Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply...

39
24 GHz to 44 GHz, Wideband, Microwave Upconverter Data Sheet ADMV1013 Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Wideband RF input frequency range: 24 GHz to 44 GHz 2 upconversion modes Direct conversion from baseband I/Q to RF Single-sideband upconversion from real IF LO input frequency range: 5.4 GHz to 10.25 GHz LO quadrupler for up to 41 GHz Matched 50 Ω single-ended RF output and IF inputs Option between matched 100 Ω balanced or 50 Ω single- ended LO inputs 100 Ω balanced baseband inputs Sideband suppression and carrier feedthrough optimization Variable attenuator for transceiver power control Programmable via 4-wire SPI interface 40-terminal land grid array package (LGA) APPLICATIONS Point to point microwave radios Radar, electronic warfare systems Instrumentation, automatic test equipment (ATE) FUNCTIONAL BLOCK DIAGRAM 90° DVDD GND VCC_MIXER VCC_BG BG_RBIAS1 VCC_QUAD GND LON LOP DNC SEN VCC2_DRV VCC_ENV DNC VCC_AMP1 SEN2 VCC_AMP2 VCTRL2 VCTRL1 VCC_VVA DNC RF GND VCC_DRV BG_RBIAS2 SDO SDI SCLK I_N VENV_P VCC_BG2 IF_Q Q_N Q_P GND I_P GND VENV_N ×4 ADMV1013 RST IF_I 17267-001 VVA2 VVA1 DET Figure 1. GENERAL DESCRIPTION The ADMV1013 is a wideband, microwave upconverter optimized for point to point microwave radio designs operating in the 24 GHz to 44 GHz radio frequency (RF) range. The upconverter offers two modes of frequency translation. The device is capable of direct conversion to RF from baseband in-phase quadrature (I/Q) input signals, as well as single-sideband (SSB) upconversion from complex intermediate frequency (IF) inputs. The baseband I/Q input path can be disabled and modulated complex IF signals, anywhere from 0.8 GHz to 6.0 GHz, can be inserted in the IF path and upconverted to 24 GHz to 44 GHz while suppressing the unwanted sideband by typically better than 26 dBc. The serial port interface (SPI) allows adjustment of the quadrature phase and mixer gate voltage to allow optimum sideband suppression and local oscillator (LO) nulling. In addition, the SPI interface allows powering down the output envelope detector to reduce power consumption. The ADMV1013 upconverter comes in a 40-terminal land grid array package (LGA) package. The ADMV1013 operates over the −40°C to +85°C case temperature range.

Transcript of Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply...

Page 1: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

24 GHz to 44 GHz, Wideband, Microwave Upconverter

Data Sheet ADMV1013

Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES Wideband RF input frequency range: 24 GHz to 44 GHz 2 upconversion modes

Direct conversion from baseband I/Q to RF Single-sideband upconversion from real IF

LO input frequency range: 5.4 GHz to 10.25 GHz LO quadrupler for up to 41 GHz Matched 50 Ω single-ended RF output and IF inputs Option between matched 100 Ω balanced or 50 Ω single-

ended LO inputs 100 Ω balanced baseband inputs Sideband suppression and carrier feedthrough optimization Variable attenuator for transceiver power control Programmable via 4-wire SPI interface 40-terminal land grid array package (LGA)

APPLICATIONS Point to point microwave radios Radar, electronic warfare systems Instrumentation, automatic test equipment (ATE)

FUNCTIONAL BLOCK DIAGRAM

90°

DVDD

GND

VCC_

MIX

ER

VCC_

BG

BG_R

BIAS

1

VCC_

QUA

D

GND

LON

LOP

DNC

SEN

VCC2

_DRV

VCC_

ENV

DNC

VCC_

AMP1

SEN2

VCC_

AMP2

VCTR

L2

VCTR

L1

VCC_

VVA

DNC

RF

GND

VCC_DRV

BG_RBIAS2

SDO

SDI

SCLK

I_N

VENV_P

VCC_BG2

IF_Q

Q_N

Q_P

GND

I_P

GND VENV_N

×4

ADMV1013

RST IF_I

1726

7-00

1

VVA2 VVA1

DET

Figure 1.

GENERAL DESCRIPTION The ADMV1013 is a wideband, microwave upconverter optimized for point to point microwave radio designs operating in the 24 GHz to 44 GHz radio frequency (RF) range.

The upconverter offers two modes of frequency translation. The device is capable of direct conversion to RF from baseband in-phase quadrature (I/Q) input signals, as well as single-sideband (SSB) upconversion from complex intermediate frequency (IF) inputs. The baseband I/Q input path can be disabled and modulated complex IF signals, anywhere from 0.8 GHz to 6.0 GHz, can be inserted in the IF path and upconverted to 24 GHz to 44 GHz

while suppressing the unwanted sideband by typically better than 26 dBc. The serial port interface (SPI) allows adjustment of the quadrature phase and mixer gate voltage to allow optimum sideband suppression and local oscillator (LO) nulling. In addition, the SPI interface allows powering down the output envelope detector to reduce power consumption.

The ADMV1013 upconverter comes in a 40-terminal land grid array package (LGA) package. The ADMV1013 operates over the −40°C to +85°C case temperature range.

Page 2: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 2 of 39

TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3

Serial Port Register Timing ......................................................... 5 Absolute Maximum Ratings ............................................................ 6

Thermal Resistance ...................................................................... 6 ESD Caution .................................................................................. 6

Pin Configuration and Function Descriptions ............................. 7 Typical Performance Characteristics ............................................. 9

I/Q Mode ....................................................................................... 9 IF Mode ........................................................................................ 14 Envelope Detector Performance ............................................... 19 Return Loss and Isolation .......................................................... 21 M × N Spurious Performance ................................................... 24

Theory of Operation ...................................................................... 25 Start-Up Sequence ...................................................................... 25 Baseband Quadrature Modulation (I/Q Mode) ..................... 25 Single-Sideband Upconversion (IF Mode) ............................. 25 LO Input Path ............................................................................. 25

Sideband Suppression Optimization ....................................... 25 Carrier Feedthrough Nulling .................................................... 26 Envelope Detector ...................................................................... 26 Power Down and Reset .............................................................. 26 Serial Port Interface (SPI) ......................................................... 26

Applications Information .............................................................. 28 Baseband Quadrature Modulation from Low Frequencies .. 28 Performance at Different Quad Filter Settings ....................... 28 VVA Temperature Compensation............................................ 28 Performance Between Differential vs. Single-Ended LO Input....................................................................................................... 29 Performance Across RF Frequency at Fixed Input Frequencies ................................................................................. 30 Performance Across Common-Mode Voltage in I/Q Mode 31 Operating VCTRL1 and VCTRL2 Independently ..................... 31 Recommended Land Pattern .................................................... 33 Evaluation Board Information ................................................. 33

Register Summary .......................................................................... 34 Register Details ............................................................................... 35 Outline Dimensions ....................................................................... 39

Ordering Guide .......................................................................... 39

REVISION HISTORY 9/2019—Rev. A to Rev. B Changes to Figure 1 .......................................................................... 1 Changes to Figure 3 and Table 5 ..................................................... 7 4/2019—Rev. 0 to Rev. A Changes to Figure 1 .......................................................................... 1 Changes to Frequency Ranges Parameter, Table 1 ....................... 3 Changes to Thermal Resistance Section ........................................ 6 Changes to Figure 3 .......................................................................... 7 Changes to Table 5 ............................................................................ 8 Changes to Figure 50 Caption ....................................................... 16

Changes to Figure 58 Caption ...................................................... 18 Change to Return Loss and Isolation Section............................. 21 Moved Figure 70; Renumbered Sequentially .............................. 21 Moved Figure 72 ............................................................................. 22 Moved Figure 77 ............................................................................. 22 Moved Figure 80 ............................................................................. 23 Changes to M × N Spurious Performance Section, I/Q Mode Section, and IF Mode Section ....................................................... 24 Changes to Start-Up Sequence Section ....................................... 25 12/2018—Revision 0: Initial Version

Page 3: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 3 of 39

SPECIFICATIONS IF and I/Q amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, IF input frequency (fIF) = 3.5 GHz.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance, common-mode voltage (VCM) = 0 V, Register 0x03, Bit 7 = 0, and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q baseband frequency (fBB) = 100 MHz.

VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL =1800 mV, unless otherwise specified.

Table 1. Parameter Test Conditions/Comments Min Typ Max Unit FREQUENCY RANGES

RF Output 24 44 GHz LO Input 5.4 10.25 GHz LO Quadrupler 21.6 41 GHz IF Input 0.8 6.0 GHz Baseband (BB) I/Q Input DC 6.0 GHz

LO AMPLITUDE RANGE −6 0 +6 dBm I/Q MODULATOR PERFORMANCE

Conversion Gain At maximum gain 24 GHz to 40 GHz fBB ≤ 3.5 GHz 18 23 dB 6 GHz > fBB > 3.5 GHz 21 40 GHz to 44 GHz 19 dB

Voltage Variable Attenuator (VVA) Control Range 35 dB Single-Sideband (SSB) Noise Figure At maximum gain

24 GHz to 40 GHz 18 dB 40 GHz to 44 GHz 19 dB

Output Third-Order Intercept (IP3) At maximum gain 24 GHz to 40 GHz 20 23 dBm 40 GHz to 44 GHz 22 dBm

Output 1 dB Compression Point (P1dB) At maximum gain 24 GHz to 40 GHz 10 13 dBm 40 GHz to 44 GHz 12 dBm

Sideband Rejection (SBR) 24 GHz to 44 GHz, at maximum gain Uncalibrated 32 dBc

IF SINGLE-SIDEBAND UPCONVERSION PERFORMANCE Conversion Gain At maximum gain

24 GHz to 40 GHz fIF ≤ 3.5 GHz 13 18 dB 6 GHz > fIF > 3.5 GHz 12 40 GHz to 44 GHz 14 dB

VVA Control Range 35 dB SSB Noise Figure At maximum gain

24 GHz to 40 GHz 25 dB 40 GHz to 44 GHz 28 dB

Output IP3 At maximum gain 24 GHz to 40 GHz 20 23 dBm 40 GHz to 44 GHz 22 dBm

Output P1dB At maximum gain 24 GHz to 40 GHz 10 13 dBm 40 GHz to 44 GHz 12 dBm

SBR 24 GHz to 44 GHz, at maximum gain Uncalibrated 26 dBc Calibrated Calibrated using LOAMP_PH_ADJ_

Q_FINE and LOAMP_PH_ADJ_I_FINE bits 36 dBc

Page 4: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 4 of 39

Parameter Test Conditions/Comments Min Typ Max Unit ENVELOPE DETECTOR PERFORMANCE

Output Level For optimum performance Minimum −45 dBm Maximum −20 dBm

Envelope Bandwidth Measured with two tones with total power output (POUT) at RF = 10 dBm

3 dB RF frequency (fRF) = 28 GHz 350 MHz 10 dB fRF = 28 GHz 1 GHz

RETURN LOSS RF Output 50 Ω single-ended −8 dB LO Input 100 Ω differential −12 dB IF Input 50 Ω single-ended −12 dB BB Input 100 Ω differential −10 dB BB I/Q Input Impedance 100 Ω

LEAKAGE At maximum gain Fundamental LO to RF −80 dBm

4 × LO to RF 5.4 GHz to 6.8 GHz LO Uncalibrated −12 dBm 6.8 GHz to 10.25 GHz LO Uncalibrated −20 dBm 5.4 GHz to 10.25 GHz LO Calibrated using MXER_OFF_ADJ_I_N,

MXER_OFF_ADJ_I_P, MXER_OFF_ ADJ_Q_N, MXER_OFF_ADJ_Q_P bits at VCTRL = 1800 mV, IF mode

