Z. Recording in Class

download Z. Recording in Class

of 40

Transcript of Z. Recording in Class

  • 8/13/2019 Z. Recording in Class

    1/40

    Chapter 1:

    INTRODUCTION TO

    PROBABILITY AND STATISTICS1. Some concepts of Statistics

    [*] Data => Are observations (Nationality, height, weight)1. Qualitative: Khc kiu s

    2. Quantitative: Kiu s

    a. Discrete: Ri rc

    1. Finite number of elements: C hu hn phn t

    2. Countable: C thm c sgi tr

    b. Continuous: Lin

    Possible values fill the range [a;b]: gi trc thc lp y 1 khong t[a;b]

    [*] Collecting Data: phng php ly dliu1. Retrospective study (Using historical data): Nghin cu dliu qu kh

    2. Observaional Sudy: Khng ng ln i ng nghin cu

    3. Experiment: C t ng ln i ng nghin cu

    [*] Population:

    Tng thcomplete collection of all elements to be studied: By ca tt ccc phn

    tc nghin cu, y lun, khng thiu ai Mnh nghin cu g, ci thuc phm vi nghin cu l

    population

    [*] Sample: Mu = Tp con ca population

    [*] Parameter: Tham sMesurement describing some properties of population: L so no miu mt vi tnh

    cht ca tng thRt ttng th

    [*] Statistic: i lng thng kMesurement describing some properties of sample: L so no miu mt vi tnh

    cht ca muRt tmu

  • 8/13/2019 Z. Recording in Class

    2/40

    [*] Statistics:

    Tp hp ca tt ccc phng php :

    1. Collect data: Thu thp dliu

    2. Present data: Biu din dliu

    a.

    Tableb. Graph

    c. Histogram

    3. Numerical summaries: Tnh ton cc dliu cn thit

    [*] 1, 2, 3: Descriptive Statistics: Thng k m t

    4. Conclude about parameters of population: Rt ra kt lun vcc tham stng th

    [*] 4: Inferential Statistics: Thng k suy din

    2. Some concepts of Probability

    [*] Random Experiment: Php thngu nhinAn experiment results in different outcomes: L mt php thm dn n cc kt qukhc

    nhau

    [*] Sample Space: Khng gian muSet of all possible outcomes: Tp tt ccc kt quc thc

    Ex 1: Tossing a coin 2 times:

    S = {HH, HT, TH, TT} => |S| = 4

    Ex 2: Tossing 2 dices

    S = {(1,1), (1,2), , (6,6)- => |S| = 36

    S = 2,3, ,12-|S| = 11

    Khng gian mu khng phi duy nht! N phhuvohly dliu, m h php h

    [*] Event: Bin cSub-space of Sample space: Con ca khng gian mu

  • 8/13/2019 Z. Recording in Class

    3/40

    [*] Intersection of 2 events: Giao ca 2 bin c

    A BAnd

    [*] Union of 2 events: Hp ca 2 bin c

    AUBOr

    [*] Complement of an events: Phn b ca 1 tp hpA = A ngang = Ac= S\A

    Eg:

    A = (AB) U (AB)A B = (A U B)A U B = (A B)

  • 8/13/2019 Z. Recording in Class

    4/40

    [*] Multiplication Rule: Quy tc nhn

    [*] Multiplication Rule: Quy tc cng

    [*] Permutation: Hon v

    [*] Chnh hp:Rt ra k phn tttp n phn t, thtphn t

    ( )

    [*] Thp:Rt ra k phn tttp n phn t, KHNG thtphn t

    ( )

    [*] Hon vlpN phn t:

    N1 phn t: Tnh cht 1

    N2 phn t: Tnh cht 2

    Nk phn t: Tnh cht k

  • 8/13/2019 Z. Recording in Class

    5/40

    Chapter 2:

