐œŽ} and {๐œ–} are 1st order vectorsโ€“ In this form, [๐ถ] is a 2nd order tensorโ€“ Much easier to determine [๐ถ]โ€“ This is called the Voigt notation โ€“ reduces the order of the symmetric tensor

The University of Sydney Slide 13

Constitutive Material Models

The University of Sydney Slide 14

Constitutive Material Models

[๐ถ] =

๐ถ** ๐ถ*] ๐ถ*Z๐ถ]* ๐ถ]] ๐ถ]Z๐ถZ* ๐ถZ] ๐ถZZ๐ถi* ๐ถi] ๐ถiZ๐ถj* ๐ถj] ๐ถjZ๐ถk* ๐ถk] ๐ถkZ

๐ถ*i ๐ถ*j ๐ถ*k๐ถ]i ๐ถ]j ๐ถ]k๐ถZi ๐ถZj ๐ถZk๐ถii ๐ถij ๐ถik๐ถji ๐ถjj ๐ถjk๐ถkj ๐ถkj ๐ถkk

Constitutive Model Number of Independent Components in [C]

Anisotropy 21Orthotropy 9Transverse Isotropy 5Isotropy 2

The University of Sydney Slide 15

Anisotropy

โ€“ Most general form of Hookeโ€™s lawโ€“ 21 independent componentsโ€“ Example: wood

{๐œ–} = [๐ถ]{๐œŽ}

๐œ–**๐œ–]]๐œ–ZZ2๐œ–]Z2๐œ–*Z2๐œ–*]

=

๐ถ** ๐ถ*] ๐ถ*Z๐ถ]* ๐ถ]] ๐ถ]Z๐ถZ* ๐ถZ] ๐ถZZ๐ถi* ๐ถi] ๐ถiZ๐ถj* ๐ถj] ๐ถjZ๐ถk* ๐ถk] ๐ถkZ

๐ถ*i ๐ถ*j ๐ถ*k๐ถ]i ๐ถ]j ๐ถ]k๐ถZi ๐ถZj ๐ถZk๐ถii ๐ถij ๐ถik๐ถji ๐ถjj ๐ถjk๐ถki ๐ถkj ๐ถkk

๐œŽ**๐œŽ]]๐œŽZZ๐œŽ]Z๐œŽ*Z๐œŽ*]

โ€“ Symmetric matrix: ๐ถ*] = ๐ถ]*,๐ถ*Z = ๐ถZ*,๐‘’๐‘ก๐‘.

The University of Sydney Slide 16

Orthotropy

โ€“ Material possesses symmetry about three orthogonal planesโ€“ 9 independent components

โ€“ 3 Youngโ€™s moduli: ๐ธ*,๐ธ],๐ธZโ€“ 3 Poissonโ€™s ratios: ๐œˆ*] = ๐œˆ]*,๐œˆ]Z = ๐œˆZ], ๐œˆZ* = ๐œˆ*Zโ€“ 3 shear moduli: ๐บ*],๐บ]Z, ๐บZ*

โ€“ Example: cortical bone

๐œ–**๐œ–]]๐œ–ZZ2๐œ–]Z2๐œ–*Z2๐œ–*]

=

1๐ธ*

โˆ’๐œˆ*]๐ธ*

โˆ’๐œˆ*Z๐ธ*

0 0 0

โˆ’๐œˆ*]๐ธ]

1๐ธ]

โˆ’๐œˆ]Z๐ธ]

0 0 0

โˆ’๐œˆ*Z๐ธZ

โˆ’๐œˆ]Z๐ธZ

1๐ธZ

0 0 0

0 0 01๐บ]Z

0 0

0 0 0 01๐บZ*

0

0 0 0 0 01๐บ*]

๐œŽ**๐œŽ]]๐œŽZZ๐œŽ]Z๐œŽ*Z๐œŽ*]

1

2

3

The University of Sydney Slide 17

Orthotropy

โ€“ Example: cortical bone

โ€“ Large variations in property values are not necessarily (although may possibly be) due to experimental error

Component ValuesE1 6.91โ€“18.1 GPaE2 8.51โ€“19.4 GPaE3 17.0โ€“26.5 GPaG12 2.41โ€“7.22 GPaG12 3.28โ€“8.65 GPaG12 3.28โ€“8.67 GPaฮฝij 0.12โ€“0.62

