5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave...

35
5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016–2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Wideband RF output frequency range: 5.9 GHz to 23.6 GHz Two upconversion modes Direct conversion from baseband I/Q to RF Single sideband upconversion from real IF LO input frequency range: 5.4 GHz to 14 GHz LO doubler for up to 28 GHz Matched 100 Ω balanced RF output, LO input, and IF input High impedance baseband inputs Sideband suppression and carrier feedthrough optimization Variable attenuator and power detector for Tx power control Programmable via 4-wire SPI interface 32-lead, 5 mm × 5 mm LFCSP microwave packaging APPLICATIONS Point to point microwave radios Radar, electronic warfare systems Instrumentation, automatic test equipment (ATE) GENERAL DESCRIPTION The ADRF6780 is a silicon germanium (SiGe) design, wideband, microwave upconverter optimized for point to point microwave radio designs operating in the 5.9 GHz to 23.6 GHz frequency range. The upconverter offers two modes of frequency translation. The device is capable of direct conversion to radio frequency (RF) from baseband I/Q input signals, as well as single sideband (SSB) upconversion from a real intermediate frequency (IF) input carrier frequency. The baseband inputs are high impedance and are generally terminated off chip with 100 Ω differential back terminations. The baseband I/Q input path can be disabled and a modulated real IF signal anywhere from 0.8 GHz to 3.5 GHz can fed into the IF input path and upconverted to 5.9 GHz to 23.6 GHz while suppressing the unwanted sideband by typically better than 25 dBc. The serial port interface (SPI) allows tweaking of the quadrature phase adjustment to allow optimum sideband suppression. In addition, the SPI interface allows powering down the output power detector to reduce power consumption when power monitoring is not necessary. The ADRF6780 upconverter comes in a compact, thermally enhanced, 5 mm × 5 mm LFCSP package. The ADRF6780 operates over the −40°C to +85°C temperature range. FUNCTIONAL BLOCK DIAGRAM VVA LOG DET ADC ×1 ×2 SPI ADRF6780 BIAS CONTROL QUAD SPLITTER BUFFER 32 8 7 6 5 4 3 2 1 17 18 19 20 21 22 23 24 31 30 29 28 27 26 25 9 10 11 12 13 14 15 16 SDTO SCLK SDIN VP18 VPBI IFIP AGND IFIN RST VDET VPDT VPRF AGND RFOP AGND RFON AGND SEN VPLO LOIN LOIP VPLO ALM AGND PWDN VPBB BBIN BBIP BBQN VATT VPRF BBQP 14106-001 Figure 1.

Transcript of 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave...

Page 1: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter

Data Sheet ADRF6780

Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016–2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

FEATURES Wideband RF output frequency range: 5.9 GHz to 23.6 GHz Two upconversion modes

Direct conversion from baseband I/Q to RF Single sideband upconversion from real IF

LO input frequency range: 5.4 GHz to 14 GHz LO doubler for up to 28 GHz Matched 100 Ω balanced RF output, LO input, and IF input High impedance baseband inputs Sideband suppression and carrier feedthrough optimization Variable attenuator and power detector for Tx power control Programmable via 4-wire SPI interface 32-lead, 5 mm × 5 mm LFCSP microwave packaging

APPLICATIONS Point to point microwave radios Radar, electronic warfare systems Instrumentation, automatic test equipment (ATE)

GENERAL DESCRIPTION The ADRF6780 is a silicon germanium (SiGe) design, wideband, microwave upconverter optimized for point to point microwave radio designs operating in the 5.9 GHz to 23.6 GHz frequency range.

The upconverter offers two modes of frequency translation. The device is capable of direct conversion to radio frequency (RF) from baseband I/Q input signals, as well as single sideband (SSB) upconversion from a real intermediate frequency (IF) input carrier frequency. The baseband inputs are high impedance and are generally terminated off chip with 100 Ω differential back terminations. The baseband I/Q input path can be disabled and a modulated real IF signal anywhere from 0.8 GHz to 3.5 GHz can fed into the IF input path and upconverted to 5.9 GHz to 23.6 GHz while suppressing the unwanted sideband by typically better than 25 dBc. The serial port interface (SPI) allows tweaking of the quadrature phase adjustment to allow optimum sideband suppression. In addition, the SPI interface allows powering down the output power detector to reduce power consumption when power monitoring is not necessary.

The ADRF6780 upconverter comes in a compact, thermally enhanced, 5 mm × 5 mm LFCSP package. The ADRF6780 operates over the −40°C to +85°C temperature range.