−45 dBm

5 × LO to RF −55 dBm Fundamental LO to IF −70 dBm Fundamental LO to I/Q −75 dBm

LOGIC INPUTS Input Voltage Range

High, VINH DVDD − 0.4 1.8 V Low, VINL 0 0.4 V

Input Current, IINH/IINL 100 µA Input Capacitance, CIN 3 pF

LOGIC OUTPUTS Output Voltage Range

High, VOH DVDD − 0.4 1.8 V Low, VOL 0 0.4 V

Output High Current, IOH 500 µA POWER INTERFACE

VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_MIXER, VCC_BG, VCC_QUAD

3.15 3.3 3.45 V

3.3 V Supply Current VCTRL = 1.8 V, no IF and I/Q or LO input signal

550 mA

DVDD, VCC_VVA 1.7 1.8 1.9 V 1.8 V Supply Current VCTRL = 1.8 V, no IF and I/Q or LO input

signal 3 mA

Total Power Consumption 1.9 W Power-Down 77 136 mW

Page 5: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 5 of 39

SERIAL PORT REGISTER TIMING

Table 2. Parameter Description Min Typ Max Unit tSDI, SETUP Data to clock setup time 10 ns tSDI, HOLD Data to clock hold time 10 ns tSCLK, HIGH Clock high duration 40 to 60 % tSCLK, LOW Clock low duration 40 to 60 % tSCLK, SEN/SEN2_SETUP Clock to SEN/SEN2 setup time 30 ns

tSCLK, DOT Clock to data out transition time 10 ns tSCLK, DOV Clock to data out valid time 10 ns tSCLK, SEN/SEN2_INACTIVE Clock to SEN/SEN2 inactive 20 ns

tSEN/SEN2_INACTIVE Inactive SEN/SEN2 (between two operations) 80 ns

Timing Diagram

tSCLK, LOW

tSCLK, DOT

SDOtSCLK, DOV

SDItSDI, SETUP

tSDI, HOLD

SCLK

tSCLK, HIGH

tSCLK, SEN/SEN2_SETU P

tSCLK, SEN/SEN2_INACTIVE

tSEN/SEN2_INACTIVE

1726

7-10

6

SEN/SEN2

Figure 2. Serial Port Register Timing Diagram

Page 6: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 6 of 39

ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Rating Supply Voltage

VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

4.3 V

DVDD, VCC_VVA 2.3 V IF Input Power 5 dBm I/Q Input Power 5 dBm LO Input Power 9 dBm Maximum Junction Temperature 125°C Maximum Power Dissipation1 2.9 W Lifetime at Maximum Junction Temperature (TJ) 1 ×106 hours Operating Case Temperature Range −40°C to +85°C Storage Temperature Range −55°C to +125°C Lead Temperature (Soldering 60 sec) 260°C Moisture Sensitivity Level (MSL) Rating2 MSL3 Electrostatic Discharge (ESD) Sensitivity

Human Body Model (HBM) 1250 V Field Induced Charged Device Model

(FICDM) 750 V

1 The maximum power dissipation is a theoretical number calculated by

(TJ − 85°C)/θJC_TOP. 2 Based on IPC/JEDEC J-STD-20 MSL classifications.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

θJA is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance.

θJA and θJC must only be used to compare the thermal performance of the different packages if all test conditions listed are similar to JEDEC specifications. Instead, ѰJT and ѰJB can be used to calculate the junction temperature of the device by using the following equations:

TJ = (P × ѰJT) + TTOP (1)

where: P refers to the total power dissipation in the chip (W). ѰJT refers to the junction to top thermal characterization number. TTOP refers to the package top temperature (°C) and is measured at the top center of the package.

TJ = (P × ѰJB) + TBOARD (2)

where: P refers to the total power dissipation in the chip (W). ѰJB refers to the junction to board thermal characterization number. TBOARD refers to the board temperature measured on the midpoint of the longest side of the package, no more than 1 mm from the edge of the package body (°C).

As stated in JEDEC51-12, Equation 1 and Equation 2 must be used when no heat sink/heat spreader is present. When a heat sink/heat spreader is added, estimating and calculating junction temperature can be achieved using θJC_TOP.

Table 4. Thermal Resistance Package Type1 θJA

2 θJC_TOP3 θJB

4 ΨJT5 ΨJB

6 Unit CC-40-5 28 13.8 11.1 6.4 13.8 °C/W 1 The thermal resistance values specified in Table 4 are simulated based on

JEDEC specifications, unless specified otherwise, and must be used in compliance with JESD51-12.

2 θJA is the junction to ambient thermal resistance in a natural convection, JEDEC environment.

3 θJC_TOP is the junction to case (top) JEDEC thermal resistance. 4 θJB is the junction to board JEDEC thermal resistance. 5 ΨJT is the junction to top JEDEC thermal characterization parameter. 6 ΨJB is the junction to board JEDEC thermal characterization parameter.

ESD CAUTION

Page 7: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 7 of 39

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS ADMV1013

TOP VIEW(Not to Scale)

1726

7-00

2

RST 1DVDD 2SCLK 3

SDI 4SDO 5

BG_RBIAS2 6VCC_DRV 7

GND 8RF 9

GND 10 VENV_N21VENV_P22VCC_BG223IF_Q24Q_N25Q_P26GND27I_P28I_N29IF_I30

VCC2

_DRV

11

DNC

12

DNC

13

VCC_

VVA

14

VCTR

L1

15

VCTR

L2

16

VCC_

AMP2

17

SEN2

18

VCC_

ENV

19

VCC_

AMP1

20

DNC

31

VCC_

MIX

ER

32

VCC_

BG

33

BG_R

BIAS

1

34

VCC_

QUA

D

35

GND

36

LON

37

LOP

38

GND

39

SEN

40

NOTES1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.2. EXPOSED PAD. SOLDER THE EXPOSED PAD TO A LOW IMPEDANCE GROUND PLANE.

Figure 3. Pin Configuration

Table 5. Pin Function Descriptions Pin No. Mnemonic Description 1 RST SPI Reset. Connect this pin to logic high for normal operation. The SPI logic is 1.8 V. 2 DVDD 1.8 V SPI Digital Supply. 3 SCLK SPI Clock Digital Input. 4 SDI SPI Serial Data Input. 5 SDO SPI Serial Data Output. 6 BG_RBIAS2 Voltage Gain Amplifier (VGA) Chip Band Gap Circuit, External High Precision Resistor. Place a 1.1 kΩ,

high precision resistor shunt to ground close to this pin. 7 VCC_DRV 3.3 V Power Supply for RF Driver. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin. 8, 10, 27, 36, 39 GND Ground. 9 RF RF Output. This pin is dc-coupled internally to GND and matched to 50 Ω single ended. 11 VCC2_DRV 3.3 V Power Supply for RF Predriver. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin. 12, 13, 31 DNC Do Not Connect. Do not connect to this pin. 14 VCC_VVA 1.8 V Power Supply for VVA Control Circuit. Place a 100 pF, 0.01 µF, and a 10 µF capacitor close to this pin. 15 VCTRL1 RF Voltage Variable Attenuator 1 (VVA1) Control Voltage. Place a 1 kΩ series resistor with this pin. 16 VCTRL2 RF Voltage Variable Attenuator 2 (VVA2) Control Voltage. Place a 1 kΩ series resistor with this pin. 17 VCC_AMP2 3.3 V Power Supply for RF Amplifier 2 (AMP2). Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to

this pin. 18 SEN2 SPI Serial Enable for VGA Chip. Connect this pin with Pin 40 (SEN).

19 VCC_ENV 3.3 V Power Supply for Envelope Detector. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin. 20 VCC_AMP1 3.3 V Power Supply for RF Amplifier 1 (AMP1). Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to

this pin. 21 VENV_N Negative Differential Envelope Detector Output. 22 VENV_P Positive Differential Envelope Detector Output. 23 VCC_BG2 3.3 V Power Supply for VGA Chip Band Gap Circuit. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor

close to this pin. 24, 30 IF_Q, IF_I IF Single-Ended Complex Inputs. These pins are internally ac-coupled. When in IF mode, Pin 25 (Q_P),

Pin 26 (Q_N), Pin 28 (I_P), and Pin 29 (I_N) must be kept floating. 25, 26 Q_N, Q_P Differential Baseband Q Inputs. These pins are dc-coupled. Do not connect these pins in IF mode. 28, 29 I_P, I_N Differential Baseband I Inputs. These pins are dc-coupled. Do not connect these pins in IF mode.

Page 8: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 8 of 39

Pin No. Mnemonic Description 32 VCC_MIXER 3.3 V Power Supply for Mixer. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin. 33 VCC_BG 3.3 V Power Supply for Mixer Chip Band Gap Circuit. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor

close to this pin. 34 BG_RBIAS1 Mixer Chip Band Gap Circuit, External High Precision Resistor. Place a 1.1 kΩ, high precision resistor

shunt to ground close to this pin. 35 VCC_QUAD 3.3 V Power Supply for Quadruppler. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin. 37, 38 LON, LOP Negative and Positive Differential Local Oscillator Input. This pin is dc-coupled internally to ground

and matched to 100 Ω differential or 50 Ω single ended. If using the LO as single ended, terminate the unused LO port with 50 Ω impedance to ground.

40 SEN SPI Serial Enable for Mixer Chip. Connect this pin with Pin 18 (SEN2).

EPAD Exposed Pad. Solder the exposed pad to a low impedance ground plane.

Page 9: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 9 of 39

TYPICAL PERFORMANCE CHARACTERISTICS I/Q MODE I/Q amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted. VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise specified. Measurements in I/Q mode are measured as a composite of the I and Q channel performance, VCM = 0 V, Register 0x03, Bit 7 = 0, and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q fBB = 100 MHz.

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

35

–50

–20

–30

–10

–50

10

30

–25

–35–40–45

–15

5

252015

CONV

ERSI

ON

GAI

N (d

B)

+85°C AT 1.8V UPPER SIDEBAND+25°C AT 1.8V UPPER SIDEBAND–40°C AT 1.8V UPPER SIDEBAND

+85°C AT 0.8V UPPER SIDEBAND+25°C AT 0.8V UPPER SIDEBAND–40°C AT 0.8V UPPER SIDEBAND

+85°C AT 0V UPPER SIDEBAND+25°C AT 0V UPPER SIDEBAND–40°C AT 0V UPPER SIDEBAND

1726

7-00

3

Figure 4. Conversion Gain vs. RF Frequency (fRF) at Three Different Gain

Settings for Various Temperatures, fBB = 100 MHz (Upper Sideband) 30

–5

0

5

20

25

15

10

23 25 27 31 35 3929 33 37 41 43 45

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1726

7-00

4

Figure 5. Conversion Gain vs. RF Frequency at for Various Supply

Voltages, fBB = 100 MHz (Upper Sideband) 30

–5

0

5

20

25

15

10

23 25 27 31 35 3929 33 37 41 43 45

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1726

7-00

5

Figure 6. Conversion Gain vs. RF Frequency at for Various LO Inputs,

fBB = 100 MHz (Upper Sideband)

30

–30

–15

–25

–5

5

–10

–20

0

10

15

20

25

0 0.2 0.4 0.8 1.2 1.60.6 1.0 1.4 1.8

CONV

ERSI

ON

GAI

N (d

B)VCTRL (V)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 9GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

1726

7-00

6

Figure 7. Conversion Gain vs. VCTRL at Various Temperatures and

fRF = 28 GHz and 39 GHz, fBB = 100 MHz 28

0

10

2

14

18

12

64

8

16

20222426

0 0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0

CONV

ERSI

ON

GAI

N (d

B)

BASEBAND FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1726

7-00

7

Figure 8. Conversion Gain vs. Baseband Frequency at

fRF = 28 GHz and 39 GHz (Upper Sideband) 28

0

10

2

14

18

12

64

8

16

20222426

0 0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0

CONV

ERSI

ON

GAI

N (d

B)

BASEBAND FREQUENCY (GHz)

39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-00

8

Figure 9. Conversion Gain vs. Baseband Frequency at

fRF = 28 GHz and 39 GHz (Lower Sideband)

Page 10: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 10 of 39

23 25 27 31 35 3929 33 37 41 43 45

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

28

0

10

2

14

18

12

64

8

16

20222426

1726

7-00

9

Figure 10. Output IP3 vs. RF Frequency at Maximum Gain for

Various Temperatures, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz (Upper Sideband)

23 25 27 31 35 3929 33 37 41 43 45

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

28

0

10

2

14

18

12

64

8

16

20222426

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1726

7-01

0

Figure 11. Output IP3 vs. RF Frequency at Maximum Gain for

Supply Voltages, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz (Upper Sideband)

23 25 27 31 35 3929 33 37 41 43 45

OUT

PUT

IP3

(dBm

)

RF FREQUENCY (GHz)

28

0

10

2

14

18

12

64

8

16

20222426

1726

7-0 1

1

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

Figure 12. Output IP3 vs. RF Frequency at Maximum Gain for

Various LO Inputs, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing, fBB = 100 MHz (Upper Sideband)

30

–20

0

–10

–5

–15

5

10

15

20

25

0 0.2 0.4 0.8 1.2 1.60.6 1.0 1.4 1.8

OUT

PUT

IP3

(dBm

)

VCTRL (V)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1726

7-01

2

Figure 13. Output IP3 vs. VCTRL, RF Amplitude = −20 dBm per Tone at

20 MHz Spacing, fBB = 100 MHz at fRF = 28 GHz and 39 GHz (Upper Sideband)

28

0

10

2

14

18

12

64

8

16

20222426

0 0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0

OUT

PUT

IP3

(dBm

)

BASEBAND FREQUENCY (GHz)

39GHz UPPER BASEBAND28GHz UPPER BASEBAND39GHz LOWER BASEBAND28GHz LOWER BASEBAND

1726

7-01

3

Figure 14. Output IP3 vs. Baseband Frequency at fRF = 28 GHz and 39 GHz

at Maximum Gain, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing (Upper Sideband and Lower Sideband)

