Download - LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Transcript
Page 1: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

LIMITS

Name: _________________________________________________________

Mrs. Upham

2019-2020

Page 2: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Lesson 1: Finding Limits Graphically and Numerically

When finding limits, you are finding the y-value for what the function is

approaching. This can be done in three ways:

1. Make a table

2. Draw a graph

3. Use algebra

Limits can fail to exist in three situations:

1. The left-limit is

different than

the right-side

limit.

𝑦 = |π‘₯|

π‘₯

2. Unbounded

Behavior

𝑦 = 1

π‘₯2

3. Oscillating

Behavior

𝑦 = 𝑠𝑖𝑛 (1

π‘₯)

Verbally: If f(x) becomes arbitrarily close to a single number L as x approaches c

from either side, then the limit of f(x) as x approaches c is L.

Graphically: Analytically:

Numerically: From the table, limπ‘₯β†’βˆ’5

𝑓(π‘₯) = 3.4

x -5.01 -5.001 -5 -4.999 -4.99

f(x) 3.396 3.399 3.4 3.398 3.395

Page 3: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

1. Use the graph of f(x) to the right to find

limπ‘₯β†’βˆ’3

2π‘₯2 + 7π‘₯+3

π‘₯+3

2. Use the table below to find limπ‘₯β†’2

𝑔(π‘₯)

x 1.99 1.999 2 2.001 2.01

f(x) 6.99 6.998 ERROR 7.001 7.01

3. Using the graph of H(x), which statement is not true?

a. limπ‘₯β†’π‘Žβˆ’

𝐻(π‘₯) = limπ‘₯β†’π‘Ž+

𝐻(π‘₯)

b. limπ‘₯→𝑐

𝐻(π‘₯) = 4

c. limπ‘₯→𝑏

𝐻(π‘₯) does not exist

d. limπ‘₯→𝑐+

𝐻(π‘₯) = 2

Page 4: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Lesson 2: Finding Limits Analytically

Properties of Limits

Some Basic Limits

Let b and c be real numbers and let n be a positive integer.

limπ‘₯→𝑐

𝑓(π‘₯) = 𝑓(𝑐)

limπ‘₯→𝑐

π‘₯ = 𝑐 limπ‘₯→𝑐

π‘₯𝑛 = 𝑐𝑛

Methods to Analyze Limits

1. Direct substitution

2. Factor, cancellation technique

3. The conjugate method, rationalize the numerator

4. Use special trig limits of limπ‘₯β†’0

sin π‘₯

π‘₯= 1 or lim

π‘₯β†’0

1βˆ’cos π‘₯

π‘₯= 0

Direct Substitution

1. limπ‘₯β†’2

(3π‘₯ βˆ’ 5)

2. limπ‘₯β†’4

√π‘₯ + 43

Page 5: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

3. limπ‘₯β†’1

sinπœ‹π‘₯

2

4. limπ‘₯β†’7

π‘₯

5. If limπ‘₯→𝑐

𝑓(π‘₯) = 7 then limπ‘₯→𝑐

5𝑓(π‘₯)

6. limπ‘₯→𝑐

βˆšπ‘“(π‘₯)

7. limπ‘₯→𝑐

[𝑓(π‘₯)]2

8. Given: limπ‘₯→𝑐

𝑓(π‘₯) = 7 and limπ‘₯→𝑐

𝑔(π‘₯) = 4, find:

a. limπ‘₯→𝑐

[𝑓(π‘₯) + 𝑔(π‘₯)]

b. limπ‘₯→𝑐

𝑓(𝑔(π‘₯))

c. limπ‘₯→𝑐

𝑔(𝑓(π‘₯))

Page 6: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Limits of Polynomial and Rational Functions:

9. limπ‘₯β†’0

π‘₯3+1

π‘₯+1

10. limπ‘₯β†’2

π‘₯3+1

π‘₯+1

11. limπ‘₯β†’βˆ’1

π‘₯3+1

π‘₯+1

Limits of Functions Involving a Radical

12. limπ‘₯β†’3

√π‘₯+1βˆ’2

π‘₯βˆ’3

Dividing out Technique

13. limβˆ†π‘₯β†’

