LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real...

14
LIMITS Name: _________________________________________________________ Mrs. Upham 2019-2020

Transcript of LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real...

Page 1: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

LIMITS

Name: _________________________________________________________

Mrs. Upham

2019-2020

Page 2: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

Lesson 1: Finding Limits Graphically and Numerically

When finding limits, you are finding the y-value for what the function is

approaching. This can be done in three ways:

1. Make a table

2. Draw a graph

3. Use algebra

Limits can fail to exist in three situations:

1. The left-limit is

different than

the right-side

limit.

๐‘ฆ = |๐‘ฅ|

๐‘ฅ

2. Unbounded

Behavior

๐‘ฆ = 1

๐‘ฅ2

3. Oscillating

Behavior

๐‘ฆ = ๐‘ ๐‘–๐‘› (1

๐‘ฅ)

Verbally: If f(x) becomes arbitrarily close to a single number L as x approaches c

from either side, then the limit of f(x) as x approaches c is L.

Graphically: Analytically:

Numerically: From the table, lim๐‘ฅโ†’โˆ’5

๐‘“(๐‘ฅ) = 3.4

x -5.01 -5.001 -5 -4.999 -4.99

f(x) 3.396 3.399 3.4 3.398 3.395

Page 3: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

1. Use the graph of f(x) to the right to find

lim๐‘ฅโ†’โˆ’3

2๐‘ฅ2 + 7๐‘ฅ+3

๐‘ฅ+3

2. Use the table below to find lim๐‘ฅโ†’2

๐‘”(๐‘ฅ)

x 1.99 1.999 2 2.001 2.01

f(x) 6.99 6.998 ERROR 7.001 7.01

3. Using the graph of H(x), which statement is not true?

a. lim๐‘ฅโ†’๐‘Žโˆ’

๐ป(๐‘ฅ) = lim๐‘ฅโ†’๐‘Ž+

๐ป(๐‘ฅ)

b. lim๐‘ฅโ†’๐‘

๐ป(๐‘ฅ) = 4

c. lim๐‘ฅโ†’๐‘

๐ป(๐‘ฅ) does not exist

d. lim๐‘ฅโ†’๐‘+

๐ป(๐‘ฅ) = 2

Page 4: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

Lesson 2: Finding Limits Analytically

Properties of Limits

Some Basic Limits

Let b and c be real numbers and let n be a positive integer.

lim๐‘ฅโ†’๐‘

๐‘“(๐‘ฅ) = ๐‘“(๐‘)

lim๐‘ฅโ†’๐‘

๐‘ฅ = ๐‘ lim๐‘ฅโ†’๐‘

๐‘ฅ๐‘› = ๐‘๐‘›

Methods to Analyze Limits

1. Direct substitution

2. Factor, cancellation technique

3. The conjugate method, rationalize the numerator

4. Use special trig limits of lim๐‘ฅโ†’0

sin ๐‘ฅ

๐‘ฅ= 1 or lim

๐‘ฅโ†’0

1โˆ’cos ๐‘ฅ

๐‘ฅ= 0

Direct Substitution

1. lim๐‘ฅโ†’2

(3๐‘ฅ โˆ’ 5)

2. lim๐‘ฅโ†’4

โˆš๐‘ฅ + 43

Page 5: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

3. lim๐‘ฅโ†’1

sin๐œ‹๐‘ฅ

2

4. lim๐‘ฅโ†’7

๐‘ฅ

5. If lim๐‘ฅโ†’๐‘

๐‘“(๐‘ฅ) = 7 then lim๐‘ฅโ†’๐‘

5๐‘“(๐‘ฅ)

6. lim๐‘ฅโ†’๐‘

โˆš๐‘“(๐‘ฅ)

7. lim๐‘ฅโ†’๐‘

[๐‘“(๐‘ฅ)]2

8. Given: lim๐‘ฅโ†’๐‘

๐‘“(๐‘ฅ) = 7 and lim๐‘ฅโ†’๐‘

๐‘”(๐‘ฅ) = 4, find:

a. lim๐‘ฅโ†’๐‘

[๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ)]

b. lim๐‘ฅโ†’๐‘

๐‘“(๐‘”(๐‘ฅ))

c. lim๐‘ฅโ†’๐‘

๐‘”(๐‘“(๐‘ฅ))

Page 6: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

Limits of Polynomial and Rational Functions:

9. lim๐‘ฅโ†’0

๐‘ฅ3+1

๐‘ฅ+1

10. lim๐‘ฅโ†’2

๐‘ฅ3+1

๐‘ฅ+1

11. lim๐‘ฅโ†’โˆ’1

๐‘ฅ3+1

๐‘ฅ+1

Limits of Functions Involving a Radical

12. lim๐‘ฅโ†’3

โˆš๐‘ฅ+1โˆ’2

๐‘ฅโˆ’3

Dividing out Technique

13. limโˆ†๐‘ฅโ†’