FUNCTIONAL BLOCK DIAGRAM

VVA

LOGDET

ADC

×1 ×2

SPI

ADRF6780

BIASCONTROL

QUADSPLITTERBUFFER

32

8

7

6

5

4

3

2

1

17

18

19

20

21

22

23

24

31 30 29 28 27 26 25

9 10 11 12 13 14 15 16

SDTO

SCLK

SDIN

VP18

VPBI

IFIP

AGND

IFIN

RST

VDET

VPDT

VPRF

AGND

RFOP

AGND

RFON

AGND

SENVPLOLOINLOIPVPLOALM AGND

PWDNVPBBBBINBBIPBBQNVATTVPRF BBQP 1410

6-00

1

Figure 1.

Page 2: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 2 of 35

TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Absolute Maximum Ratings ............................................................ 6

Thermal Resistance ...................................................................... 6 ESD Caution .................................................................................. 6

Pin Configuration and Function Descriptions ............................. 7 Typical Performance Characteristics ............................................. 9

I/Q Mode ....................................................................................... 9 IF Mode ........................................................................................ 14 Output Detector Performance .................................................. 19 Return Loss.................................................................................. 20

Theory of Operation ...................................................................... 21 Baseband ...................................................................................... 21 Single Sideband (SSB) Upconversion ...................................... 21 LO Input Path.............................................................................. 21 Serial Port Interface (SPI) .......................................................... 21

Applications Information .............................................................. 23

Carrier Feedthrough Nulling .................................................... 23 Sideband Suppression Optimization ....................................... 23 Linearity ....................................................................................... 23 ADC ............................................................................................. 23 Wide Frequency Performance .................................................. 24 Layout .......................................................................................... 24 LO Input Driven Differential vs. Single Ended .......................... 25

Register Summary .......................................................................... 27 Register Details: Wideband Upconverter .................................... 28

Control Register ......................................................................... 28 ALARM_READBACK Register ............................................... 28 ALARM_MASK Register .......................................................... 29 Enable Register ........................................................................... 29 Linearize Register ....................................................................... 30 LO_PATH Register..................................................................... 30 ADC_CONTROL Register ....................................................... 31 ADC_OUTPUT Register .......................................................... 31

Basic Connections for Operation ................................................. 32 Outline Dimensions ....................................................................... 35

Ordering Guide .......................................................................... 35

REVISION HISTORY 7/2018—Rev. B to Rev. C Changed 32.95 to 9.18 in θJA Column, Table 3 ............................. 6 Changes to Ordering Guide .......................................................... 35 10/2017—Rev. A to Rev. B Changes to Maximum Junction Temperature Parameter, Table 2 ... 6 Change to Table 4 ......................................................................................... 7 Changes to Figure 31 Caption ................................................................. 13 Changes to Ordering Guide ..................................................................... 35 5/2016—Rev. 0 to Rev. A Change to Table 4 ............................................................................. 7 Changes to Figure 40 ...................................................................... 15 Changes to Figure 47 ...................................................................... 16 Changes to Figure 58 ...................................................................... 18 Change to Figure 84 ....................................................................... 33 Changes to Table 16 ........................................................................ 34

3/2016—Revision 0: Initial Version

Page 3: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 3 of 35

SPECIFICATIONS VPBB = VPBI = VPLO = 3.3 V, VP18 = 1.8 V, VPDT = VPRF = 5 V, TA = 25°C, LO = 0 dBm differential drive; baseband I/Q amplitude = −15 dBm differential sine waves in quadrature with a 500 mV dc bias, baseband input termination with 100 Ω externally, IF amplitude = −12 dBm differential sine waves, unless otherwise noted.

Table 1. Parameter Test Conditions/Comments Min Typ Max Unit RF OUTPUT FREQUENCY RANGE 5.9 23.6 GHz LOCAL OSCILLATOR (LO) INPUT

FREQUENCY RANGE 5.4 14 GHz

LO AMPLITUDE RANGE −6 0 +6 dBm IF INPUT FREQUENCY RANGE 0.8 3.5 GHz BASEBAND (BB) I/Q INPUT FREQUENCY

RANGE DC 750 MHz

I/Q MODULATOR PERFORMANCE Modulator Voltage Gain Maximum gain at maximum gain setting 10 13 dB Minimum gain at minimum gain setting −12 dB Output Noise Density Output carrier > −5 dBm −147 dBc/Hz Output carrier > −14 dBm −145 dBc/Hz Output carrier > −22.5 dBm −136 dBc/Hz Output Third-Order Intercept (OIP3) f1BB = 10 MHz, f2BB = 12 MHz, baseband I/Q amplitude

per tone = −15 dBm sine waves in quadrature with a 500 mV dc bias, 10 dB gain setting