24.0

22.2

22.6

23.0

22.4

22.8

23.2

23.4

23.6

23.8

–20 –19 –18 –15 –11–17 –13–16 –12–14 –10

OUT

PUT

IP3

(dBm

)

TOTAL INPUT POWER (dBm)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1726

7-01

4

Figure 15. Output IP3 vs. Total Input Power at 20 MHz Spacing,

fBB = 100 MHz, fRF = 28 GHz and 39 GHz (Upper Sideband)

Page 11: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 11 of 39

50

0

5

15

25

10

20

30

35

40

45

NOIS

E FI

GUR

E (d

B)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

1726

7-01

5

Figure 16. Noise Figure vs. RF Frequency at Maximum Gain for Various Temperatures, fBB = 100 MHz (Upper Sideband)

50

0

5

15

25

10

20

30

35

40

45

NOIS

E FI

GUR

E (d

B)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1726

7-01

6

Figure 17. Noise Figure vs. RF Frequency for Various Supply Voltages,

fBB = 100 MHz (Upper Sideband)

50

0

5

15

25

10

20

30

35

40

45

NOIS

E FI

GUR

E (d

B)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1726

7-01

7

Figure 18. Noise Figure vs. RF Frequency for Various LO Inputs, fBB = 100 MHz (Upper Sideband)

45

0

15

10

5

20

25

30

35

40

0 0.2 0.4 0.8 1.2 1.60.6 1.0 1.4 1.8

NOIS

E FI

GUR

E (d

B)

VCTRL (V)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

1726

7-01

8

Figure 19. Noise Figure vs. VCTRL for Various Temperatures at

fRF = 28 GHz 39 GHz, fBB = 100 MHz

50

0

5

15

25

10

20

30

35

40

45

0 0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0

NOIS

E FI

GUR

E (d

B)

BASEBAND FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1726

7-01

9

Figure 20. Noise Figure vs. Baseband Frequency at

fRF = 28 GHz and 39 GHz (Upper Sideband)

50

0

5

15

25

10

20

30

35

40

45

0 0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0

NOIS

E FI

GUR

E (d

B)

BASEBAND FREQUENCY (GHz)

39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-02

0

Figure 21. Noise Figure vs. Baseband Frequency at fRF = 28 GHz and 39 GHz (Lower Sideband)

Page 12: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 12 of 39

45

0

15

10

5

20

25

30

35

40

SIDE

BAND

REJ

ECTI

ON

(dBc

)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

1726

7-02

1

Figure 22. Sideband Rejection vs. RF Frequency at Maximum Gain for Various Temperatures, fBB = 100 MHz (Upper Sideband)

45

0

15

10

5

20

25

30

35

40

SIDE

BAND

REJ

ECTI

ON

(dBc

)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1726

7-02

3

Figure 23. Sideband Rejection vs. RF Frequency at for Various Supply

Voltages, fBB = 100 MHz (Upper Sideband)

45

–5

0

15

10

5

20

25

30

35

40

SIDE

BAND

REJ

ECTI

ON

(dBc

)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1726

7-02

4

Figure 24. Sideband Rejection vs. RF Frequency for Various LO Inputs,

fBB = 100 MHz (Upper Sideband)

45

0

15

10

5

20

25

30

35

40

SIDE

BAND

REJ

ECTI

ON

(dBc

)

0 0.2 0.4 0.8 1.2 1.60.6 1.0 1.4 1.8VCTRL (V)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

1726

7-02

5

Figure 25. Sideband Rejection vs. VCTRL for Various Temperatures at

fRF = 28 GHz and 39 GHz, fBB = 100 MHz

50

0

5

15

25

10

20

30

35

40

45

0 0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0

SIDE

BAND

REJ

ECTI

ON

(dBc

)

BASEBAND FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-02

6

Figure 26. Sideband Rejection vs. Baseband Frequency at

fRF = 28 GHz and 39 GHz (Upper Sideband and Lower Sideband)

Page 13: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 13 of 39

20

–10

–5

0

5

10

15

23 25 27 31 35 3929 33 37 41 43 45

OUT

PUT

P1dB

(dBm

)

RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

1726

7-02

7

Figure 27. Output P1dB vs. RF Frequency at Maximum Gain for Various Temperatures, fBB = 100 MHz (Upper Sideband)

20

–20

–10

–15

–5

0

5

10

15

23 25 27 31 35 3929 33 37 41 43 45

OUT

PUT

P1dB

(dBm

)

RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND

1726

7-02

8

Figure 28. Output P1dB vs. RF Frequency for Various Supply Voltages, fBB = 100 MHz (Upper Sideband)

20

–20

–10

–15

–5

0

5

10

15

23 25 27 31 35 3929 33 37 41 43 45

OUT

PUT

P1dB

(dBm

)

RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND

1726

7-02

9

Figure 29. Output P1dB vs. RF Frequency for Various LO Inputs,

fBB = 100 MHz (Upper Sideband)

20

–20

–10

–15

–5

0

5

10

15

0 0.2 0.4 0.8 1.2 1.60.6 1.0 1.4 1.8

OUT

PUT

P1dB

(dBm

)

VCTRL (V)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

1726

7-03

0

Figure 30. Output P1dB vs. VCTRL for Various Temperatures at

fRF = 28 GHz and 39 GHz, fBB = 100 MHz

20

–5

0

5

10

15

0 0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0

OUT

PUT

P1dB

(dBm

)

BASEBAND FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND

1726

7-03

1

Figure 31. Output P1dB vs. Baseband Frequency at fRF = 28 GHz and 39 GHz (Upper Sideband)

20

–5

0

5

10

15

0 0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0

OUT

PUT

P1dB

(dBm

)

BASEBAND FREQUENCY (GHz)

39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-03

2

Figure 32. Output P1dB vs. Baseband Frequency at

fRF = 28 GHz and 39 GHz (Lower Sideband)

Page 14: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 14 of 39

IF MODE IF amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted. VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise specified. Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, and fIF = 3.5 GHz.

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

28

0

10

2

14

18

12

64

8

16

20222426

CONV

ERSI

ON

GAI

N (d

B)

1726

7-03

5

Figure 33. Conversion Gain vs. RF Frequency at Maximum Gain for Various

Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

28

0

10

2

14

18

12

64

8

16

20222426

CONV

ERSI

ON

GAI

N (d

B)

1726

7-03

6

Figure 34. Conversion Gain vs. RF Frequency at Maximum Gain for Various Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

28

0

10

2

14

18

12

64

8

16

20222426

CONV

ERSI

ON

GAI

N (d

B)

1726

7-03

7

Figure 35. Conversion Gain vs. RF Frequency at Maximum Gain for Various LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

28

0

10

2

14

18

12

64

8

16

20222426

CONV

ERSI

ON

GAI

N (d

B)

0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0IF FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-03

8

Figure 36. Conversion Gain vs. IF Frequency at fRF = 28 GHz and 39 GHz at

Maximum Gain (Upper Sideband and Lower Sideband)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

0 0.2 0.4 0.8 1.2 1.60.6 1.0 1.4 1.8VCTRL (V)

30

–40

–20

–30

–10

0

10

20

CONV

ERSI

ON

GAI

N (d

B)

1726

7-03

9

Figure 37. Conversion Gain vs. VCTRL at Various Temperatures at

fRF = 28 GHz and 39 GHz, fIF = 3.5 GHz (Upper Sideband)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

0 0.2 0.4 0.8 1.2 1.60.6 1.0 1.4 1.8VCTRL (V)

30

–40

–20

–30

–10

0

10

20

CONV

ERSI

ON

GAI

N (d

B)

1726

7-04

0

Figure 38. Conversion Gain vs. VCTRL at Various Temperatures at

fRF = 28 GHz and 39 GHz, fIF = 3.5 GHz (Lower Sideband)

Page 15: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 15 of 39

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

28

0

10

2

14

18

12

64

8

16

20222426

OUT

PUT

IP3

(dBm

)

1726

7-04

1

Figure 39. Output IP3 vs. RF Frequency at Maximum Gain for Various Temperatures, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing,

fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

28

0

10

2

14

18

12

64

8

16

20222426

OUT

PUT

IP3

(dBm

)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

1726

7-04

2

Figure 40. Output IP3 vs. RF Frequency at Maximum Gain for Various Supply Voltages, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing,

fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

28

0

10

2

14

18

12

64

8

16

20222426

OUT

PUT

IP3

(dBm

)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

1726

7-04

3

Figure 41. Output IP3 vs. RF Frequency at Maximum Gain for Various LO Inputs, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing,

fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

0.20 0.4 0.6 0.8 1.2 1.61.1 1.4 1.8VCTRL (V)

OUT

PUT

IP3

(dBm

)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND–5

5

–10

0

10

15

20

25

1726

7-04

4

Figure 42. Output IP3 vs. VCTRL at fRF = 28 GHz and 39 GHz,

RF Amplitude = −20 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

28

0

10

2

14

18

12

64

8

16

20222426

OUT

PUT

IP3

(dBm

)

0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0IF FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-04

5

Figure 43. Output IP3 vs. IF Frequency at fRF = 28 GHz and 39 GHz at

Maximum Gain, RF Amplitude = −20 dBm per Tone at 20 MHz Spacing (Upper Sideband and Lower Sideband)

25

17

16

18

20

17

19

21

22

23

24

OUT

PUT

IP3

(dBm

)

–20 –19 –16 –12–18 –14–17 –13–15 –11 –10TOTAL INPUT POWER (dBm)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-04

6

Figure 44. Output IP3 vs. Total Input Power at fRF = 28 GHz and 39 GHz at 20 MHz Spacing, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

Page 16: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 16 of 39

50

10

15

25

20

30

35

40

45

NOIS

E FI

GUR

E (d

B)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

1726

7-04

7

Figure 45. Noise Figure vs. RF Frequency at Maximum Gain for Various

Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

50

10

15

25

20

30

35

40

45

NOIS

E FI

GUR

E (d

B)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

1726

7-04

8

Figure 46. Noise Figure vs. RF Frequency at Maximum Gain for Various Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

50

10

15

25

20

30

35

40

45

NOIS

E FI

GUR

E (d

B)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

1726

7-04

9

Figure 47. Noise Figure vs. RF Frequency at Maximum Gain for Various

LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

NOIS

E FI

GUR

E (d

B)

0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0IF FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

50

0

5

15

25

10

20

30

35

40

45

1726

7-05

0

Figure 48. Noise Figure vs. IF Frequency at fRF = 28 GHz and 39 GHz at

Maximum Gain (Upper Sideband and Lower Sideband)

55

50

10

15

25

20

30

35

40

45

NOIS

E FI

GUR

E (d

B)

0 0.2 0.4 0.8 1.2 1.60.6 1.0 1.4 1.8VCTRL (V)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

1726

7-05

1

Figure 49. Noise Figure vs. VCTRL at Various Temperatures, fIF = 3.5 GHz,

(Upper Sideband and Lower Sideband)

0 0.2 0.4 0.8 1.2 1.60.6 1.0 1.4 1.8VCTRL (V)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

50

10

15

25

20

30

35

40

45

NOIS

E FI

GUR

E (d

B)

1726

7-05

2

Figure 50. Noise Figure vs. VCTRL for Various Temperatures at fRF = 28 GHz and

39 GHz, fIF = 3.5 GHz (Lower Sideband)

Page 17: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 17 of 39

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

20

–10

–5

0

5

10

15

OUT

PUT

P1dB

(dBm

)

1726

7-05

3

Figure 51. Output P1dB vs. RF Frequency at Maximum Gain for Various Temperatures, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

20

–10

–5

0

5

10

15

OUT

PUT

P1dB

(dBm

)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

1726

7-05

4

Figure 52. Output P1dB vs. RF Frequency at Maximum Gain for Various Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

–10

–5

0

5

10

15

OUT

PUT

P1dB

(dBm

)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

1726

7-05

5

Figure 53. Output P1dB vs. RF Frequency at Maximum Gain for Various LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

20

–10

–5

0

5

10

15

OUT

PUT

P1dB

(dBm

)

0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0IF FREQUENCY (GHz)

0

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-05

6

Figure 54. Output P1dB vs. IF Frequency at fRF = 28 GHz and 39 GHz at Maximum Gain (Upper Sideband and Lower Sideband)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

VCTRL (V)

20

–25

–15

–5

–10

–20

0

5

10

15

OUT

PUT

P1dB

(dBm

)

1726

7-05

7

0.20 0.4 0.6 0.8 1.2 1.61.1 1.4 1.8

Figure 55. Output P1dB vs. VCTRL for Various Temperatures at fRF = 28 GHz and 39 GHz, fIF = 3.5 GHz (Upper Sideband)