2(๐‘ฅ+ โˆ†๐‘ฅ)โˆ’2๐‘ฅ

โˆ†๐‘ฅ

14. Given f(x) = 3x + 2

Find limโ„Žโ†’0

๐‘“(๐‘ฅ+โ„Ž)โˆ’๐‘“(๐‘ฅ)

โ„Ž

Page 7: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

15. lim๐‘ฅโ†’๐‘

sin ๐‘ฅ

16. lim๐‘ฅโ†’๐‘

cos ๐‘ฅ

17. lim๐‘ฅโ†’

๐œ‹

2

sin ๐‘ฅ

18. lim๐‘ฅโ†’๐œ‹

๐‘ฅ cos ๐‘ฅ

19. lim๐‘ฅโ†’0

tan ๐‘ฅ

๐‘ฅ

20. lim๐‘ฅโ†’0

sin 3๐‘ฅ

๐‘ฅ

The Squeeze Theorem

If h(x) < f(x) < g(x) for all x in an open interval containing c, except possibly at c

itself, and if lim๐‘ฅโ†’๐‘

โ„Ž(๐‘ฅ) = ๐ฟ = lim๐‘ฅโ†’๐‘

๐‘”(๐‘ฅ) then lim๐‘ฅโ†’๐‘

๐‘“(๐‘ฅ) exists and is equal to L.

4 โ€“ |๐‘ฅ| < f(x) < 4 + |๐‘ฅ|

Special Trigonometric Limits:

lim๐‘ฅโ†’0

sin ๐‘ฅ

๐‘ฅ= 1 lim

๐‘ฅโ†’0

1โˆ’cos ๐‘ฅ

๐‘ฅ= 0

Page 8: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

Lesson 3: Continuity and One-Sided Limits

Definition of Continuity

Continuity at a point:

A function f is continuous at c if the following three conditions are met:

1. f(c) is defined

2. lim๐‘ฅโ†’๐‘

๐‘“(๐‘ฅ) exists

3. lim๐‘ฅโ†’๐‘

๐‘“(๐‘ฅ) = ๐‘“(๐‘)

Properties of continuity:

Given functions f and g are continuous at x = c, then the following functions are

also continuous at x = c.

1. Scalar multiple: ๐‘ ยฐ ๐‘“

2. Sum or difference: fยฑ g

3. Product: f โ€ข g

4. Quotient: ๐‘“

๐‘” , if g(c) โ‰  0

5. Compositions: If g is continuous at c and f is continuous at gยฉ, then the

composite function is continuous at c, (๐‘“ ยฐ ๐‘”)(๐‘ฅ) = ๐‘“(๐‘”(๐‘ฅ))

The existence of a Limit:

The existence of f(x) as x approaches c is L if and only if lim๐‘ฅโ†’๐‘โˆ’

๐‘“(๐‘ฅ) = ๐ฟ and

lim๐‘ฅโ†’๐‘+

๐‘“(๐‘ฅ) = ๐ฟ

Definition of Continuity on a Closed Interval:

A function f is continuous on the closed interval [a, b] if it is continuous on the

open interval (a, b) and lim๐‘ฅโ†’๐‘Ž+

๐‘“(๐‘ฅ) = ๐‘“(๐‘Ž) and lim๐‘ฅโ†’๐‘โˆ’

๐‘“(๐‘ฅ) = ๐‘“(๐‘)

Page 9: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim
Page 10: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

Example 3: Given โ„Ž(๐‘ฅ) = {โˆ’2๐‘ฅ โˆ’ 5 ; ๐‘ฅ < โˆ’2

3 ; ๐‘ฅ = โˆ’2

๐‘ฅ3 โˆ’ 6๐‘ฅ + 3 ; ๐‘ฅ > โˆ’2 for what values of x is h not

continuous? Justify.

Example 4: If the function f is continuous and if f(x) = ๐‘ฅ2โˆ’4

๐‘ฅ+2 when x โ‰  -2, then

f(-2) = ?

Example 5: Which of the following functions are continuous for all real numbers x?

a. y = ๐‘ฅ2

3

b. y = ex

c. y = tan x

A) None B) I only C) II only D) I and III

Example 6: For what value(s) of the constant c is the function g continuous over all

the Reals? ๐‘”(๐‘ฅ) = {๐‘๐‘ฅ + 1 ; ๐‘–๐‘“ ๐‘ฅ โ‰ค 3

๐‘๐‘ฅ2 โˆ’ 1 ; ๐‘–๐‘“ ๐‘ฅ > 3

Page 11: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

Lesson 4: The Intermediate Value Theorem

The Intermediate Value Theorem (IVT) is an existence theorem which says that a

continuous function on an interval cannot skip values. The IVT states that if these

three conditions hold, then there is at least one number c in [a, b] so that f(c) = k.