2(π‘₯+ βˆ†π‘₯)βˆ’2π‘₯

βˆ†π‘₯

14. Given f(x) = 3x + 2

Find limβ„Žβ†’0

𝑓(π‘₯+β„Ž)βˆ’π‘“(π‘₯)

β„Ž

Page 7: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

15. limπ‘₯→𝑐

sin π‘₯

16. limπ‘₯→𝑐

cos π‘₯

17. limπ‘₯β†’

πœ‹

2

sin π‘₯

18. limπ‘₯β†’πœ‹

π‘₯ cos π‘₯

19. limπ‘₯β†’0

tan π‘₯

π‘₯

20. limπ‘₯β†’0

sin 3π‘₯

π‘₯

The Squeeze Theorem

If h(x) < f(x) < g(x) for all x in an open interval containing c, except possibly at c

itself, and if limπ‘₯→𝑐

β„Ž(π‘₯) = 𝐿 = limπ‘₯→𝑐

𝑔(π‘₯) then limπ‘₯→𝑐

𝑓(π‘₯) exists and is equal to L.

4 – |π‘₯| < f(x) < 4 + |π‘₯|

Special Trigonometric Limits:

limπ‘₯β†’0

sin π‘₯

π‘₯= 1 lim

π‘₯β†’0

1βˆ’cos π‘₯

π‘₯= 0

Page 8: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Lesson 3: Continuity and One-Sided Limits

Definition of Continuity

Continuity at a point:

A function f is continuous at c if the following three conditions are met:

1. f(c) is defined

2. limπ‘₯→𝑐

𝑓(π‘₯) exists

3. limπ‘₯→𝑐

𝑓(π‘₯) = 𝑓(𝑐)

Properties of continuity:

Given functions f and g are continuous at x = c, then the following functions are

also continuous at x = c.

1. Scalar multiple: 𝑏 Β° 𝑓

2. Sum or difference: fΒ± g

3. Product: f β€’ g

4. Quotient: 𝑓

𝑔 , if g(c) β‰  0

5. Compositions: If g is continuous at c and f is continuous at gΒ©, then the

composite function is continuous at c, (𝑓 Β° 𝑔)(π‘₯) = 𝑓(𝑔(π‘₯))

The existence of a Limit:

The existence of f(x) as x approaches c is L if and only if limπ‘₯β†’π‘βˆ’

𝑓(π‘₯) = 𝐿 and

limπ‘₯→𝑐+

𝑓(π‘₯) = 𝐿

Definition of Continuity on a Closed Interval:

A function f is continuous on the closed interval [a, b] if it is continuous on the

open interval (a, b) and limπ‘₯β†’π‘Ž+

𝑓(π‘₯) = 𝑓(π‘Ž) and limπ‘₯β†’π‘βˆ’

𝑓(π‘₯) = 𝑓(𝑏)

Page 9: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim
Page 10: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Example 3: Given β„Ž(π‘₯) = {βˆ’2π‘₯ βˆ’ 5 ; π‘₯ < βˆ’2

3 ; π‘₯ = βˆ’2

π‘₯3 βˆ’ 6π‘₯ + 3 ; π‘₯ > βˆ’2 for what values of x is h not

continuous? Justify.

Example 4: If the function f is continuous and if f(x) = π‘₯2βˆ’4

π‘₯+2 when x β‰  -2, then

f(-2) = ?

Example 5: Which of the following functions are continuous for all real numbers x?

a. y = π‘₯2

3

b. y = ex

c. y = tan x

A) None B) I only C) II only D) I and III

Example 6: For what value(s) of the constant c is the function g continuous over all

the Reals? 𝑔(π‘₯) = {𝑐π‘₯ + 1 ; 𝑖𝑓 π‘₯ ≀ 3

𝑐π‘₯2 βˆ’ 1 ; 𝑖𝑓 π‘₯ > 3

Page 11: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Lesson 4: The Intermediate Value Theorem

The Intermediate Value Theorem (IVT) is an existence theorem which says that a

continuous function on an interval cannot skip values. The IVT states that if these

three conditions hold, then there is at least one number c in [a, b] so that f(c) = k.