    PROBABILITY OF AN EVENT

    1. Axioms of probabiliy: Tin vxc sutProbability of A = P(A) = a real number [0,1]To quantify the likelihood of an event

    P(A) [0,1] P(S) = 1

    P(AUB) = P(A) + P(B) if AB =

    P(A) = 1 P(A)

    () If outcomes are equally likely: Nu cc khnng a kt qul nh nhau () ( )Tng xc sut tng kt qu

    Eg: Flip a coin 10 times:

    1. P(>= 1H) = ?2. P(exactly 2H) = ?

    1. A = >= 10

    A = 10T => |A| = 1

    P(A) = () 2. B = Exaly 2H

    |B| = => P(B) =

  • 8/13/2019 Z. Recording in Class

    6/40

    2. Addition rule: Quy tc cng P(AUB) =

    = P(A) + P(B)P(AB)

    P(AUBUC) = P(A) + P(B)P(AB)P(AC)P(BC) + P(ABC)

    Eg: P(A) = 0.8, P(B) = 0.6, P(A

    B) = 0.5

    a. P(AUB) = 0.8+0.6-0.5 = 0.9

    b. P(AB)= 0.8-0.5 = 0.3

    A = (AB) U (AB)

    . P(AB) = 0.6-0.5 = 0.1

    d. P(AUB)

    e. P(AUB)

    f. P(AUB)

    g. P(AB)

    * Khi c 2 b th a b ra

    3. Conditional Probability: Xc su iu kin

    a. P(smoke) =

    b. P(smoke|female) = Probabiliy of smoke given ha female =

    c. P(smoke|male) =

    d. P(female|smoke) = 50/50+150

    e. P(male|smoke) = 150/50+150

    P(A|B) =

    =

    =()

    () (Xc sut va c A va c B|Chc B)

  • 8/13/2019 Z. Recording in Class

    7/40

    Eg: Toss a die:

    S = {1, 2, 3, 4, 5, 6}

    B = {1, 4}

    A = {>3} = {4, 5, 6}

    P(B|A) =()

    ()

    SOLVE

    P(S) = 1

    P(1) P(6) = 1

    M P(odd) = p => P(even) = 2p

    p +2p+ p +2p+ p +2p = 1

    p = 1/9

    P(AB) = P(4) = 2/9

    P(A) = P(4) + P(5) + P(6) = 5/9

    P(B|A) = 2/5

    [*] Multiplication RuleP(AB) = P(B).P(A|B) = P(A).P(B|A)--

    * P(A|B) = 1 P(A|B)

    4. Total Probability: Quy tc xc su y

    P(Defects) = ?

    SOLUTION

  • 8/13/2019 Z. Recording in Class

    8/40

    P(1) = 30%; P(D|(1)) = 5%

    P(2) = 40%; P(D|(2)) = 2%

    P(3) = 30%; P(D|(3)) = 3%

    P(D) = ?

    D = [D(1)] U [D(2)] U [D(3)]

    P(D) = P[D(1)] +P[D(2)] +P[D(3)]

    = P(1).P(D|(1))+ P(2).P(D|(2))+ P(3).P(D|(3))

    = 0.3*0.05 + 0.4*0.02+ 0.3*0.03

    EiEj =

    Ei = S

    P(A) = P(AE1)+ P(AE2)P(AEn)

    P(A) = ()()

    Bayes TheoremP(Ek|A) =

    ()() =

    ()()() =

    ()() ()()

  • 8/13/2019 Z. Recording in Class

    9/40

    Independence: Sc lp AB = A & B are disjoint/mutually exclusive: Xung khc

    if P(A|B) = P(A)A & B are independence

    or P(B|A) = P(B)

    or P(AB) = P(A).P(B)

    EG:P(A|B) = 0.2, P(B) = 0.9, P(A) = 0.3. Are the events B and complement of A independence?

    SOLUTION:

    Is P(AB) = P(A).P(B)?