5.9 GHz to 10 GHz 24 dBm 10 GHz to 14 GHz 25 dBm 14 GHz to 20 GHz 27 dBm 20 GHz to 23.6 GHz 27 dBm

Fifth-Order Intermodulation Distortion (IMD5)

f1 BB = 10 MHz, f2 BB = 12 MHz, baseband I/Q amplitude per tone = −15 dBm sine waves in quadrature with a 500 mV dc bias, 10 dB gain setting

65 dBm

Output Second-Order Intercept (OIP2) f1 BB = 10 MHz, f2 BB = 12 MHz, baseband I/Q amplitude per tone = −15 dBm sine waves in quadrature with a 500 mV dc bias, 10 dB gain setting

5.9 GHz to 10 GHz 65 dBm 10 GHz to 14 GHz 65 dBm 14 GHz to 20 GHz 66 dBm 20 GHz to 23.6 GHz 50 dBm

Output 1 dB Compression Point (P1dB) 5.9 GHz to 10 GHz At 10 dB gain setting 10.5 dBm At maximum gain setting 11 dBm 10 GHz to 14 GHz At 10 dB gain setting 11 dBm At maximum gain setting 12 dBm 14 GHz to 20 GHz At 10 dB gain setting 10 dBm At maximum gain setting 12 dBm 20 GHz to 23.6 GHz At 10 dB gain setting 10 dBm At maximum gain setting 11 dBm

LO Feedthrough At 10 dB gain setting (can be improved baseband dc offset adjustment)

−25 dBm

Sideband Suppression At 10 dB gain setting 25 dBc

Page 4: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 4 of 35

Parameter Test Conditions/Comments Min Typ Max Unit IF UPCONVERTER PERFORMANCE

Upconversion Voltage Gain Maximum gain at maximum gain setting 7 11 dB Minimum gain at minimum gain setting −14 dB Output Noise Density Output carrier > −5 dBm −147 dBc/Hz Output carrier > −14 dBm −145 dBc/Hz Output carrier > −22.5 dBm −136 dBc/Hz OIP3 f1 IF = 1810 MHz, f2 IF = 1812 MHz, amplitude per tone

= −15 dBm sine waves in quadrature with ac bias, 7 dB gain setting

23.5

5.9 GHz to 10 GHz 27 dBm 10 GHz to 14 GHz 24 dBm 14 GHz to 20 GHz 22.5 dBm 20 GHz to 23.6 GHz 22.5 dBm

IMD5 f1 IF = 1810 MHz, f2 IF = 1812 MHz, amplitude per tone = −15 dBm sine waves in quadrature with ac bias, 7 dB gain setting

80 dBm

Output P1dB 5.9 GHz to 10 GHz At 7 dB gain setting 10.5 dBm At maximum gain setting 11.5 dBm 10 GHz to 14 GHz At 7 dB gain setting 10 dBm At maximum gain setting 12 dBm 14 GHz to 20 GHz At 7 dB gain setting 9.5 dBm At maximum gain setting 12 dBm 20 GHz to 23.6 GHz At 7 dB gain setting 9.5 dBm

At maximum gain setting 11.5 dBm LO Feedthrough At 7 dB gain setting (can be improved by baseband dc

offset adjustment) −35 dBm

Sideband Suppression At 7 dB gain setting 25 dBc Tx POWER DETECTOR PERFORMANCE

Output Level Maximum 2 dBm Minimum −30 dBm

±1 dB Dynamic Range 34 dB Output Voltage

Maximum 1 V Minimum 0.2 V

Log Slope 25 mV/dB Time

Rise PIN = off to −10 dBm, 10% to 90%, C7 = 10 pF (see Figure 83)

134 ns

Fall PIN = −10 dBm to off, 10% to 90%, C7 = 10 pF (see Figure 83)

190 ns

Response C7 = 10 pF (see Figure 83) 30 ns RETURN LOSS

RF Output 100 Ω differential 12 dB LO Input 100 Ω differential 12 dB IF Input 100 Ω differential 17 dB Baseband I/Q Input Impedance 1 MΩ