+85°C AT 39GHz+25°C AT 39GHz–40°C AT 39GHz+85°C AT 28GHz+25°C AT 28GHz–40°C AT 28GHz

VCTRL (V)

20

–25

–15

–5

–10

–20

0

5

10

15

OUT

PUT

P1dB

(dBm

)

1726

7-05

8

0.20 0.4 0.6 0.8 1.2 1.61.1 1.4 1.8

Figure 56. Output P1dB vs. VCTRL for Various Temperatures at fRF = 28 GHz and 39 GHz, fIF = 3.5 GHz (Lower Sideband)

Page 18: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 18 of 39

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND+85°C LOWER SIDEBAND+25°C LOWER SIDEBAND–40°C LOWER SIDEBAND

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

60

0

15

25

35

20

5

10

30

40

45

50

55

SIDE

BAND

REJ

ECTI

ON

(dBc

)

1726

7-05

9

Figure 57. Sideband Rejection vs. RF Frequency at Maximum Gain for

Various Temperatures, fIF = 3.5 GHz, Uncalibrated (Upper Sideband and Lower Sideband)

+85°C UPPER SIDEBAND+25°C UPPER SIDEBAND–40°C UPPER SIDEBAND

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

60

0

15

25

35

20

5

10

30

40

45

50

55

SIDE

BAND

REJ

ECTI

ON

(dBc

)

1726

7-06

0

Figure 58. Sideband Rejection vs. RF Frequency at Maximum Gain for Various

Temperatures, fIF = 3.5 GHz, Calibrated at 25°C (Upper Sideband). Note: Calibrated Using LOAMP_PH_ADJ_ Q_FINE and LOAMP_PH_ADJ_I_FINE Bits

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

0

15

25

35

20

5

10

30

40

SIDE

BAND

REJ

ECTI

ON

(dBc

)

3.5V UPPER SIDEBAND3.3V UPPER SIDEBAND3.1V UPPER SIDEBAND3.5V LOWER SIDEBAND3.3V LOWER SIDEBAND3.1V LOWER SIDEBAND

1726

7-06

1

Figure 59. Sideband Rejection vs. RF Frequency at Maximum Gain for Various

Supply Voltages, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

+6dBm UPPER SIDEBAND0dBm UPPER SIDEBAND–6dBm UPPER SIDEBAND+6dBm LOWER SIDEBAND0dBm LOWER SIDEBAND–6dBm LOWER SIDEBAND

1726

7-06

2

23 25 27 31 35 3929 33 37 41 43 45RF FREQUENCY (GHz)

0

15

25

35

20

5

10

30

40

SIDE

BAND

REJ

ECTI

ON

(dBc

)

Figure 60. Sideband Rejection vs. RF Frequency at Maximum Gain for

Various LO Inputs, fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

60

0

15

25

35

20

5

10

30

40

45

50

55

SIDE

BAND

REJ

ECTI

ON

(dBc

)

0.5 1.0 2.5 4.5 6.51.5 3.5 5.52.0 4.0 6.03.0 5.0 7.0IF FREQUENCY (GHz)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-06

3

Figure 61. Sideband Rejection vs. IF Frequency at fRF = 28 GHz and 39 GHz at

Maximum Gain (Upper Sideband and Lower Sideband)

SIDE

BAND

REJ

ECTI

ON

(dBc

)

0.2 0.8 1.60.4 1.20.6 1.41.0 1.8VCTRL (V)

39GHz UPPER SIDEBAND28GHz UPPER SIDEBAND39GHz LOWER SIDEBAND28GHz LOWER SIDEBAND

1726

7-06

40

5

10

15

20

25

30

35

40

Figure 62. Sideband Rejection vs. VCTRL at fRF = 28 GHz and 39 GHz,

fIF = 3.5 GHz (Upper Sideband and Lower Sideband)

Page 19: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 19 of 39

ENVELOPE DETECTOR PERFORMANCE IF and I/Q amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, IF fIF = 3.5 GHz.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance, VCM = 0 V, Register 0x03, Bit 7 = 0, and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q fBB = 100 MHz.

VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise specified.

Envelope detector measurements made with Register 0x03, Bit 5 = 1.

–70

–60

–50

–40

–30

–20

–10

0

25

50

75

100

125

150

175

200

23 25 27 29 31 33 35 37 39 41 43 45

ENVE

LOPE

PO

UTD

ELTA

(dBm

)

VENV

_N/V

ENV_

PDE

LTA

(mV)

RF FREQUENCY (GHz)

VENV_N/VENV_P DELTA, POUT = 13dBmVENV_N/VENV_P DELTA, POUT = 5dBmVENV_N/VENV_P DELTA, POUT = 0dBm

ENVELOPE POUT, POUT = 13dBmENVELOPE POUT, POUT = 5dBmENVELOPE POUT, POUT = 0dBm

1726

7-06

5

Figure 63. VENV_N/VENV_P Delta and Envelope POUT Delta vs. RF Frequency

at Various Output Power Levels, Envelope Frequency = 100 MHz, VCTRL = 1800 mV, TA = 25°C, LO = 0 dBm, IF = 2 GHz (Upper Sideband)

–70–65–60–55–50–45–40–35–30–25–20–15–10–5

0

50 100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500

OU

TPU

TLE

VEL

(dB

m)

ENVELOPE FREQUENCY (MHz)

NORMALIZED HD1, 1×NORMALIZED HD2, 2×

1726

7-06

6

Figure 64. Output Level vs. Envelope Frequency for Normalized Harmonic

Distortion (HD1), 1× and Normalized Harmonic Distortion(HD2), 2×, fRF = 28 GHz, LO = 0 dBm at 25°C, HD1 and HD2 Measurement Performed

with Two Tones with Delta Equal to Envelope Frequency, HD2 Normalized to HD1 Level at 50 MHz

020406080100120140160180200220240260280

–120–110–100–90–80–70–60–50–40–30–20–10

01020

–20 –18 –16 –14 –12 –10 –8 –6 –4 –2 0 2

VENV

_N/V

ENV_

PDE

LTA

(mV)

P OUT

(dB

m)

POWER IN TOTAL (dBm)

POUT RFPOUT ENVELOPE AT HD1POUT ENVELOPE AT HD2VENV_N/VENV_P DELTA

1726

7-06

7

Figure 65. POUT and VENV_N/VENV_P Delta vs. Power In Total for POUT RF, POUT Envelope HD1, POUT Envelope HD2, and VENV_N/VENV_P Delta,

Measurements Performed with Two Tones with 100 MHz Separation, fRF = 28 GHz, VCTRL = 1800 mV

Page 20: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 20 of 39

0102030405060708090100110120130140

–70–65–60–55–50–45–40–35–30–25–20–15–10–5

0

00.

10.

20.

30.

40.

50.

60.

70.

80.

91.

01.

11.

21.

31.

41.

51.

61.

71.

8

V EN

V _N/

VENV

_P D

ELTA

(mV)

HD1

P OUT

ENV

ELO

PE (d

Bm)

VCTRL (V)

1726

7-06

8

POUT ENVELOPE AT PIN = –10dBmPOUT ENVELOPE AT PIN = –15dBmVENV_N/VENV_P DELTA, PIN = –10dBmVENV_N/VENV_P DELTA, PIN = –15dBm

Figure 66. HD1 POUT Envelope and VENV_N/VENV_P Delta vs. VCTRL at

Various Total Input Power (PIN) Levels, Measurements Performed at 28 GHz with Two Input Tones with Separation of 100 MHz

–60

–50

–40

–30

–20

–10

0

–20

–18

–16

–14

–12

–10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16

P OUT

ENVE

LOPE

(dBm

)

POUT RF PER TONE (dBm)

POUT ENVELOPE AT +25°CPOUT ENVELOPE AT +85°CPOUT ENVELOPE AT –40°C

1726

7-06

9

Figure 67. POUT Envelope vs. POUT RF per Tone at Various Temperatures at

fRF = 33 GHz, Measurement Performed at 3.5 GHz IF with Two Tones at 100 MHz Spacing, VCTRL = 1800 mV

Page 21: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 21 of 39

RETURN LOSS AND ISOLATION IF and I/Q amplitude = −20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, and fIF = 3.5 GHz.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance, VCM = 0 V, Register 0x03, Bit 7 = 0, and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q fBB = 100 MHz.

VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise specified.

Envelope detector measurements made with Register 0x03, Bit 5 = 1.

0

–35

–30

–25

–20

–15

–10

–5

23 25 27 31 35 3929 33 37 41 43 45

RF R

ETUR

N LO

SS (d

Bm)

RF FREQUENCY (GHz) 1726

7-07

1

0V0.9V1.8V

Figure 68. RF Return Loss vs. RF Frequency at Various VCTRL Voltages

–35

–30

–25

–20

–15

–10

–5

0

4 5 6 7 8 9 10 11 12

LOR

ETU

RNLO

SS(d

B)

LO FREQUENCY (GHz)

LO DIFFERENTIAL

LOPLON

1726

7-07

2

Figure 69. LO Return Loss vs. LO Frequency

–35

–30

–25

–20

–15

–10

–5

0

0 1 2 3 4 5 6 7IF

RETU

RN

LOSS

(dB)

IF FREQUENCY (GHz) 1726

7-07

5

I SIDEQ SIDE

Figure 70. IF Return Loss vs. IF Frequency (Taken Without Hybrid)

–35

–30

–25

–20

–15

–10

–5

0

0 1 2 3 4 5 6 7

I/QDI

FFER

ENTI

AL R

ETUR

NLO

SS(d

B)

FREQUENCY (GHz) 1726

7-07

4

I SIDEQ SIDE

Figure 71. I/Q Differential Return Loss vs. Frequency

(Taken Without Hybrids or Baluns)

Page 22: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 22 of 39

0

–105

–80

–100

–60

–70

–90

–50

–40

–20

–30

–10

–75

–95

–55

–65

–85

–45

–35

–15

–25

–5

4 6 8 10 12

LO T

O R

F LE

AKAG

E (d

Bc)

LO FREQUENCY (GHz)

1× LO AT +85°C1× LO AT +25°C1× LO AT –40°C

4× LO AT +85°C4× LO AT +25°C4× LO AT –40°C

1726

7-07

3

5× LO AT +85°C5× LO AT +25°C5× LO AT –40°C

Figure 72. LO to RF Leakage vs. LO Frequency for 4× LO, 5× LO, and 1× LO at Various Temperatures (Uncalibrated)

–85–80–75–70–65–60–55–50–45–40–35–30–25–20–15–10–50

4 5 6 7 8 9 10 11 12

1× L

O L

EAKA

GE

(dBm

)

LO FREQUENCY (GHz)

1× LO LEAKAGE, VCTRL = 0mV1× LO LEAKAGE, VCTRL = 300mV1× LO LEAKAGE, VCTRL = 600mV1× LO LEAKAGE, VCTRL = 900mV1× LO LEAKAGE, VCTRL = 1200mV1× LO LEAKAGE, VCTRL = 1500mV1× LO LEAKAGE, VCTRL = 1800mV

1726

7-07

6

Figure 73. 1× LO Leakage vs. LO Frequency at Different VCTRL Settings

(Uncalibrated)

80

–70

–60

–50

–40

–30

–20

–10

0

4 5 6 7 8 9 10 11 12

4xLO

TO R

FLE

AKA

GE

(dB

m)

LO FREQUENCY (GHz)

–40°C+25°C+85°C

1726

7-07

7

Figure 74. 4× LO to RF Leakage vs. LO Frequency at Various Temperatures

(Calibrated). Note: Calibrated at Each Frequency Using MXER_OFF_ADJ_I_N, MXER_OFF_ADJ_I_P, MXER_OFF_ADJ_Q_N, and MXER_OFF_ADJ_Q_P Bits

at TA = 25°C

–85–80–75–70–65–60–55–50–45–40–35–30–25–20–15–10–50

4 5 6 7 8 9 10 11 12

5× L

O L

EAKA

GE

(dBm

)

LO FREQUENCY (GHz) 1726

7-27

6

5× LO LEAKAGE, VCTRL = 0mV5× LO LEAKAGE, VCTRL = 300mV5× LO LEAKAGE, VCTRL = 600mV5× LO LEAKAGE, VCTRL = 900mV5× LO LEAKAGE, VCTRL = 1200mV5× LO LEAKAGE, VCTRL = 1500mV5× LO LEAKAGE, VCTRL = 1800mV

Figure 75. 5× LO Leakage vs. LO Frequency at Different VCTRL Settings

(Uncalibrated)

–85–80–75–70–65–60–55–50–45–40–35–30–25–20–15–10–50

4 5 6 7 8 9 10 11 12

4× L

O L

EAKA

GE

(dBm

)