    P(AB) = P(B).P(A|B) =P(B).(1 - P(A|B)) = 0.72

    No

    If A & P are independene hen A & B are also independene!

  • 8/13/2019 Z. Recording in Class

    10/40

    Chapter 3:

    DISCRETE RANDOM VARIABLES

    (BIN NGU NHIN RI RC)1. Random variableDefinition:Random variable = a variable that its values are determined by the outcomes of a random

    experiment: Bin ngu nhin: l 1 bin m cc gi trca n x nh da trn kt quca 1 php

    th.

    Random variable:

    Discrete: ri rc: Its range is finite/countable: Min l hu hn/m c.

    Continuous: Lin tc: L 1 khong, nhn lin tip gi tr

    2. Probability distribution: Phn bxs ca 1 bin ngu nhin ri rc

    a. The probability mass function: M tbi hm phn bxc sutX x1 x2 xnf(x) P1 P2 Pn

    f(xi) = Pi = P(X=Xi)

    Eg:Tossing a die wie: X = ouomes.

    Find PMF of X.

    X 2 3 4 5 10 11 12 F(x) 1/36

    [*] f(xi) = 1

    b. The cumulative distribution function (CDF): Hm phn bh lyKhng tnh xc xut tng im, cng dn

    f(a) = P(X = a) F(a) = P(X a)

    Eg:F(4) = P(X 4) = P(X = 2) P(X = 3) P(X = 4) = 1/36 2/36 3/36 = 1/6

  • 8/13/2019 Z. Recording in Class

    11/40

    Eg:

    F(x) =

    0 : x < 1

    1/3 : 1 x < 2

    1/2 : 2 x < 3 1 : x 3

    Find the PMFf(x)

    X 1 2 3

    f(x) 1/30 = 1/3 1/21/3 = 1/6 11/2 = 1/2

    Eg:

    X -1 2 3

    f(x) 1/5 3/5 1/5

    Find F(x) = ?

    0 (x < -1)

    1/5 (-1 x < 0)

    1/53/5 (0 x < 1)

    4/51/5 (x 1)

    3. Expected value (mean): K vng | Variane: Phng sai | Sandard

    deviaion: lch tiu chunAssume:

    X x1 x2 xn

    f(x) f(x1) f(x2) f(xn)

    [*] E(x) = = () [*] V(X) = ( )() = () ^2[*] Standard deviation

    nb

    [*] Properties

    E(h(X)) = () () E(aX+b) = aE(x) + b

    V(aX+b) = a2V(X)

  • 8/13/2019 Z. Recording in Class

    12/40

    4. Some discrete distributions (1 sphn phi ri rc)

    a. The uniform distribution (Phn phi u)X x1 x2 xnf(x) 1/n 1/n 1/n

    E(x) = = x1/n xn/n = xi/nV(X) = x1^2/n xn^2/n - ^2 = xi^2/n (xi/n)^2

    If(x1,x2,,xn) = a, a1,, B- a,b Zn = b-a/1 + 1 = ba + 1

    = (a a 1 b)/(b a + 1) =()()

    ^2 = V(X) =

    ()

    EX:

    Le X has uniform disribuion on inegers 5,6,,120-

    a. Find P27 x < 89-

    b. Find E(X), E(2X+4)

    c. Find V(X), V(2X+4)

    SOLVE:

    P(X = i) =

    P27 x < 89- = 62/116

    E(X) =

    E(2X+4) = 2E(X) + 4 = 129

    V(X) =()

    V(2X+4) = 2^2 V(X)

  • 8/13/2019 Z. Recording in Class

    13/40

    b. Binomial Distribution (Phn phi nhthc)[*] n independent trials

    [*] each trial:

    Success: P(s) = p

    Failure: P(f) = 1-p

    X = The number of trials that result in success.