LOGIC INPUTS Input High Voltage Range, VINH VP18 − 0.4 1.8 V Input Low Voltage Range, VINL 0 0.4 V Input Current, IINH/IINL 100 µA Input Capacitance, CIN 3 pF

Page 5: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 5 of 35

Parameter Test Conditions/Comments Min Typ Max Unit LOGIC OUTPUTS

Output High Voltage Range, VOH VP18 − 0.4 1.8 V Output Low Voltage Range, VOL 0 0.4 V Output High Current, IOH 500 µA

POWER INTERFACE VPBB, VPLO, VPBI 3.15 3.3 3.45 V VPBB, VPLO, VPBI Supply Current ×1 LO path enabled, IF path disabled 340 mA ×2 LO path enabled, IF path disabled 390 mA ×1 LO path enabled, IF path enabled 490 mA ×2 LO path enabled, IF path enabled 540 mA VP18 1.7 1.8 1.9 V VP18 Supply Current 1 mA VPDT, VPRF 4.75 5 5.25 V VPDT, VPRF Supply Current ×1/×2 LO path enabled, IF path disabled 180 mA ×1/×2 LO path enabled, IF path enabled 160 mA Total Power Consumption ×2 LO path enabled, IF path enabled 2.58 W Power down 35 50 mW

Page 6: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 6 of 35

ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Rating Supply Voltage

VPDT, VPRF 6.5 V VPBB, VPLO, VPBI 4.3 V VP18 2.3 V

Maximum Junction Temperature 125°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −55°C to +125°C Lead Temperature Range (Soldering 60 sec) −65°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE θJA is thermal resistance, junction to ambient (°C/W), and θJC is thermal resistance, junction to case (°C/W).

Table 3. Thermal Resistance Package Type θJA

1 θJC1 Unit

32-Lead LFCSP 9.18 1.14 °C/W 1 See JEDEC Standard JESD51-2 for additional information on optimizing the

thermal impedance (printed circuit board (PCB) with 3 × 3 vias).

ESD CAUTION

Page 7: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 7 of 35

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

SDTO

SCLKSDINVP18VPBIIFIPAGNDIFINRST

VDETVPDTVPRFAGNDRFOPAGNDRFONAGND

SEN

VPLO

LOIN

LOIP

VPLO

ALM

AG

ND

PWD

NVP

BB

BB

INB

BIP

BB

QN

VATT

VPR

F

BB

QP

2423222120191817

12345678

9 10 11 12 13 14 15 16

32 31 30 29 28 27 26 25

ADRF6780TOP VIEW

(Not to Scale)

1410

6-00

2

NOTES1. SOLDER THE EXPOSED PAD TO A LOW IMPEDANCE GROUND PLANE.2. THE DEVICE NUMBER ON THE FIGURE DOES NOT INDICATE THE LABEL ON THE PACKAGE. PLEASE REFER TO PIN 1 INDICATOR FOR PIN LOCATIONS.

PIN 1INDICATOR

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions Pin No. Mnemonic Description 1 VDET RF Detector Output. The voltage output is proportional to the decibel RF output power. The detector slope is

nominally 50 mV/dB. 2 VPDT Power Supply Connection for the RF Detector. Decouple the VPDT pin with 100 pF and 0.1 µF capacitors as

close as possible to the pin. Note that this pin must always be supplied with 5 V. 3, 9 VPRF Power Supply Connections for the RF Path. Decouple the VPRF pin with 100 pF and 0.1 µF capacitors as close

as possible to the pins. 4, 6, 8, 19, 29

AGND Analog Grounds. Connect these pins to a low impedance ground plane.

5, 7 RFOP, RFON RF Outputs. These outputs are 100 Ω differential outputs for the RF path. Frequency range is 5.9 GHz to 23.6 GHz. 10 VATT Modulator Output Attenuator Control Input. The RF voltage variable attenuator is controlled by applying a

0 V to 2.6 V control voltage to the VATT pin. Increase the gain when VATT voltage increases. This pin is linear in dB over central gain range.

11 to 14

BBQN, BBQP, BBIP, BBIN

I Channel and Q Channel Baseband Inputs. These inputs are high input impedance and are typically differentially terminated to a 100 Ω resistor using an off chip termination. The nominal common-mode bias level on these pins must be 0.5 V.

15 VPBB Power Supply Connection for Baseband Path. Decouple the VPBB pin with 100 pF and 0.1 µF capacitors as close as possible to the pin.