LO FREQUENCY (GHz) 1726

7-17

6

4× LO LEAKAGE, VCTRL = 0mV4× LO LEAKAGE, VCTRL = 300mV4× LO LEAKAGE, VCTRL = 600mV

4× LO LEAKAGE, VCTRL = 900mV4× LO LEAKAGE, VCTRL = 1200mV4× LO LEAKAGE, VCTRL = 1500mV4× LO LEAKAGE, VCTRL = 1800mV

Figure 76. 4× LO Leakage vs. LO Frequency at Different VCTRL Settings

(Uncalibrated)

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

4 5 6 7 8 9 10 11 12

4× L

O T

O R

F LE

AKAG

E (d

Bm)

LO FREQUENCY (GHz)

VCTRL = 0VVCTRL = 0.4VVCTRL = 0.8VVCTRL = 1.2VVCTRL = 1.4VVCTRL = 1.8V

1726

7-08

0

Figure 77. 4× LO to RF Leakage vs. LO Frequency at Various VCTRL (Calibrated)

Note: Calibrated at Each Frequency Using MXER_OFF_ADJ_I_N, MXER_OFF_ADJ_I_P, MXER_OFF_ADJ_Q_N, and MXER_OFF_ADJ_Q_P Bits

at VCTRL = 1800 mV

Page 23: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 23 of 39

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

4 5 6 7 8 9 10 11 12

LO L

EAKA

GE

(dBm

)

LO FREQUENCY (GHz)

+25°C, I_N–40°C, I_N+85°C, I_N

+25°C, I_P–40°C, I_P+85°C, I_P

+25°C, Q_N–40°C, Q_N+85°C, Q_N

+25°C, Q_P–40°C, Q_P+85°C, Q_P

1726

7-07

9

Figure 78. LO Leakage vs. LO Frequency at Various Temperatures at I_N, I_P,

Q_N, and Q_P (Taken Without Hybrid(s))

–35

–30

–25

–20

–15

–10

–5

0

0 1 2 3 4 5

ENVE

LOPE

DET

ECTO

RDI

FFER

ENTI

AL R

ETUR

N LO

SS (d

B)

FREQUENCY (GHz) 1726

7-08

2

Figure 79. Envelope Detector Differential Return Loss vs. Frequency

–100

–90

–80

–70

–60

–50

–40

–30

–20

–10

0

4 5 6 7 8 9 10 11 12

LO L

EAKA

GE

(dBm

)

LO FREQUENCY (GHz)

+25°C, IF_I–40°C, IF_I

+85°C, IF_I

+25°C, IF_Q–40°C, IF_Q

+85°C, IF_Q

1726

7-07

8

Figure 80. LO Leakage vs. LO Frequency at Various Temperatures at IF_I and

IF_Q Ports(Taken Without Hybrid)

Page 24: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 24 of 39

M × N SPURIOUS PERFORMANCE Mixer spurious products are measured in dBc from the RF output power level. Spurious frequencies are calculated by

|(M × IF) + (N × LO) | (for IF Mode)

|(M × IQ) + (N × LO) | (for IQ Mode)

N/A means not applicable. Blank cells in the spurious performance tables indicate that the frequency is above 50 GHz and is not measured. REF stands for reference RF output signal.

The LO frequencies are referred from the frequencies applied to the ADMV1013. IF and I/Q amplitude = −20 dBm.

VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, TA = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, and fIF = 3.5 GHz.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance, VCM = 0 V, Register 0x03, Bit 7 = 0, and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q fBB = 100 MHz.

VCTRL1 = VCTRL2. VCTRL is the attenuation voltage at the VCTRL1 and VCTRL2 pins. VCTRL = 1800 mV, unless otherwise specified.

I/Q Mode

fBB = 100 MHz at −20 dBm, LO = 6.975 GHz at +6 dBm.

N × LO 0 1 2 3 4 5 6 7

M × IQ

−2 93 105 103 122 79 109 89 108

−1 93 95 85 57 26 65 53 110

0 N/A 80 72 53 20 61 35 73

+1 93 96 74 32 REF 41 37 84

+2 93 107 86 91 57 89 91 83

fBB = 100 MHz at −20 dBm, LO = 9.725 GHz at +6 dBm, and fRF = 39 GHz.

N × LO 0 1 2 3 4 5

M × IQ

−2 97 116 95 116 89 113

−1 101 100 37 62 26 90

0 N/A 77 40 63 20 77

+1 97 91 18 36 REF 68

+2 101 118 80 99 64 103

IF Mode

fIF = 3.5 GHz at −20 dBm, LO = 6.125 GHz at +6 dBm, and fRF = 28 GHz.

N × LO 0 1 2 3 4 5 6 7 8

M × IF

−2 76 117 120 109 77 92 90 84 45

−1 68 90 80 77 23 46 56 53 44

0 N/A 71 71 26 9 34 24 20 30

+1 76 92 58 18 REF 24 32 61

+2 68 84 75 70 58 80 82 75

fIF = 3.5 GHz at −20 dBm, LO = 8.875 GHz at +6 dBm, and fRF = 39 GHz.

N × LO 0 1 2 3 4 5 6

M × IF

−2 83 132 109 96 68 99 107

−1 69 95 76 54 25 57 83

0 N/A 69 44 53 16 52

+1 83 89 24 33 REF 58

+2 69 114 93 98 75

fIF = 3.5 GHz at −20 dBm, LO = 7.875 GHz at +6 dBm, and fRF = 28 GHz.

N × LO 0 1 2 3 4 5 6 7

M × IF

−2 82 140 115 107 69 99 97 95

−1 65 120 91 41 REF 47 46

0 N/A 82 75 52 23 49 56

+1 82 94 60 70 26 75

+2 65 120 107 111 93 115

fIF = 3.5 GHz at −20 dBm, LO = 10.5 GHz at +6 dBm, and fRF = 39 GHz.

N × LO 0 1 2 3 4 5

M × IF

−2 96 122 99 91 70 94

−1 80 85 28 26 REF 64

0 N/A 83 34 43 16

+1 97 95 45 49 41

+2 79 113 88 103 102

Page 25: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 25 of 39

THEORY OF OPERATION The ADMV1013 is a wideband microwave upconverter optimized for microwave radio designs operating in the 24 GHz to 44 GHz RF frequency range. See Figure 1 for a functional block diagram of the device. The ADMV1013 digital settings are controlled via the SPI. The ADMV1013 has two modes of operation:

• Baseband quadrature modulation (I/Q mode) • Single-sideband upconversion (IF mode)

START-UP SEQUENCE To use the voltage control RF VVA1 and RF VVA2, the VCC_VVA (1.8 V) supply must be on. The VCTRL1 pin and VCTRL2 pin control the gain of the RF VVA1 and the RF VVA2. Similarly, to use the SPI control, it is necessary to first turn on DVDD and then perform a hard reset by toggling the RST pin to logic low and then to logic high.

The ADMV1013 SPI settings require the default settings to be changed during startup for optimum performance.

Set Register 0x0A to 0xE700 after each power-up or reset.

BASEBAND QUADRATURE MODULATION (I/Q MODE) In I/Q mode, the input impedance of the baseband pins (I_P, I_N, Q_P, and Q_N) are 100 Ω differential. These inputs can be loaded with a dc-coupled 100 Ω differential load. I_P and I_N are the differential baseband I inputs, and Q_P and Q_N are the differential baseband Q inputs. These inputs can operate from a VCM of 0 V to 2.6 V. The baseband I/Q ports can operate from dc to 6.0 GHz at each I and Q channel.

To set the ADMV1013 in I/Q mode, set MIXER_IF_EN bit (Register 0x03, Bit 7) to 0.

When changing the external VCM, the internal mixer gate voltage also must be changed. To make this change, set the MIXER_VGATE bits (Register 0x05, Bits[6:0]). The MIXER_ VGATE value follows the VCM such as, that for a 0 V to 1.8 V VCM, MIXER_VGATE = 23.89 VCM + 81, and for a >1.8 V to 2.6 V VCM, MIXER_VGATE = 23.75 VCM + 1.25.

SINGLE-SIDEBAND UPCONVERSION (IF MODE) The ADMV1013 features the ability to upconvert a real IF input anywhere from 0.8 GHz to 6.0 GHz while suppressing the unwanted sideband by typically better than 26 dBc. The IF inputs are quadrature to each other, 50 Ω single ended, and are internally dc-coupled. IF_I and IF_Q are the quadrature IF inputs. An external 90° hybrid is required to select the appropriate sideband. To configure the ADMV1013 in IF mode, set the MIXER_IF_EN bit (Register 0x03, Bit 7) to 1. The MIXER_IF_EN bit defaults to IF mode on SPI startup and reset.

In addition, the baseband pins (I_P, I_N, Q_P, and Q_N) must see an open load for optimum performance in IF mode.

LO INPUT PATH The LO input path operates from 5.4 GHz to 10.25 GHz with an LO amplitude range of −6 dBm to +6 dBm. The LO has an internal quadrupler (×4) and a programmable band-pass filter. The LO band-pass filter is programmable using the QUAD_ FILTERS bits (Register 0x09, Bits[3:0]). See the Performance at Different Quad Filter Settings section for more information on the QUAD_FILTERS settings.

The LO path can operate either differentially or single ended. LOP and LON are the inputs to the LO path. The LO path can switch from differential to single-ended operation by setting the QUAD_SE_MODE bits (Register 0x09, Bits[9:6]). See the Performance Between Differential vs. Single-Ended LO Input section for more information. When using the LO as single ended, the unused LO input pin must be terminated with a 50 Ω load.

Figure 81 shows a block diagram of the LO path.

AMP4 × LON4 × LOP

LONLOP

×4

1726

7-10

5

Figure 81. LO Path Block Diagram

Enable the quadrupler by setting the QUAD_PD bits (Register 0x03, Bits[13:11]) to 0x0. To power down the quadrupler, set these bits to 0x7.

SIDEBAND SUPPRESSION OPTIMIZATION Unwanted sideband can be upconverted from the quadrature error by generating the quadrature LO signals and the external quadrature inputs. Deviation from ideal quadrature (that is, total sideband rejection and no sideband tone upconverts) on these signals limits the amount of achievable sideband rejection.

The ADMV1013 offers approximately 25° of quadrature phase adjustment in the LO path quadrature signals to suppress the sideband. Make these adjustments through the LOAMP_PH_ ADJ_I_FINE bits (Register 0x05, Bits[13:7]) and the LOAMP_ PH_ADJ_Q_FINE bits (Register 0x06, Bits[13:7]). These bits reject the unwanted sideband signal. To achieve the required sideband suppression, it may be necessary to adjust the amplitude difference between the quadrature inputs, as well externally.

In I/Q mode, the recommendation is to adjust the sideband suppression through the external transceiver digital-to-analog converter (DAC).

Page 26: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 26 of 39

CARRIER FEEDTHROUGH NULLING Carrier feedthrough results from minute dc offsets that occur on the internal mixer. In an I/Q modulator, nonzero differential offsets mix with the LO and result in carrier feedthrough to the RF output. In addition to this effect, some of the signal power at the LO input couples directly to the RF output (this may be because of the bond wire to bond wire coupling or coupling through the silicon substrate). The net carrier feedthrough at the RF output is the vector combination of the signals that appear at the output because of these two effects.

The ADMV1013 offers, in IF mode, LO feedthrough offset calibration adjustment in the LO path. Make these adjustments through the MXER_OFF_ADJ_I_N bits (Register 0x07, Bits[8:2], the MXER_OFF_ADJ_I_P bits (Register 0x07, Bits[15:9]), the MXER_OFF_ADJ_Q_N bits (Register 0x08, Bits[8:2]), and the MXER_OFF_ADJ_Q_P bits (Register 0x08, Bits[15:9] in order to reject the unwanted LO signal.

For I/Q mode, the LO feedthrough offset amplitude and phase calibration optimization can be adjusted externally through a transceiver DAC.

ENVELOPE DETECTOR The ADMV1013 features an envelope detector with a pseudo differential voltage output. The envelope detector output pins are VENV_P and VENV_N. The ADMV1013 turns on with the envelope detector turned off. To turn on the envelope detector, set the DET_EN bit (Bit 5, Register 0x03). The differential voltage output of the envelope detector rises linearly to the square of the input envelope voltage to the detector. The detector output ranges from −45 dBm to −20 dBm when the input two tone power ranges from −20 dBm to 0 dBm. The envelope detector has 350 MHz, 3 dB envelope bandwidth and 1 GHz, 10 dB envelope bandwidth. The envelope detector precedes the VVA and the output driver of the ADMV1013.

POWER DOWN AND RESET The SPI of the ADMV1013 allows the user to power down the device circuits and reduce power consumption to typically 77 mW. To turn off the entire chip, set the BG_PD bit (Register 0x03, Bit 10) to 1. In addition, individual blocks of the circuit can be powered down individually. To power down the quadrupler, set the QUAD_PD bits (Register 0x03, Bits[13:11]) to 0x7. To power down the VGA, set the VGA_PD bit (Register 0x03, Bit 15) to 1. To power down the mixer, set the MIXER_PD bit (Register 0x03, Bit 14) to 1. To power down the detector, set the DET_EN bit (Register 0x03, Bit 5) to 0.