1. f is continuous on the closed interval [a, b]

2. f(a) โ‰  f(b)

3. k is any number between f(a) and f(b)

Example 1: Use the Intermediate Value Theorem to show that f(x) = ๐‘ฅ3 + 2x โ€“ 1 has

a zero in the interval [0, 1].

Page 12: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

Example 2: Apply the IVT, if possible, on [0, 5] so that f(c) = 1 for the function

f(x) = ๐‘ฅ2 + ๐‘ฅ โˆ’ 1

Example 3: A car travels on a straight track. During the time interval 0 < t < 60

seconds, the carโ€™s velocity v, measured in feet per second is a continuous function.

The table below shows selected values of the function.

t, in seconds 0 15 25 30 35 50 60

v(t) in ft/sec -20 -30 -20 -14 -10 0 10

A. For 0 < t < 60, must there be a time t when v(t) = -5?

B. Justify your answer.

Example 4: Find the value of c guaranteed by the Intermediate Value Theorem.

f(x) = x2 + 4x โ€“ 13 [0, 4] such that f(c) = 8

Page 13: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

Lesson 5: Infinite Limits

Definition of Vertical Asymptotes:

A vertical line x = a is a vertical asymptote if lim๐‘ฅโ†’๐‘Ž+

๐‘“(๐‘ฅ) = ยฑโˆž and/or

lim๐‘ฅโ†’๐‘Žโˆ’

๐‘“(๐‘ฅ) = ยฑโˆž โ„Ž(๐‘ฅ) = ๐‘“(๐‘ฅ)

๐‘”(๐‘ฅ) has a vertical asymptote at x = c.

Properties of Infinite Limits:

Let c and L be real numbers and let f and g be functions such that lim๐‘ฅโ†’๐‘

๐‘“(๐‘ฅ) = โˆž and

lim๐‘ฅโ†’๐‘

๐‘”(๐‘ฅ) = ๐ฟ

1. Sums or Difference: lim๐‘ฅโ†’๐‘

[๐‘“(๐‘ฅ) ยฑ ๐‘”(๐‘ฅ)] = โˆž

2. Product: lim๐‘ฅโ†’๐‘

[๐‘“(๐‘ฅ)๐‘”(๐‘ฅ)] = โˆž , ๐ฟ > 0

lim๐‘ฅโ†’๐‘

[๐‘“(๐‘ฅ)๐‘”(๐‘ฅ)] = โˆ’โˆž , ๐ฟ < 0

3. Quotient: lim๐‘ฅโ†’๐‘

๐‘๐‘”(๐‘ฅ)

๐‘“(๐‘ฅ)= 0

Example 1: Evaluate by completing the table for lim๐‘ฅโ†’โˆ’3

1

๐‘ฅ2โˆ’9

x -3.5 -3.1 -3.01 -3.001 -3 -2.999 -2.99 -2.9 -2.5

f(x)

Page 14: LIMITS - Mrs. Uphamย ยท 2020. 5. 28.ย ยท Properties of Limits Some Basic Limits Let b and c be real numbers and let n be a positive integer. lim ๐‘ฅโ†’ ( )= ( ) lim ๐‘ฅโ†’ = lim

Example 2: Evaluate lim๐‘ฅโ†’1

1

(๐‘ฅโˆ’1)2

Example 3: Evaluate lim๐‘ฅโ†’1+

๐‘ฅ+1

๐‘ฅโˆ’1

Example 4: Evaluate lim๐‘ฅโ†’1+

๐‘ฅ2โˆ’3๐‘ฅ

๐‘ฅโˆ’1

Example 5: Evaluate lim๐‘ฅโ†’1+

๐‘ฅ2

(๐‘ฅโˆ’1)2

Example 6: Evaluate lim๐‘ฅโ†’0โˆ’

(๐‘ฅ2 โˆ’ 1

๐‘ฅ)

Example 7: Evaluate lim๐‘ฅโ†’(

โˆ’1

2)

+

6๐‘ฅ2+๐‘ฅโˆ’1

4๐‘ฅ2โˆ’4๐‘ฅโˆ’3

Example 8: Find any vertical asymptotes or removable discontinuities ๐‘“(๐‘ฅ) = ๐‘ฅโˆ’2

๐‘ฅ2โˆ’๐‘ฅโˆ’2

Example 9: Determine whether the graph of the function has a vertical asymptote

or a removable discontinuity at x = 1. Graph the function to confirm

๐‘“(๐‘ฅ) = sin(๐‘ฅ + 1)

๐‘ฅ + 1