The University of Sydney Slide 18

Transverse Isotropy

โ€“ 5 independent componentsโ€“ Youngโ€™s moduli: ๐ธ* = ๐ธ], ๐ธZโ€“ Poissonโ€™s ratios: ๐œˆ*] = ๐œˆ]*, ๐œˆ]Z = ๐œˆZ] = ๐œˆZ* = ๐œˆ*Zโ€“ Shear modulus: ๐บ]Z = ๐บZ*, ๐บ*] =

bq](*\_qr)

โ€“ Example: skin

๐œ–**๐œ–]]๐œ–ZZ2๐œ–]Z2๐œ–*Z2๐œ–*]

=

1๐ธ*

โˆ’๐œˆ*]๐ธ*

โˆ’๐œˆ*Z๐ธ*

0 0 0

โˆ’๐œˆ*]๐ธ*

1๐ธ*

โˆ’๐œˆ*Z๐ธ*

0 0 0

โˆ’๐œˆ*Z๐ธZ

โˆ’๐œˆ*Z๐ธZ

1๐ธZ

0 0 0

0 0 01๐บZ*

0 0

0 0 0 01๐บZ*

0

0 0 0 0 02(1 + ๐œˆ*])

๐ธ*

๐œŽ**๐œŽ]]๐œŽZZ๐œŽ]Z๐œŽ*Z๐œŽ*]

1

23

The University of Sydney Slide 19

Isotropy

โ€“ 2 independent components

โ€“ Youngโ€™s modulus: ๐ธ = ๐ธ* = ๐ธ] = ๐ธZโ€“ Poissonโ€™s ratio: ๐œˆ = ๐œˆ*] = ๐œˆ]Z = ๐œˆZ*, ๐บ = ๐บ]Z = ๐บZ* = ๐บ*] =

b](*\_)

โ€“ Example: Ti-6Al-4V

๐œ–**๐œ–]]๐œ–ZZ2๐œ–]Z2๐œ–*Z2๐œ–*]

=

1๐ธ โˆ’

๐œˆ๐ธ โˆ’

๐œˆ๐ธ 0 0 0

โˆ’๐œˆ๐ธ

1๐ธ โˆ’

๐œˆ๐ธ 0 0 0

โˆ’๐œˆ๐ธ โˆ’

๐œˆ๐ธ

1๐ธ 0 0 0

0 0 02(1 + ๐œˆ)

๐ธ 0 0

0 0 0 02(1 + ๐œˆ)

๐ธ 0

0 0 0 0 02(1 + ๐œˆ)

๐ธ

๐œŽ**๐œŽ]]๐œŽZZ๐œŽ]Z๐œŽ*Z๐œŽ*]

1

2

3

The University of Sydney Slide 20

Hookeโ€™s Law (Isotropic): Stress-Strain Relationship

๐œŽ = ๐‘† ๐œ– โ‡” ๐œŽtu = ๐œ†๐‘ก๐‘Ÿ ๐œ– ๐›ฟtu + 2๐œ‡๐œ–tu

๐‘ก๐‘Ÿ ๐œ– = ๐œ–dd + ๐œ–ee + ๐œ–ff ๐›ฟtu = x1๐‘–๐‘“๐‘– = ๐‘—0๐‘–๐‘“๐‘– โ‰  ๐‘—

๐œŽdd =b

*\_ *)]_[ 1 โˆ’ ๐œˆ ๐œ–dd + ๐œˆ ๐œ–ee + ๐œ–ff ]

๐œŽee =b

*\_ *)]_[ 1 โˆ’ ๐œˆ ๐œ–ee + ๐œˆ ๐œ–ff + ๐œ–dd ]

๐œŽff =b

*\_ *)]_[ 1 โˆ’ ๐œˆ ๐œ–ff + ๐œˆ ๐œ–dd + ๐œ–ee ]

๐œŽde =b

*\_๐œ–de

๐œŽef =b

*\_๐œ–ef

๐œŽfd =b

*\_๐œ–fd

or

๐œŽdd = ๐œ† ๐œ–dd + ๐œ–ee + ๐œ–ff + 2๐บ๐œ–dd๐œŽee = ๐œ† ๐œ–dd + ๐œ–ee + ๐œ–ff + 2๐บ๐œ–ee๐œŽff = ๐œ† ๐œ–dd + ๐œ–ee + ๐œ–ff + 2๐บ๐œ–ff