    X 0 1 k n

    f(x) ( )

    E(X) = ( )= npV(X) = np(1-p)

    c. Geometric Distribution: Phn phi hnh hc[*] Trials are independent

    Success: P(s) = p

    Failure: P(f) = 1-p

    X = The number of trials until 1 success

    X 1 2 n f(x) p (1-p)p (1-p)^(n-1)p

    E(X) = np( )= p ( ) = V(X) =

  • 8/13/2019 Z. Recording in Class

    14/40

    d. Negative Binomial Distribution: Phn phi nhthc m[*] Trials are independent

    [*] Trials:

    S: P(s) = p

    F: P(f) = 1-p

    [*] X = The number of trials until r successes.

    X R R1 n

    f(x) ( )

    kE(X) =

    V(X) =()

    e. Hypergeometric Distribution: Phn phi siu hnh hcN = 10 balls, k = 8 red.

    Pick n = 4 balls without replacementSample

    X: The number of red balls in sample

    X 2 3 4

    f(x) ()()()

    ()()()

    ()()

    TNG QUT:

    P(X = x red balls) =()()

    ()

    E(X) = np (p = k/N)

    V(X) = np(1-p).

    = ()

  • 8/13/2019 Z. Recording in Class

    15/40

    f. Poisson Distribution

    Time interval: [a,b]

    E(X) =

    Chia khong thi gian sao cho mi khong khng c qu 1 xe vo

    P(X = k) = C(k,n).p^k.(1-p)^(n-k)

    Np = => p = /n

    => P(X = k) = C(k,n).(/n)^k.(1-/n)^k

    Khi (n): (e^(-). ^k)/k! = P(X=k)

    [*] Interval(Time, area, space)

    [*] = mean number of events/interval

    [*] X = The number of events/interval

    E(X) =

    V(X) =

    = BT: 3-100

    C 6 loi phn phi:

    C tn trong :o Uniform

    o Poission

    Quan tm n sthnh cng:o Binomial: independent c lpo Hypergeometric: Without replacement Phc thuc

    Quan tm sphp thcho n khi c 1 hoc r php ththnh cngo R = 1: Geometric

    o R > 1: Negative Binomial

  • 8/13/2019 Z. Recording in Class

    16/40

    Chapter 4:

    CONTINUOUS RANDOM VARIABLE

    1. The probability desity function (PDF): Hm m xc sut

    P(

  • 8/13/2019 Z. Recording in Class

    17/40

    3. Expected value (Mean) (E(X) = )Varriane (V(X) = 2)

    Standard deviation ()

    = ()

    2= ( )() = ( () PROPERTIES:

    E[h(x)] = ()() E(aX+b) = aEX +b

    V(aX+b) = a2V(X)

    4. Some continuous distributions: Cc phn phi lin tc

    a. The continuous uniform distribution: Phn phi u lin tc

    a b

    X = is uniformly distributed if its PDF: f(x) = c vi mi x [a;b] () Cx = 1c = > f(x) =

    o

    if x [a;b]o 0 if x ![a;b]

    P(c

  • 8/13/2019 Z. Recording in Class

    18/40

    b. The normal distribution: Phn phi chun; The standard normal distribution: Phn

    phi tiu chunX is normally distributed if the graph of its PPF is bell shaped.

    f(x) =

    if = 0; = 1X has standard normal distribution.

    P(c < X < d) = ?

    X = normal:

    = 50

    = 5

    P(X < 70) = P(

    ) = P(Z < 4)EG:

    X = N(20, 25):

    N: Normal

    20:

    25: 2

    P(0 < X < a) = 0.5434

    Find a:

    P(0-20/5 < X-20/5 < a-20/5) = 0.5434

    P(-4 < Z < a-20/5) = 0.5434

    P(Z

  • 8/13/2019 Z. Recording in Class

    19/40

    Sumary:

    f(x):

    P(a < X < b) = () ; 2

    F(x)

    F(x):

    P(a < X < b)

    ; 2 f(x)

    Uniform:

    P(a < X < b)

    ; 2

    f(x), F(x)

    [*] Normal approximation to the Binomial distribution & Poisson

    distribution: Xp xchun ca phn phi Nhthc v phn phi Poisson

    - Binomial Distr: B(n: Sphp th; p = P(success)) P(X = k success) = C(n,k) p^k(1-p)^(n-k)

    P(X k suess) = ( )( ) [*] if n, p:

    np > 6

    np(1-p) > 5

    => B(n,p) N( = np; 2= np(1-p))

    Ex: n = 1000 trials. P(s) =. P( 900 suess) = ?

    - Poisson:

    P(k events) =

    P(k evens) =

    [*] if > 5 => P() N( = , 2= )

  • 8/13/2019 Z. Recording in Class

    20/40

    c. The exponential Distribution: Phn phi m* Poisson:

    a = mean b

    Interval

    P(k events) =

    X = The distance between 2 successive events

    X = continuous random variable

    P(X > x) = P( 0 event/interval = x) =()

    P(X x) = 1 e-x= F(x) *x 0+

    F(x) = 1e-x (x > 0)

    f(x) = F(x) = e-x (x > 0)

    = dx = 2= = * MEAN(Sskin) =

    * MEAN( K/c 2 skin) =

  • 8/13/2019 Z. Recording in Class

    21/40

    Chapter 6:

    DESCRIPTIVE STATISTICS

    1. Frequency Distribution Sample: x1, x2, , xn

    X x1 x2 xk

    f(x) n1 n2 nk

    X *a1,a2) *a2,a3) *ak,ak+1)

    f(x) n1 n2 nk

    X x1 x2 xk

    f(x) n1/n100% n2/n100% nk/n100%

    X *a1,a2) *a2,a3) *ak,ak+1]

    f(x) n1/n100% n2/n100% nk/n100%

    => Relative frequency distribution.

    X x1 x2 xk

    f(x) n1 n1n2 n

    X *a1,a2) *a2,a3) *ak,ak+1]f(x) n1 n1n2 n

    => Frequency cumulative

    2. Numerical Summaries

    [*] Range: Skhc nhau ca max v min = max[xi]min[xi]

    [*] Mode: Gi trc tn sxut hin nhiu nht = xk(nk max) Mode = nu n1 = n2 = = nk = 1

    [*] 3 quartiles: Tphn v

    Min Q1 Q2 Q3 Max

    25% 25% 25% 25%

  • 8/13/2019 Z. Recording in Class

    22/40

    Q1: First quartile

    Q2: Median

    Q3: Third quartile

    Cch tnh Q2:

    Z: Q2 = () ! Z: Q2 = ( [*+]

    Cch tnh Q1:

    Z: Q1 = ()

    ! Z: Q1 = ( [*+]

    Cch tnh Q3:

    Z: Q2 = ( )

    ! Z: Q2 = ( [* +] Q3Q1 = Inter quartile range = IQR

    EXAMPLE

    Sample: 2 3 4 5 2 4 3 6 7 8 7 9 3 5

    Find:

    Range: 92 = 7

    Mode: 3

    Quartiles: Sp xp trc khi lm

    Sorted: 2 2 3 3 3 4 4 5 5 6 7 7 8 9

    N = 14median: 14/2 = 7: Q2 = (x7+x8)/2 = (4 + 5)/2

    Q1: n/4 = 14/4 = 3.5Q1 = x4 = 3

    Q3: 3n/4 = 10.5Q3 = x11 = 7

    [*] Sample mean ()= (Khng gp cc strng nhau) =

    ( bcc strng nhau thnh ni ln) =

  • 8/13/2019 Z. Recording in Class

    23/40

    [*] Sample variance (s2)

    S2= ( )