SERIAL PORT INTERFACE (SPI) The SPI of the ADMV1013 allows the user to configure the device for specific functions or operations via a 4-wire SPI port. This interface provides users with added flexibility and customization. The SPI consists of four control lines: SCLK, SDI, SDO, and active low chip select lines, SEN/SEN2. SEN and SEN2 must be connected together.

The ADMV1013 protocol consists of a write/read bit followed by six register address bits, 16 data bits, and a parity bit. Both the address and data fields are organized MSB first and end with the LSB. For a write, set the first bit to 0. For a read, set the first bit to 1.

The write cycle sampling must be performed on the rising edge. The 16 bits of the serial write data are shifted in, MSB to lower sideband. The ADMV1013 input logic level for the write cycle supports a 1.8 V interface.

For a read cycle, up to 16 bits of serial read data are shifted out, MSB first. After the 16 bits of data shift out, the parity bit shifts out. The output logic level for a read cycle is 1.8 V.

The parity bit always follows the direction of the data. If parity is not used, the transmitting end transmits zero instead of parity. The parity is odd, which means that the total number of ones transmitted during a command, including the read/write bit, the address bit, the data bit, and the parity bit, must be odd.

Figure 82 and Figure 83 show the SPI write and read protocol, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SCLK

SDI D11R/W A5 A4 A3 A2 A1 A0 D15 D14 D13 D12 PD10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

1726

7-10

7

SEN/SEN2

Figure 82. SPI Write Timing Diagram

Page 27: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 27 of 39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SCLK

SDI

SDO D0 PD5 D4 D3 D2 D1D10 D9 D8 D7 D6D15 D14 D13 D12 D11

A1 A0R/W A5 A4 A3 A2

1726

7-10

8

SEN/SEN2

Figure 83. SPI Read Timing Diagram

Page 28: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 28 of 39

APPLICATIONS INFORMATION BASEBAND QUADRATURE MODULATION FROM LOW FREQUENCIES Figure 84 shows the I/Q mode performance at low baseband input frequencies. The measurements were performed at 28 GHz, −10 dBm input power, VCM = 0 V, Register 0x03, Bit 7 = 0, 0 dBm LO input power, and TA = 25°C.

0

5

10

15

20

25

30

35

40

45

1 10 100 1k 10k 100k 1M 10M 100M

CO

NVE

RSIO

NG

AIN

(dB)

AND

SIDE

BAN

DRE

JEC

TIO

N(d

Bc)

17267-087

BASEBAND FREQUENCY (Hz)

SIDEBAND REJECTIONCONVERSION GAIN

Figure 84. Conversion Gain and Sideband Rejection vs. Baseband Frequency

PERFORMANCE AT DIFFERENT QUAD FILTER SETTINGS Figure 85 shows the conversion gain vs. RF frequency in IF mode at TA = 25°C and LO input power = 0 dBm for different QUAD_FILTERS settings.

–10–8–6–4–2

02468

1012141618202224

23 25 27 29 31 33 35 37 39 41 43 45

CO

NVE

RSIO

NG

AIN

(dB

)

RF FREQUENCY (GHz)

QUAD FILTERS = 0QUAD FILTERS = 5QUAD FILTERS = 10QUAD FILTERS = 15

17267-088

Figure 85. Conversion Gain vs. RF Frequency for Four Different

QUAD_FILTERS Settings, fIF = 3.5 GHz (Upper Sideband)

Figure 86 shows the 4× LO to RF leakage vs. 4× LO frequency at different quad filter settings.

–60

–55

–50

–45

–40

–35

–30

–25

–20

–15

–10

–5

0

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

4×LO

TO

RF

LEAK

AG

E(d

Bm)

4× LO FREQUENCY (GHz)

QUAD FILTERS = 0QUAD FILTERS = 5QUAD FILTERS = 10QUAD FILTERS = 15

17267-089

Figure 86. 4× LO to RF Leakage vs. 4× LO Frequency for Four Different

QUAD_FILTERS Settings

VVA TEMPERATURE COMPENSATION Figure 87 shows the conversion gain vs. RF frequency at two different Register 0x0A settings, the recommended setting (0xE700) and a setting for higher gain, and three different temperatures for IF mode. The recommended value suggested in the Start-Up Sequence section provides the least variation in conversion gain over temperature. If the priority is to increase the conversion gain, Register 0x0A can be set to 0xFA00. However, at this value, the conversion gain variation over temperature can increase by 2 dB.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N(d

B)

RF FREQUENCY (GHz)

–40°C, 0xFA00+25°C, 0xFA00+85°C, 0xFA00–40°C, 0xE700+25°C, 0xE700+85°C, 0xE700

17267-090

Figure 87. Conversion Gain vs. RF Frequency at Maximum Gain for

Various Temperatures and Register 0x0A Settings (Recommended and Higher Gain Setting), fIF = 3.5 GHz

Page 29: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 29 of 39

Figure 88 shows the conversion gain vs. RF frequency at two different Register 0x0A settings, the recommended setting and the default setting, and three different temperatures for IF mode. The default values provides slightly less gain and a larger gain variation across temperature compared to the recommended setting.

0

2468

1012141618202224

2826

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N(d

B)

RF FREQUENCY (GHz)

–40°C, 0xE700+25°C, 0xE700+85°C, 0xE700–40°C, 0x0000+25°C, 0x0000+85°C, 0x0000

1726

7-09

1

Figure 88. Conversion Gain vs. RF Frequency at Maximum Gain for

Various Temperatures and Register 0x0A Settings (Default and Recommended Register 0x0A Settings), fIF = 2 GHz

PERFORMANCE BETWEEN DIFFERENTIAL vs. SINGLE-ENDED LO INPUT Figure 89 to Figure 91 show the conversion gain, output IP3, and sideband rejection performance for operating the ADMV1013 LO input as differential vs. single ended. The measurements were performed with 0 dBm LO input power, IF mode, with an IF frequency of 3.5 GHz, upper sideband, and TA = 25°C.

02468

10121416182022242628

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N( d

B)

RF FREQUENCY (GHz) 1726

7-09

2

SINGLE-ENDED POSITIVE SIDE DISABLESINGLE-ENDED NEGATIVE SIDE DISABLEDIFFERENTIAL

Figure 89. Conversion Gain vs. RF Frequency for Three Different LO Mode

Settings, fIF = 3.5 GHz (Upper Sideband)

02468

10121416182022242628

23 25 27 29 31 33 35 37 39 41 43 45

OUT

PUT

IP3

(dB

m)

RF FREQUENCY (GHz) 1726

7-09

3

SINGLE-ENDED POSITIVE SIDE DISABLESINGLE-ENDED NEGATIVE SIDE DISABLEDIFFERENTIAL

Figure 90. Output IP3 vs. RF Frequency for Three Different LO Mode Settings,

RF Amplitude = −20 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz (Upper Sideband)

0

5

10

15

20

25

30

35

40

23 25 27 29 31 33 35 37 39 41 43 45

SIDE

BAND

REJ

ECTI

ON

( dB

c)

RF FREQUENCY (GHz)

SINGLE-ENDED POSITIVE SIDE DISABLESINGLE-ENDED NEGATIVE SIDE DISABLEDIFFERENTIAL

1726

7-09

4

Figure 91. Sideband Rejection vs. RF Frequency for Three Different LO Mode

Settings, RF Amplitude = −30 dBm per Tone at 20 MHz Spacing, fIF = 3.5 GHz (Upper Sideband)

Page 30: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 30 of 39

PERFORMANCE ACROSS RF FREQUENCY AT FIXED INPUT FREQUENCIES The ADMV1013 quadrupler operates from 21.6 GHz to 41 GHz. When using the lower sideband, the conversion gain starts rolling off gradually after the quadrupler frequency reaches 41 GHz. When using the upper sideband, the conversion gain starts rolling off when the quadrupler frequency is 21.6 GHz.

Figure 92 and Figure 93 show the conversion gain vs. RF frequency in IF mode for fixed IF frequencies (TA = 25°C, LO = 0 dBm) for the upper sideband and lower sideband, respectively.

02468

10121416182022242628

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N(d

B)

RF FREQUENCY (GHz)

0.8GHz UPPER SIDEBAND1GHz UPPER SIDEBAND2GHz UPPER SIDEBAND3GHz UPPER SIDEBAND4GHz UPPER SIDEBAND

5GHz UPPER SIDEBAND6GHz UPPER SIDEBAND7GHz UPPER SIDEBAND

1726

7-09

5

Figure 92. Conversion Gain vs. RF Frequency for Multiple IF Frequency

Settings (Upper Sideband)

02468

10121416182022242628

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N(d

B)

RF FREQUENCY (GHz)

0.8GHz LOWER SIDEBAND1GHz LOWER SIDEBAND2GHz LOWER SIDEBAND3GHz LOWER SIDEBAND4GHz LOWER SIDEBAND

5GHz LOWER SIDEBAND6GHz LOWER SIDEBAND7GHz LOWER SIDEBAND

1726

7-09

6

Figure 93. Conversion Gain vs. RF Frequency at Multiple IF Frequency

Settings (Lower Sideband)

Figure 94 and Figure 95 show the conversion gain vs. RF frequency in I/Q mode for multiple baseband (BB) frequencies (TA = 25°C, LO = 0 dBm) for upper sideband and lower sideband, respectively.

02468

10121416182022242628

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N(d

B)

RF FREQUENCY (GHz) 1726

7-09

7

I/Q, 0.8GHzI/Q, 1GHzI/Q, 2GHzI/Q, 3GHzI/Q, 4GHzI/Q, 5GHzI/Q, 6GHz

Figure 94. Conversion Gain vs. RF Frequency for Multiple Baseband

Frequency Settings (Upper Sideband)

02468

10121416182022242628

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N(d

B)

RF FREQUENCY (GHz)

I/Q, 0.8GHzI/Q, 1GHzI/Q, 2GHzI/Q, 3GHzI/Q, 4GHzI/Q, 5GHzI/Q, 6GHz

1726

7-09

8

Figure 95. Conversion Gain vs. RF Frequency at Multiple Baseband Frequency

Settings (Lower Sideband)

Page 31: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 31 of 39

PERFORMANCE ACROSS COMMON-MODE VOLTAGE IN I/Q MODE Figure 96, Figure 97, and Figure 98 show the performance at various common-mode voltages in I/Q mode. For each common-mode voltage, the mixer gate voltage was changed based on the equation described in the Baseband Quadrature Modulation (I/Q Mode) section.

0

5

10

15

20

25

30

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

0V0.4V1.0V1.2V1.4V1.8V2.0V2.4V2.6V

1726

7-09

9

Figure 96. Conversion Gain vs. RF Frequency at Multiple Common-Mode

Voltages in I/Q Mode (fBB = 100 MHz, LO = 0 dBm, TA = 25°C)

02468

10121416182022242628

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz)

OUT

PUT

IP3

(dBm

)

0V0.4V1.0V1.2V1.4V1.8V2.0V2.4V2.6V

1726

7-10

0

Figure 97. Output IP3 vs. RF Frequency at Multiple Common-Mode Voltages

in I/Q Mode (fBB = 100 MHz, LO = 0 dBm, TA = 25°C)

23 25 27 29 31 33 35 37 39 41 43 45RF FREQUENCY (GHz) 17

267-

1010

2

4

6

8

10

12

14

16

18

20

0V0.2V0.4V0.6V0.8V1.0V1.2V

1.4V1.6V1.8V2.0V2.2V2.4V2.6V

OUT

PUT

P1dB

(dBm

)

Figure 98. Output P1dB vs. RF Frequency at Multiple Common-Mode

Voltages in I/Q Mode (fBB = 100 MHz, LO = 0 dBm, TA = 25°C)

OPERATING VCTRL1 AND VCTRL2 INDEPENDENTLY The data shown in the Specifications section and the Typical Performance Characteristics section is based on the VCTRL1 and VCTRL2 voltages being equal. Finer gain regulation can be obtained if VCTRL1 and VCTRL2 are used separately. Operating VCTRL1 and VCTRL2 also allows either maintaining IP3 or noise figure performance while attenuating the RF output.

Figure 99, Figure 102, and Figure 105 show the conversion gain, input IP3, and noise figure vs. the RF frequency, respectively (IF = 2 GHz, upper sideband, LO = 0 dBm at TA = 25°C), when VCTRL1 is equal to VCTRL2.

Figure 100, Figure 103, and Figure 106 show the conversion gain, input IP3, and noise figure vs. the RF frequency, respectively (IF = 2 GHz, upper sideband, LO = 0 dBm at TA = 25°C), when VCTRL2 is held at a minimum attenuation and VCTRL1 is changed.