๐œŽde = 2๐บ๐œ–de๐œŽef = 2๐บ๐œ–ef๐œŽfd = 2๐บ๐œ–fd

The University of Sydney Slide 21

Hookeโ€™s Law (Isotropic): Strain-Stress Relationship

๐œ– = ๐ถ ๐œŽ โ‡” ๐œ–tu =1 + ๐œˆ๐ธ

๐œŽtu โˆ’๐œˆ๐ธ๐‘ก๐‘Ÿ ๐œŽ ๐›ฟtu

๐‘ก๐‘Ÿ ๐œŽ = ๐œŽdd + ๐œŽee + ๐œŽff ๐›ฟtu = x1๐‘–๐‘“๐‘– = ๐‘—0๐‘–๐‘“๐‘– โ‰  ๐‘—

๐œ–dd =*b[๐œŽdd โˆ’ ๐œˆ ๐œŽee + ๐œŽff ]

๐œ–ee =*b[๐œŽee โˆ’ ๐œˆ ๐œŽff + ๐œŽdd ]

๐œ–ff =*b[๐œŽff โˆ’ ๐œˆ ๐œŽdd + ๐œŽee ]

๐œ–de =*\_b

๐œŽde

๐œ–ef =*\_b

๐œŽef

๐œ–fd =*\_b

๐œŽfd

or

๐œ–dd =*b[๐œŽdd โˆ’ ๐œˆ ๐œŽee + ๐œŽff ]

๐œ–ee =*b[๐œŽee โˆ’ ๐œˆ ๐œŽff + ๐œŽdd ]

๐œ–ff =*b[๐œŽff โˆ’ ๐œˆ ๐œŽdd + ๐œŽee ]

๐œ–de =*]X๐œŽde

๐œ–ef =*]X๐œŽef

๐œ–fd =*]X๐œŽfd

The University of Sydney Slide 22

Biomechanics

The University of Sydney Slide 23

Biomechanics Methods

There are three methods that can be used to determine the biomechanical responses to loads:

1. Analytical method (Mechanics of Solids 1 and 2)

2. Biomechanical experimentation (testing)

3. Numerical techniques (FEM)

The University of Sydney Slide 24

Analytical Method: General Case

๐œ–}}๐œ–~~๐œ–ff2๐œ–~f2๐œ–f}2๐œ–}~

=

1๐ธ}

โˆ’๐œˆ~}๐ธ~

โˆ’๐œˆf}๐ธf

0 0 0

โˆ’๐œˆ}~๐ธ}

1๐ธ~

โˆ’๐œˆf~๐ธf

0 0 0

โˆ’๐œˆ}f๐ธ}

โˆ’๐œˆ~f๐ธ~

1๐ธf

0 0 0

0 0 01๐บ~f

0 0

0 0 0 01๐บf}

0

0 0 0 0 01๐บ}~

๐œŽ}}๐œŽ~~๐œŽff๐œŽ~f๐œŽf}๐œŽ}~

z (3)

y (2) x (1)

ez

et

en

The University of Sydney Slide 25

๐œŽff = โˆ’-๏ฟฝ๏ฟฝ

๐œ–}}๐œ–~~๐œ–ff2๐œ–~f2๐œ–f}2๐œ–}~

=

1๐ธ}

โˆ’๐œˆ~}๐ธ~

โˆ’๐œˆf}๐ธf

0 0 0

โˆ’๐œˆ}~๐ธ}

1๐ธ~

โˆ’๐œˆf~๐ธf

0 0 0

โˆ’๐œˆ}f๐ธ}

โˆ’๐œˆ~f๐ธ~

1๐ธf

0 0 0

0 0 01๐บ~f

0 0

0 0 0 01๐บf}

0

0 0 0 0 01๐บ}~

00๐œŽff000

=

โˆ’๐œˆf}๐œŽff๐ธf

โˆ’๐œˆf~๐œŽff๐ธf๐œŽff๐ธf000

z (3)

y (2) x (1)