    [*] Sample standard deviation (s) =

    3. Histogram, Plot

    a. Dot Plot

    b. Stem-and-leaf diagram

    c. Box plot

    Thhin 5 rng: min, max, 3 quariles

    Xi = outlier

    Xi > Q3 + 1.5 IQR

    Xi < Q1 - 1.5 IQR

    d. Bar chart

    e. Scatter Plot

  • 8/13/2019 Z. Recording in Class

    24/40

    Chapter 7:

    SAMPLE DISTRIBUTION.THE CENTRAL LIMIT

    THEOREM

    1. Poin Esimae ( lng im)Trch populationSample

    = a point estimate for

    s2= a point estimate for 2

    (A) = a point estimate for p(A) a point estimate for 1 - 2 (2 population, 2 samples) (A) - (A) = a point estimate for p1 - p2

  • 8/13/2019 Z. Recording in Class

    25/40

    EXAMPLE:

    Sample

    X Ni

    20-30 5

    30-40 340-50 2

    Find a point estimate for , 2

    --

    A point estimate for is :=

    A point estimate for 2is s2:

    S2=()()()

    2. Random sample. Sampling distribution (Mu ngu nhin, phn

    phi mu)

    Ex: Population {1, 2, 3}Ly ra 1 mu, n = 2 (with replacement)

    Sample: {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1),(3,2),(3,3)}

    Random sample:(X1, X2) m gi trca n nm trong tp hp 9 samples trn.

    [***]Statistic = a function of a random sample. (Mt thng k l hm ca 1 mu ngu nhin)

    Ex:

    = a statistic.S2=

    ( )( ) = a statistic.

    - Sampling Distribution is a probability distribution of a statistic L phn bxc sut ca 1 thng k!

    Ex:

    What is the sampling distribution of

  • 8/13/2019 Z. Recording in Class

    26/40

    3. The enral limi Theorem (nh l gii hn trung tm)

    Random Sample (n) If n 30, N(_= _pop; _ ) If the distribution is normal, Populaion = N(, 2) => N(_= _pop; _ ) If n1 30 && n2 301 - 2 N(1 - 2 ;

    )

    Population

    Mean =

    Var = 2

  • 8/13/2019 Z. Recording in Class

    27/40

    Chapter 8:

    CONFIDENCE INTERVAL ON PARAMETERS OFPOPULATION

    1. nh ngha hungAssume that we have a random sample, Gisc mu ngu nhin (X1,X2,,Xn)

    L = f(X1,,Xn)|| U = g(X1,,Xn)

    If P(L | | P U) = (1 ) = onfidene level

    [L;U] = confidence interval (two-sided) on on | | P = I on | | P

    1 - = onfidene level

    U1= g1(X1,,Xn) = upper bound (cn trn) for ||P with confidence level = 1 - if P(||P U1) = 1 -

    L1= f1(X1,,Xn) = lower bound (cn trn) for ||P with confidence level = 1 - if P(||P U1) = 1 -

    2. Construct CI on

    P(L U) = 1 - (known), L;U = ? L = U = E = ?

    P ( ) = 1 - P( - E E) = 1 - [*] CASE 1: (n 30 || population has normal distribution) && populationknown

    P(()

    Z

    ()

    ) = 1 -

    P(

    Z

    ) = 1

    P(Z

    ) = 1 -

    = Z

    Tra bng

  • 8/13/2019 Z. Recording in Class

    28/40

    E = ***CI on : [L;U] = [ ]Ex: 1 - = 90%Z(

    )= ?

    --

    = 0.1Z()= Z0.05= 1.65Ex:

    N = 36

    = 2.6 ; = 0.31 - = 95%

    --

    [

    ]

    L1, U1 = ?

    P( U1) = 1 -

    U1 = P( )= 1 - P(Z

    )= 1 -

    P(Z

    )

    = 1 -

    Upper bound for :

    . Lower bound for :

    L1= . [*] Error = If:

    Error E

    Confidence level = 1 -

    n = ?