Figure 101, Figure 104, and Figure 107 show the conversion gain, input IP3, and noise figure vs. the RF frequency, respectively (IF = 2 GHz, upper sideband, LO = 0 dBm at TA = 25°C), when VCTRL1 is held at minimum attenuation and VCTRL2 is changed.

–40

–50

–60

–30

–20

–10

0

10

20

30

VCTRL1 = 0V, VCTRL2 = 0VVCTRL1 = 0.1V, VCTRL2 = 0.1VVCTRL1 = 0.2V, VCTRL2 = 0.2VVCTRL1 = 0.3V, VCTRL2 = 0.3VVCTRL1 = 0.4V, VCTRL2 = 0.4VVCTRL1 = 0.5V, VCTRL2 = 0.5VVCTRL1 = 0.6V, VCTRL2 = 0.6VVCTRL1 = 0.7V, VCTRL2 = 0.7VVCTRL1 = 0.8V, VCTRL2 = 0.8VVCTRL1 = 0.9V, VCTRL2 = 0.9VVCTRL1 = 1.0V, VCTRL2 = 1.0VVCTRL1 = 1.1V, VCTRL2 = 1.1V

VCTRL1 = 1.2V, VCTRL2 = 1.2VVCTRL1 = 1.3V, VCTRL2 = 1.3VVCTRL1 = 1.4V, VCTRL2 = 1.4VVCTRL1 = 1.5V, VCTRL2 = 1.5VVCTRL1 = 1.6V, VCTRL2 = 1.6VVCTRL1 = 1.7V, VCTRL2 = 1.7VVCTRL1 = 1.8V, VCTRL2 = 1.8V

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N (d

B)

RF FREQUENCY (GHz)

1726

7-10

2

Figure 99. Conversion Gain vs. RF Frequency at Various VCTRL Voltages (VCTRL1 = VCTRL2), IF Mode, IF Frequency = 2 GHz, Upper Sideband

–40

–30

–20

–10

0

10

20

30

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N(d

B)

RF FREQUENCY (GHz)

VCTRL1 = 0VVCTRL1 = 0.1VVCTRL1 = 0.2VVCTRL1 = 0.3VVCTRL1 = 0.4VVCTRL1 = 0.5VVCTRL1 = 0.6VVCTRL1 = 0.7VVCTRL1 = 0.8VVCTRL1 = 0.9VVCTRL1 = 1.0VVCTRL1 = 1.1V

VCTRL1 = 1.2VVCTRL1 = 1.3VVCTRL1 = 1.4VVCTRL1 = 1.5VVCTRL1 = 1.6VVCTRL1 = 1.7VVCTRL1 = 1.8V

1726

7-10

3

Figure 100. Conversion Gain vs. RF Frequency at Various VCTRL1 Voltages

(VCTRL2 = 1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband

Page 32: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 32 of 39

–40

–30

–20

–10

0

10

20

30

23 25 27 29 31 33 35 37 39 41 43 45

CONV

ERSI

ON

GAI

N(d

B)

RF FREQUENCY (GHz)

VCTRL2 = 0VVCTRL2 = 0.1VVCTRL2 = 0.2VVCTRL2 = 0.3VVCTRL2 = 0.4VVCTRL2 = 0.5VVCTRL2 = 0.6VVCTRL2 = 0.7VVCTRL2 = 0.8VVCTRL2 = 0.9VVCTRL2 = 1.0VVCTRL2 = 1.1V

VCTRL2 = 1.2VVCTRL2 = 1.3VVCTRL2 = 1.4VVCTRL2 = 1.5VVCTRL2 = 1.6VVCTRL2 = 1.7VVCTRL2 = 1.8V

1726

7-10

4

Figure 101. Conversion Gain vs. RF Frequency at Various VCTRL2 Voltages

(VCTRL1 = 1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband

–10

–5

0

5

10

15

20

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

3(d

Bm)

RF FREQUENCY (GHz) 1726

7-11

5

VCTRL1 = 0V, VCTRL2 = 0VVCTRL1 = 0.1V, VCTRL2 = 0.1VVCTRL1 = 0.2V, VCTRL2 = 0.2VVCTRL1 = 0.3V, VCTRL2 = 0.3VVCTRL1 = 0.4V, VCTRL2 = 0.4VVCTRL1 = 0.5V, VCTRL2 = 0.5VVCTRL1 = 0.6V, VCTRL2 = 0.6VVCTRL1 = 0.7V, VCTRL2 = 0.7VVCTRL1 = 0.8V, VCTRL2 = 0.8V

VCTRL1 = 0.9V, VCTRL2 = 0.9VVCTRL1 = 1.0V, VCTRL2 = 1.0VVCTRL1 = 1.1V, VCTRL2 = 1.1VVCTRL1 = 1.2V, VCTRL2 = 1.2VVCTRL1 = 1.3V, VCTRL2 = 1.3VVCTRL1 = 1.4V, VCTRL2 = 1.4VVCTRL1 = 1.5V, VCTRL2 = 1.5VVCTRL1 = 1.6V, VCTRL2 = 1.6VVCTRL1 = 1.7V, VCTRL2 = 1.7VVCTRL1 = 1.8V, VCTRL2 = 1.8V

Figure 102. Input IP3 vs. RF Frequency at Various VCTRL Voltages (VCTRL1 =

VCTRL2), I IF Mode, IF Frequency = 2 GHz, Upper Sideband

–10

–5

0

5

10

15

20

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

3(d

Bm)

RF FREQUENCY (GHz) 1726

7-11

6

VCTRL1 = 0V,VCTRL1 = 0.1VVCTRL1 = 0.2VVCTRL1 = 0.3VVCTRL1 = 0.4VVCTRL1 = 0.5VVCTRL1 = 0.6VVCTRL1 = 0.7VVCTRL1 = 0.8V

VCTRL1 = 0.9VVCTRL1 = 1.0VVCTRL1 = 1.1VVCTRL1 = 1.2VVCTRL1 = 1.3VVCTRL1 = 1.4VVCTRL1 = 1.5VVCTRL1 = 1.6VVCTRL1 = 1.7VVCTRL1 = 1.8V

Figure 103. Input IP3 vs. RF Frequency at Various VCTRL1 Voltages (VCTRL2 =

1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband

–10

–5

0

5

10

15

20

23 25 27 29 31 33 35 37 39 41 43 45

INPU

T IP

3(d

Bm)

RF FREQUENCY (GHz) 1726

7-11

7

VCTRL2 = 0VVCTRL2 = 0.1VVCTRL2 = 0.2VVCTRL2 = 0.3VVCTRL2 = 0.4VVCTRL2 = 0.5VVCTRL2 = 0.6VVCTRL2 = 0.7VVCTRL2 = 0.8V

VCTRL2 = 0.9VVCTRL2 = 1.0VVCTRL2 = 1.1VVCTRL2 = 1.2VVCTRL2 = 1.3VVCTRL2 = 1.4VVCTRL2 = 1.5VVCTRL2 = 1.6VVCTRL2 = 1.7VVCTRL2 = 1.8V

Figure 104. Input IP3 vs. RF Frequency at Various VCTRL2 Voltages (VCTRL1 =

1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband

0

5

10

15

20

25

30

35

40

45

50

55

60

23 25 27 29 31 33 35 37 39 41 43 45

NOIS

E FI

GUR

E(d

B)

RF FREQUENCY (GHz) 1726

7-11

8

VCTRL1 = 0V, VCTRL2 = 0VVCTRL1 = 0.1V, VCTRL2 = 0.1VVCTRL1 = 0.2V, VCTRL2 = 0.2VVCTRL1 = 0.3V, VCTRL2 = 0.3VVCTRL1 = 0.4V, VCTRL2 = 0.4VVCTRL1 = 0.5V, VCTRL2 = 0.5VVCTRL1 = 0.6V, VCTRL2 = 0.6VVCTRL1 = 0.7V, VCTRL2 = 0.7VVCTRL1 = 0.8V, VCTRL2 = 0.8V

VCTRL1 = 0.9V, VCTRL2 = 0.9VVCTRL1 = 1.0V, VCTRL2 = 1.0VVCTRL1 = 1.1V, VCTRL2 = 1.1VVCTRL1 = 1.2V, VCTRL2 = 1.2VVCTRL1 = 1.3V, VCTRL2 = 1.3VVCTRL1 = 1.4V, VCTRL2 = 1.4VVCTRL1 = 1.5V, VCTRL2 = 1.5VVCTRL1 = 1.6V, VCTRL2 = 1.6VVCTRL1 = 1.7V, VCTRL2 = 1.7VVCTRL1 = 1.8V, VCTRL2 = 1.8V

Figure 105. Noise Figure vs. RF Frequency at Various VCTRL Voltages (VCTRL1 =

VCTRL2), IF Mode, IF Frequency = 2 GHz, Upper Sideband

0

5

10

15

20

25

30

35

40

45

50

55

60

23 25 27 29 31 33 35 37 39 41 43 45

NOIS

E FI

GUR

E(d

B)

RF FREQUENCY (GHz) 1726

7-11

9

VCTRL1 = 0VVCTRL1 = 0.1VVCTRL1 = 0.2VVCTRL1 = 0.3VVCTRL1 = 0.4VVCTRL1 = 0.5VVCTRL1 = 0.6VVCTRL1 = 0.7VVCTRL1 = 0.8V

VCTRL1 = 0.9VVCTRL1 = 1.0VVCTRL1 = 1.1VVCTRL1 = 1.2VVCTRL1 = 1.3VVCTRL1 = 1.4VVCTRL1 = 1.5VVCTRL1 = 1.6VVCTRL1 = 1.7VVCTRL1 = 1.8V

Figure 106. Noise Figure vs. RF Frequency at Various VCTRL1 Voltages

(VCTRL2 = 1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband

Page 33: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 33 of 39

0

5

10

15

20

25

30

35

40

45

50

55

60

23 25 27 29 31 33 35 37 39 41 43 45

NOIS

E FI

GUR

E (d

B)

RF FREQUENCY (GHz) 17267-120

VCTRL2 = 0VVCTRL2 = 0.1VVCTRL2 = 0.2VVCTRL2 = 0.3VVCTRL2 = 0.4VVCTRL2 = 0.5VVCTRL2 = 0.6VVCTRL2 = 0.7VVCTRL2 = 0.8V

VCTRL2 = 0.9VVCTRL2 = 1.0VVCTRL2 = 1.1VVCTRL2 = 1.2VVCTRL2 = 1.3VVCTRL2 = 1.4VVCTRL2 = 1.5VVCTRL2 = 1.6VVCTRL2 = 1.7VVCTRL2 = 1.8V

Figure 107. Noise Figure vs. RF Frequency at Various VCTRL2 Voltages

(VCTRL1 = 1.8 V), IF Mode, IF Frequency = 2 GHz, Upper Sideband

RECOMMENDED LAND PATTERN Solder the exposed pad on the underside of the ADMV1013 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask on the evaluation board. Connect these ground vias to all other ground layers on the evaluation board to maximize heat dissipation from the device package.

17267-126

Figure 108. Evaluation Board Layout for the LGA Package

EVALUATION BOARD INFORMATION For more information about the ADMV1013 evaluation board, refer to the ADMV1013-EVALZ user guide.