ez

et

en

Fz Fz

Analytical Method: Pure Axial Load

The University of Sydney Slide 26

Analytical Method: Pure Bending

๐œŽff = ยฑ๏ฟฝ๏ฟฝ๏ฟฝe๏ฟฝ๏ฟฝ๏ฟฝ

๐œŽff = ยฑ๏ฟฝ๏ฟฝ๏ฟฝd๏ฟฝ๏ฟฝ๏ฟฝ

z (3)

y (2) x (1)

ez

et

en

Mxx

z (3)

y (2) x (1)

ez

et

en

Myy

The University of Sydney Slide 27

Analytical Method: Eccentric Axial Load

Using the principle of superposition

๐œŽff = โˆ’-๏ฟฝ๏ฟฝ ยฑ

๏ฟฝ๏ฟฝ๏ฟฝe๏ฟฝ๏ฟฝ๏ฟฝ

ยฑ ๏ฟฝ๏ฟฝ๏ฟฝd๏ฟฝ๏ฟฝ๏ฟฝ

= ๐นf โˆ’*๏ฟฝ ยฑ

e๏ฟฝe๏ฟฝ๏ฟฝ๏ฟฝยฑ d๏ฟฝd

๏ฟฝ๏ฟฝ๏ฟฝ

๐œŽ = โˆ’ -๏ฟฝ

๐œŽ = ยฑ๏ฟฝe๏ฟฝ

z (3)

y (2) x (1)

ez

et

enFz Fz ( )y~,x~

x

y

The University of Sydney Slide 28

Example: Analytical Method

Determine the maximum compressive stress on the bone, given F=200N, M=10Nm, the outer diameter of the bone is do=5cm, and the inner diameter of the bone is di=3cm.

Using the principle of superposition:

๐œŽ = โˆ’๏ฟฝe๏ฟฝ โˆ’

-๏ฟฝ [๐ผ = ๏ฟฝ

i (๐‘Ÿ๏ฟฝi โˆ’ ๐‘Ÿti), ๐ด = ๐œ‹ ๐‘Ÿ๏ฟฝ] โˆ’ ๐‘Ÿt] ]

๐œŽ = โˆ’ *Cร—C.C]j๏ฟฝ๏ฟฝร— C.C]j๏ฟฝ)C.C*j๏ฟฝ โˆ’

]CC๏ฟฝร— C.C]jr)C.C*jr

๐œŽ = โˆ’1.095๐‘€๐‘ƒ๐‘Ž

F FMM

The University of Sydney Slide 29

Biomechanical Experimentation: Femoral Testing

Three-pointBending

Four-pointBending

FemoralNeck Test

The University of Sydney Slide 30

Numerical Techniques: Bovine Femur Modelling

Bovine Femur Sample CT Scanning ScanIP Modelling

Angela Shi, 2010 (Thesis)

The University of Sydney Slide 31

Experimentation & Numerical Techniques: Bovine Femur

Specimen from bovine femur sample

in-vitro experimental setup

ScanCAD model

Angela Shi, 2010 (Thesis)

The University of Sydney Slide 32

Experimentation & Numerical Techniques: Bovine Femur

XFEM fracture analysis

Angela Shi, 2010 (Thesis)

The University of Sydney Slide 33

Numerical Techniques: Inhomogeneity of Bone

HU

E

pCEHU ฯฯ =โ†’โˆ

Material relationAngela Shi, 2010 (Thesis)

The University of Sydney Slide 34

Experimentation & Numerical Techniques: Femur Fracture

โ€“ In-vitro test of cadaver model โ€“ eXtend FEM (XFEM) in Abaqus

Angela Shi, 2010 (Thesis)

The University of Sydney Slide 35

Numerical Techniques: Dental Prostheses

โ€“ Whole Jaw Model

โ€“ Partial Jaw Model

CT Image Segmentation Sectional Curves CAD Model FE Model

PDLMolar

The University of Sydney Slide 36

Numerical Techniques: Dental Prostheses

โ€“ 3 unit, all ceramic dental bridge

Solid Model Von Mises Stress

The University of Sydney Slide 37

Summary

โ€“ Mechanics modelsโ€“ Elastic constants

โ€“ Constitutive material modelsโ€“ Number of independent components required to describe the material

modelโ€“ Biomechanics

โ€“ Determining the biomechanical response to loads through analytical methods, biomechanical experimentation, and numerical techniques