    E

  • 8/13/2019 Z. Recording in Class

    29/40

    n ( )2Ly trn[*] CASE 2: n 40 && populationunknown

    Two-sided CI on : [ ]Upper bound for : * () ]Lower bound for : * () ][*] CASE 3: n < 40 || population has normal distribution) && populationunknown

    - Student Distribution

    PDF: y = f(x, k) k NNgoi bin x cn tham skTHEOREM

    If pop = normal distribution

    = Student distribution with k = df = n1

    P( ) P(- E ) = 1 - P(

    )

    E =t(

    ; n-1)

    Two-sided CI: [ ( ) ]

    Upper bound for : Lower bound for : ( )

  • 8/13/2019 Z. Recording in Class

    30/40

    3. onsru I on (Sandard deviaion of populaion) Chi square distribution (X

    2)

    PDF: y = f(x,k)k: degree of freedom = df

    THEOREMIf pop = normal distribution

    ()

    = Chi square distribution with k = df = n 1

    2 [?;?]P(L 2 U) = 1 -

    P(()

    ()

    ()

    ) = 1 -

    =>

    L =()

    U =()

    ()

    => 2[ () ()

    ()]

    Upper bound for 2:()

    ()

    Lower bound for 2:()

    ()

  • 8/13/2019 Z. Recording in Class

    31/40

    4. Construct CI on P (Population proportionTltng th)

    Size: n: ()Sample proportion

    E: ?

    P(E p + E) = 1 - P( pE

    p E) = 1 -

    = Binomial ( = np; 2= np(1-p))

    Khi n ln N( = np; 2= np(1-p)) (Normal distribution)

    P(npnE x np nE) = 1 -

    P(

    ()

    ()

    ()) = 1 -

    P(

    ()

    (

    ()

    ) = 1 -

    E = Z/2.()

    => P [ () ]

    Upper: p * () ] Lower: P [ () ]

    Population

    P(A) = ?

    Sample

  • 8/13/2019 Z. Recording in Class

    32/40

    1. CI on (mean, average)

    [

    2. I on 2(variance/standard deviation)

    2[() ()

    ]

    [ , ]3. CI on P (Proportion, Percentage, probability)

    P [ () ]

    E =

    ()

    = Error

    n =

  • 8/13/2019 Z. Recording in Class

    33/40

    Chapter 9:

    TEST OF HYPOTHESYS

    KIM NH GITHUYT THNG K1. The statistical hypothesisThe statistical hypothesis = a statement (a claim) about parameters of population

    The statistical hypothesis = a statement () about parameters of population.

    H0: = 1.65 m (p = 30%; = 0.5 m)

    H1:

    o 1.65m (two-sided)

    o > 1.65m (one-sided)

    o < 1.65m

    H0, H1: i lp nhau, H0 quy c l dng du =.

    2. Procedure to test of hypothesis on mean ()Ex :Test:

    H0: = 1.65m

    H1: 1.65m

    - Choose 1 interval (a,b) cha 1.65

    - If

    ( )Fail to reject H0 ( )Reject H0

    2 types of errors:

    1. Type I error: Reject H0 when H0 true.

    2. Type II error: Fail to reject H0 when H0 false.

    P(ype I error) =

    P(type II error) = Ex :Test:

    H0: = 1.65m

    H1: 1.65m

  • 8/13/2019 Z. Recording in Class

    34/40

    Assume that: Choose (a,b) = (1.63;1.67)

    a. = ?

    b. = ?

    --

    a. = P(Type I error) = P(Reject H0 when H0 true) = P( (1.63;1.67) when = 1.65Assume:

    N = 36 > 30

    = 0.02 m

    Normal dis= P(Z (((1.63-1.65)/(0.02/n36);(1.67-1.65)/(0.02/n36))

    = 1P(Z

    (-6;6)) = 1(P(Z

  • 8/13/2019 Z. Recording in Class

    35/40

    Conclude

    If

    (0 Z(/2). )Reject H0 (Strong conclusion)

    (0

    Z(/2).