1. f is continuous on the closed interval [a, b]

2. f(a) β‰  f(b)

3. k is any number between f(a) and f(b)

Example 1: Use the Intermediate Value Theorem to show that f(x) = π‘₯3 + 2x – 1 has

a zero in the interval [0, 1].

Page 12: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Example 2: Apply the IVT, if possible, on [0, 5] so that f(c) = 1 for the function

f(x) = π‘₯2 + π‘₯ βˆ’ 1

Example 3: A car travels on a straight track. During the time interval 0 < t < 60

seconds, the car’s velocity v, measured in feet per second is a continuous function.

The table below shows selected values of the function.

t, in seconds 0 15 25 30 35 50 60

v(t) in ft/sec -20 -30 -20 -14 -10 0 10

A. For 0 < t < 60, must there be a time t when v(t) = -5?

B. Justify your answer.

Example 4: Find the value of c guaranteed by the Intermediate Value Theorem.

f(x) = x2 + 4x – 13 [0, 4] such that f(c) = 8

Page 13: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Lesson 5: Infinite Limits

Definition of Vertical Asymptotes:

A vertical line x = a is a vertical asymptote if limπ‘₯β†’π‘Ž+

𝑓(π‘₯) = ±∞ and/or

limπ‘₯β†’π‘Žβˆ’

𝑓(π‘₯) = ±∞ β„Ž(π‘₯) = 𝑓(π‘₯)

𝑔(π‘₯) has a vertical asymptote at x = c.

Properties of Infinite Limits:

Let c and L be real numbers and let f and g be functions such that limπ‘₯→𝑐

𝑓(π‘₯) = ∞ and

limπ‘₯→𝑐

𝑔(π‘₯) = 𝐿

1. Sums or Difference: limπ‘₯→𝑐

[𝑓(π‘₯) Β± 𝑔(π‘₯)] = ∞

2. Product: limπ‘₯→𝑐

[𝑓(π‘₯)𝑔(π‘₯)] = ∞ , 𝐿 > 0

limπ‘₯→𝑐

[𝑓(π‘₯)𝑔(π‘₯)] = βˆ’βˆž , 𝐿 < 0

3. Quotient: limπ‘₯→𝑐

𝑐𝑔(π‘₯)

𝑓(π‘₯)= 0

Example 1: Evaluate by completing the table for limπ‘₯β†’βˆ’3

1

π‘₯2βˆ’9

x -3.5 -3.1 -3.01 -3.001 -3 -2.999 -2.99 -2.9 -2.5

f(x)

Page 14: LIMITS - Mrs. UphamΒ Β· 2020. 5. 28.Β Β· Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim π‘₯β†’ ( )= ( ) lim π‘₯β†’ = lim

Example 2: Evaluate limπ‘₯β†’1

1

(π‘₯βˆ’1)2

Example 3: Evaluate limπ‘₯β†’1+

π‘₯+1

π‘₯βˆ’1

Example 4: Evaluate limπ‘₯β†’1+

π‘₯2βˆ’3π‘₯

π‘₯βˆ’1

Example 5: Evaluate limπ‘₯β†’1+

π‘₯2

(π‘₯βˆ’1)2

Example 6: Evaluate limπ‘₯β†’0βˆ’

(π‘₯2 βˆ’ 1

π‘₯)

Example 7: Evaluate limπ‘₯β†’(

βˆ’1

2)

+

6π‘₯2+π‘₯βˆ’1

4π‘₯2βˆ’4π‘₯βˆ’3

Example 8: Find any vertical asymptotes or removable discontinuities 𝑓(π‘₯) = π‘₯βˆ’2

π‘₯2βˆ’π‘₯βˆ’2

Example 9: Determine whether the graph of the function has a vertical asymptote

or a removable discontinuity at x = 1. Graph the function to confirm

𝑓(π‘₯) = sin(π‘₯ + 1)

π‘₯ + 1


Top Related