Page 34: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 34 of 39

REGISTER SUMMARY Table 6. Reg. (Hex) Register Name Bits

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Reset R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

00 SPI_CONTROL [15:8] PARITY_EN SPI_SOFT_ RESET

RESERVED CHIP_ID 0x00A4 R/W

[7:0] CHIP_ID REVISION 01 ALARM [15:8] PARITY_

ERROR TOO_FEW_ ERRORS

TOO_MANY_ ERRORS

ADDRESS_ RANGE_ ERROR

RESERVED 0x0000 R

[7:0] RESERVED

02 ALARM_MASKS [15:8] PARITY_ ERROR_ MASK

TOO_FEW_ ERRORS_ MASK

TOO_MANY_ ERRORS_ MASK

ADDRESS_ RANGE_ ERROR_MASK

RESERVED 0xFFFF R/W

[7:0] RESERVED

03 ENABLE [15:8] VGA_PD MIXER_PD QUAD_PD BG_PD RESERVED 0x01D7 R/W [7:0] MIXER_IF_EN RESERVED DET_EN RESERVED

05 LO_AMP_I [15:8] RESERVED LOAMP_PH_ADJ_I_FINE 0x5051 R/W [7:0] LOAMP_

PH_ADJ_ I_FINE

MIXER_VGATE

06 LO_AMP_Q [15:8] RESERVED LOAMP_PH_ADJ_Q_FINE 0x5000 R/W [7:0] LOAMP_

PH_ADJ_ Q_FINE

RESERVED

07 OFFSET_ADJUST_I [15:8] MXER_OFF_ADJ_I_P MXER_OFF_ ADJ_I_N

0xFFFC R/W

[7:0] MXER_OFF_ADJ_I_N RESERVED

08 OFFSET_ADJUST_Q [15:8] MXER_OFF_ADJ_Q_P MXER_OFF_ ADJ_Q_N

0xFFFC R/W

[7:0] MXER_OFF_ADJ_Q_N[5:0] RESERVED 09 QUAD [15:8] RESERVED QUAD_SE_MODE 0x5700 R/W

[7:0] QUAD_SE_MODE RESERVED QUAD_FILTERS 0A VVA_TEMPERATURE_

COMPENSATION [15:8] VVA_TEMPERATURE_COMPENSATION 0x0000 R/W

[7:0] VVA_TEMPERATURE_COMPENSATION

Page 35: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 35 of 39

REGISTER DETAILS Address: 0x00, Reset: 0x00A4, Name: SPI_CONTROL

Enable the Parity for Write Execution Revis ion ID

SPI Soft Reset Chip ID

0

01

02

13

04

05

16

07

18

09

010

011

012

013

014

015

0

[15] PARITY_EN (R/W) [3:0] REVISION (R)

[14] SPI_SOFT_RESET (R/W) [11:4] CHIP_ID (R)

[13:12] RESERVED

Table 7. Bit Descriptions for SPI_CONTROL Bits Bit Name Settings Description Reset Access 15 PARITY_EN Enable the Parity for Write Execution 0x0 R/W 14 SPI_SOFT_RESET SPI Soft Reset 0x0 R/W [13:12] RESERVED Reserved 0x0 R [11:4] CHIP_ID Chip ID 0xA R [3:0] REVISION Revision ID 0x4 R

Address: 0x01, Reset: 0x0000, Name: ALARM

Parity Error

Too Few ErrorsAddress Range Error

Too Many Errors

0

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

0

[15] PARITY_ERROR (R) [11:0] RESERVED

[14] TOO_FEW_ERRORS (R)[12] ADDRESS_RANGE_ERROR (R)

[13] TOO_MANY_ERRORS (R)

Table 8. Bit Descriptions for ALARM Bits Bit Name Settings Description Reset Access 15 PARITY_ERROR Parity Error 0x0 R 14 TOO_FEW_ERRORS Too Few Errors 0x0 R 13 TOO_MANY_ERRORS Too Many Errors 0x0 R 12 ADDRESS_RANGE_ERRO

R Address Range Error 0x0 R

[11:0] RESERVED Reserved 0x0 R

Address: 0x02, Reset: 0xFFFF, Name: ALARM_MASKS

Parity Error Mask

Too Few Errors MaskAddress Range Error Mask

Too Many Errors Mask

0

11

12

13

14

15

16

17

18

19

110

111

112

113

114

115

1

[15] PARITY_ERROR_MASK (R/W) [11:0] RESERVED

[14] TOO_FEW_ERRORS_MASK (R/W)[12] ADDRESS_RANGE_ERROR_MASK (R/W)

[13] TOO_MANY_ERRORS_MASK (R/W)

Table 9. Bit Descriptions for ALARM_MASKS Bits Bit Name Settings Description Reset Access 15 PARITY_ERROR_MASK Parity Error Mask 0x1 R/W 14 TOO_FEW_ERRORS_MASK Too Few Errors Mask 0x1 R/W 13 TOO_MANY_ERRORS_MASK Too Many Errors Mask 0x1 R/W 12 ADDRESS_RANGE_ERROR_MASK Address Range Error Mask 0x1 R/W [11:0] RESERVED Reserved 0xFFF R

Page 36: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 36 of 39

Address: 0x03, Reset: 0x01D7, Name: ENABLE

Power Down the VGA Circuit

Power Down the Mixer CircuitEnable the Envelope Detector

Power Down the Quad

111: Disable LO Quad Circuit.0: Enable LO Quad Circuit.

Power Down the Transmitter Band Gap

Enable the IF Mode

0

11

12

13

04

15

06

17

18

19

010

011

012

013

014

015

0

[15] VGA_PD (R/W) [4:0] RESERVED

[14] MIXER_PD (R/W)[5] DET_EN (R/W)

[13:11] QUAD_PD (R/W)[6] RESERVED

[10] BG_PD (R/W)

[7] MIXER_IF_EN (R/W)

[9:8] RESERVED

Table 10. Bit Descriptions for ENABLE Bits Bit Name Settings Description Reset Access 15 VGA_PD Power Down the VGA Circuit 0x0 R/W 14 MIXER_PD Power Down the Mixer Circuit 0x0 R/W [13:11] QUAD_PD Power Down the Quad 0x0 R/W 000 Enable LO Quad Circuit 111 Disable LO Quad Circuit 10 BG_PD Power Down the Transmitter Band Gap 0x0 R/W [9:8] RESERVED Reserved 0x0 R 7 MIXER_IF_EN Enable the IF Mode 0x1 R/W 6 RESERVED Reserved 0x1 R 5 DET_EN Enable the Envelope Detector 0x0 R/W [4:0] RESERVED Reserved 0x17 R

Address: 0x05, Reset: 0x5051, Name: LO_AMP_I

Control Mixer Gate Voltage. For 0 V to 1.8V, MIXER_VGATE = 23.89 x Common-ModeVoltage +81, and for 1.8 V to 2.6 V, MIXER_VGATE= 23.75 x Common-Mode Voltage +1.25.

Mixer Image Rejection Calibration

0

11

02

03

04

15

06

17

08

09

010

011

012

113

014

115

0

[15:14] RESERVED [6:0] MIXER_VGATE (R/W)[13:7] LOAMP_PH_ADJ_I_FINE (R/W)

Table 11. Bit Descriptions for LO_AMP_I Bits Bit Name Settings Description Reset Access [15:14] RESERVED Reserved. 0x1 R [13:7] LOAMP_PH_ADJ_I_FINE Mixer Image Rejection Calibration. 0x20 R/W [6:0] MIXER_VGATE Control Mixer Gate Voltage. For 0 V to 1.8 V, MIXER_VGATE = 23.89 ×

Common-Mode Voltage + 81, and for 1.8 V to 2.6 V, MIXER_VGATE = 23.75 × Common-Mode Voltage + 1.25.

0x51 R/W

Address: 0x06, Reset: 0x5000, Name: LO_AMP_Q

Mixer Image Rejection Calibration

0

01

02

03

04

05

06

07

08

09

010

011

012

113

014

115

0

[15:14] RESERVED [6:0] RESERVED

[13:7] LOAMP_PH_ADJ_Q_FINE (R/W)

Table 12. Bit Descriptions for LO_AMP_Q Bits Bit Name Settings Description Reset Access [15:14] RESERVED Reserved 0x1 R [13:7] LOAMP_PH_ADJ_Q_FINE Mixer Image Rejection Calibration 0x20 R/W [6:0] RESERVED Reserved 0x0 R

Page 37: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 37 of 39

Address: 0x07, Reset: 0xFFFC, Name: OFFSET_ADJUST_I

LO Feedthrough Offset CalibrationI Positive for IF Mode

LO Feedthrough Offset CalibrationI Negative for IF Mode

0

01

02

13

14

15

16

17

18

19

110

111

112

113

114

115

1

[15:9] MXER_OFF_ADJ_I_P (R/W) [1:0] RESERVED

[8:2] MXER_OFF_ADJ_I_N (R/W)

Table 13. Bit Descriptions for OFFSET_ADJUST_I Bits Bit Name Settings Description Reset Access [15:9] MXER_OFF_ADJ_I_P LO Feedthrough Offset Calibration I Positive for IF Mode 0x7F R/W [8:2] MXER_OFF_ADJ_I_N LO Feedthrough Offset Calibration I Negative for IF Mode 0x7F R/W [1:0] RESERVED Reserved 0x0 R

Address: 0x08, Reset: 0xFFFC, Name: OFFSET_ADJUST_Q

LO Feedthrough Offset CalibrationQ Positive for IF Mode

LO Feedthrough Offset CalibrationQ Negative for IF Mode

0

01

02

13

14

15

16

17

18

19

110

111

112

113

114

115

1

[15:9] MXER_OFF_ADJ_Q_P (R/W) [1:0] RESERVED

[8:2] MXER_OFF_ADJ_Q_N (R/W)

Table 14. Bit Descriptions for OFFSET_ADJUST_Q Bits Bit Name Settings Description Reset Access [15:9] MXER_OFF_ADJ_Q_P LO Feedthrough Offset Calibration Q Positive for IF Mode 0x7F R/W [8:2] MXER_OFF_ADJ_Q_N LO Feedthrough Offset Calibration Q Negative for IF Mode 0x7F R/W [1:0] RESERVED Reserved 0x0 R

Address: 0x09, Reset: 0x5700, Name: QUAD

LO Filters Bandwidth Selection

1111: LO Frequency Bandwidth: 5.4 GHz to 7 GHz.1010: LO Frequency Bandwidth: 5.4 GHz to 8 GHz.

0101:GHz.LO Frequency Bandwidth: 6.6 GHz to 9.2

0000:GHz.LO Frequency Bandwidth: 8.62 GHz to 10.25Switch Differential/Single-Ended Modes

1100: Differential Mode.1001: Single Ended Mode, P Side Disable.0110: Single Ended Mode, N Side Disable.

0

01

02

03

04

05

06

07

08

19

110

111

012

113

014

115

0

[15:10] RESERVED [3:0] QUAD_FILTERS (R/W)[9:6] QUAD_SE_MODE (R/W)

[5:4] RESERVED

Table 15. Bit Descriptions for QUAD Bits Bit Name Settings Description Reset Access [15:10] RESERVED Reserved. 0x15 R [9:6] QUAD_SE_MODE Switch Differential/Single-Ended Modes. 0xC R/W 0110 Single-Ended Mode, Negative Side Disable. 1001 Single-Ended Mode, Positive Side Disable. 1100 Differential Mode. [5:4] RESERVED Reserved. 0x0 R [3:0] QUAD_FILTERS LO Filters Bandwidth Selection. 0x0 R/W 0000 LO Frequency Bandwidth: 8.62 GHz to 10.25 GHz. 0101 LO Frequency Bandwidth: 6.6 GHz to 9.2 GHz. 1010 LO Frequency Bandwidth: 5.4 GHz to 8 GHz. 1111 LO Frequency Bandwidth: 5.4 GHz to 7 GHz.

Page 38: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

ADMV1013 Data Sheet

Rev. B | Page 38 of 39

Address: 0x0A, Reset: 0x0000, Name: VVA_TEMPERATURE_COMPENSATION

VVA Temperature Compensation. PARITY_ENmust be disabled when updating the VVAtemperature compensation

0

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

0

[15:0] VVA_TEMPERATURE_COMPENSATION (R/W)

Table 16. Bit Descriptions for VVA_TEMPERATURE_COMPENSATION Bits Bit Name Settings Description Reset Access [15:0] VVA_TEMPERATURE_COMPENSATION VVA Temperature Compensation. PARITY_EN must be

disabled when updating the VVA temperature compensation. Set to 0xE700 on startup.

0x0 R/W

Page 39: Wideband, Microwave Upconverter - Analog Devices · 2019-09-11 · Table 3. Parameter Rating Supply Voltage VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, VCC_MIXER

Data Sheet ADMV1013

Rev. B | Page 39 of 39

OUTLINE DIMENSIONS

02-1

2-20

18-A

PKG

-005

728

6.106.005.90

TOP VIEW

SIDE VIEW

BOTTOM VIEW

1

10

1120

21

30

31 40

0.50BSC

0.275BSC

0.165BSC

0.750BSC

4.50 REFSQ

4.77 BSC

0.400.350.30

0.320.270.22

0.250.220.19

0.520.450.38

0.75 MAX0.67 NOM

2.22 BSCSQ

FOR PROPER CONNECTION OFTHE EXPOSED PADS, REFER TOTHE PIN CONFIGURATION ANDFUNCTION DESCRIPTIONSSECTION OF THIS DATA SHEET.

1.06 BSCSQ

PIN 1INDICATORPIN 1

CORNER AREA

SEATINGPLANE

Figure 109. 40-Terminal Land Grid Array Package [LGA]

6 mm × 6 mm Body and 0.67 mm Package Height (CC-40-5)

Dimensions shown in millimeters

ORDERING GUIDE Model1 Temperature Range Package Description Package Option ADMV1013ACCZ −40°C to +85°C 40-Terminal Land Grid Array Package [LGA] CC-40-5 ADMV1013ACCZ-R7 −40°C to +85°C 40-Terminal Land Grid Array Package [LGA] CC-40-5 ADMV1013-EVALZ Evaluation Board 1 Z = RoHS Compliant Part.

©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D17267-0-9/19(B)