    )

    Fail to reject H0 (Weak conclusion)

    --

    (0 Z(/2). )

    (Z(/2))

    Test statistic Critical values

    (TK kim nh) (Gi trti hn)--

    Step 1:

    H0: ?

    H1: ?

    Step 2:

    Test statistic: Z0 =

    Step 3:

    Find critical values: Z(/2)Step 4:

    Conclude:

    If Z0 (Z(/2))Reject H0 If Z0(Z(/2))Fail to reject H0

  • 8/13/2019 Z. Recording in Class

    36/40

    * Test on mean

    1. Case 1: n 30; pop = normal dist + knownTest statistic: Z0 =

    Critical value:

    : H1 Z : H>

    -Z : H Z

    Reject H0 when Z0 < -Z

    2. Case 2: n 40; unknownTest statistic: Z0 =

    Critical value:

    : H1 Z : H>

    -Z : H Z

    Reject H0 when Z0 < -Z

    3. Case 3: n < 40; unknown + normalTest statistic: T0 =

    Critical value:

    : H1 : H> - : H t, n-1

    Reject H0 when t0 < -t, n-1

    * Test on variance of population (2)

    H0: 2=

    2<

    Test statistic: () Critical value:

    H1:X2(/2;n-1); X2(1-/2;n-1)

    Conclude:

    Reject H0 when X02 [X2(/2;n-1); X2(1-/2;n-1)]H1: >X

    2(;n-1)

    Conclude:

    Reject H0 when X02>X2(;n-1)

    H1:

  • 8/13/2019 Z. Recording in Class

    38/40

    Chapter 11:

    SIMPLE LINEAR REGRESSION &CORRELATION

    HI QUY TUYN TNH N &TNG QUAN1. Linear regression line Assume ha: (x1,y1),,(xn,yn) = sample.

    Choose model: Y = Base on data => Fine estimations of , say, such that min. where ei = yi - (Method of least squares) min ( ) min ( ) min = L

    2. orrelaion oeffiien [*] Sample correlation coefficient

    r =

    =()()

    ()()|r| 1

    Sxy = || ( ) |r|: measure he srengh of he linear relaionship beween x and y: o m quan h uy nh

    gia x v y

    |r| 1StrongThe regression line is significant.

    |r| 0No linear relationship im hn nKhng mqh tt

    r > 0Sxy > 0 =>

    > 0

    => Posiive orrelaion (Tng quan hun) (X angY tang)

    r < 0Sxy < 0 => < 0=> Negaive orrelaion (Tng quan hun) (X angY giam)

    r2= determination coefficient

    r ng du

  • 8/13/2019 Z. Recording in Class

    39/40

    3. Predict the value of Y when X = x0 Find r

    If

    o |r| 1 (0.5)Find the regression line

    Y predicted = o |r| 0 (< 0.5)Y predicted =

    4. Test of hypothesis on Sample: ; rPopulation: ; r: Correlation coefficient of populationa. Test on r

    H0: r = 0Tes xem X v quan h uyn nh khng. || Tes for signifian of regression:

    Tes xem ngha a ng hi quy hay khng.

    Khng H Tuyn nh H1: r0

    L Tuyn nh

    Test statistic: T0 =

    Critical values:

    ( )(r0) ;n-2 (r > 0) -;n-2 (r < 0)

    Conclude:

    Reject H0 when T0 [( )] Reject H0 when T0 >() Reject H0 when T0 < -()

    b. Test on 1:

    T0 =() ;

    0:

    T0 =() ;

    Lu : Ly bng 5

  • 8/13/2019 Z. Recording in Class

    40/40

    - Sxy, Sxx, Syy

    -bea 1 m, b a 0 m

    - r

    - SSt,SSr,SSe

    - Predict Y

    - Test