16 PWDN Power Down. The ADRF6780 powers up when the PWDN pin is at a low logic level (<0.5 V). To power down the ADRF6780, apply a logic high level (>1.2 V). When the ADRF6780 is powered up, the SPI can also be used as a power-down capability. The PWDN pin has an internal 18 kΩ pull-down resistor.

17 RST Reset. This pin provides the ability to reset the SPI to the default register settings. Pull the RST pin to a logic high level in normal operation. Driving the RST pin to a logic low level loads the default SPI register settings. The RST pin has an internal 7.75 kΩ pull-up resistor.

18, 20 IFIN, IFIP IF Inputs. These inputs are 100 Ω differential inputs for IF upconversion, and they must be ac-coupled. When the IF mode is set, remove the 0 Ω R10 to R13 resistors from the I/Q lines. 21 VPBI Power Supply Connection. Decouple the VPBI pin with 100 pF and 0.1 µF capacitors as close as possible to

the pin. 22 VP18 1.8 V Power Supply. Decouple the VP18 pin with 100 pF and 0.1 µF capacitors as close as possible to the pin. 23 SDIN Serial Data Input. Serial data applied to the SDIN pin is loaded into the SPI register upon a successful write

command as indicated in the timing diagrams (see Figure 68 to Figure 70). The first most significant bit (MSB) is a control bit and it determines whether data is written to the register (logic high) or read from the serial data output pin (logic low). The SDIN pin has an internal 18 kΩ pull-down resistor.

24 SCLK Serial Clock. This pin is the clock input for the SPI interface. The SCLK pin has an internal 18 kΩ pull-down resistor. 25 SDTO Serial Data Output. The SDTO pin provides a SPI readback capability. See the timing diagrams for normal

operation (see Figure 68 to Figure 70). The SDTO pin has an internal 18 kΩ pull-down resistor. 26 SEN Serial Enable. When the SEN input pin goes high, the data stored in the shift registers is loaded into the

register. The SEN pin has an internal 7.75 kΩ pull-up resistor.

Page 8: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 8 of 35

Pin No. Mnemonic Description 27, 31 VPLO Power Supply Connections for the LO Path. Decouple the VPLO pin with 100 pF and 0.1 µF capacitors as close

as possible to the pin. 28, 30 LOIN, LOIP LO Inputs. These inputs are 100 Ω differential inputs for the LO path. The LO input frequency range is 5.4 GHz

to 14 GHz. The on-chip LO frequency doubler can be enabled via a SPI command. 32 ALM Alarm. The ALM pin indicates internal alarm conditions. The ALM pin is logic low when an alarm condition is

detected. EP Exposed Pad. Solder the exposed pad to a low impedance ground plane.

Page 9: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 9 of 35

TYPICAL PERFORMANCE CHARACTERISTICS VPBB = VPBI = VPLO = 3.3 V, VP18 = 1.8 V, VPDT = VPRF = 5 V, TA = 25°C, LO = 0 dBm differential drive, polyphase filter (PPF, ×1) mode below 14 GHz and differential drive doubler (×2) mode above 14 GHz, VATT = 2.6 V, unless otherwise noted. I/Q MODE Baseband (BB) I/Q amplitude = −15 dBm, differential sine waves in quadrature with a 500 mV dc bias, BB I/Q frequency (fx BB) = 10 MHz, BB input termination with 100 Ω externally, unless otherwise noted.

–40

–35

–30

–25

–20

–15

–10

–5

0

5

5 7 9 11 13 15 17 19 21 23 25

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

VATT = 2.6V

VATT = 1.5V

VATT = 0.4V

–40°C+25°C+85°C

1410

6-00

3

Figure 3. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings

for Various Temperatures, BB I/Q Amplitude = −15 dBm

–40

–35

–30

–25

–20

–15

–10

–5

0

5

5 7 9 11 13 15 17 19 21 23 25

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

VATT = 2.6V

VATT = 1.5V

VATT = 0.4V

1410

6-00

4

4.75V/3.15V5.00V/3.30V5.25V/3.45V

Figure 4. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings

for Various Supply Voltages, BB I/Q Amplitude = −15 dBm

–40

–35

–30

–25

–20

–15

–10

–5

0

5

5 7 9 11 13 15 17 19 21 23 25

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

VATT = 2.6V

VATT = 1.5V

VATT = 0.4V

1410

6-00

5

LO = +9dBmLO = +6dBmLO = +3dBmLO = 0dBm

LO = –3dBmLO = –6dBmLO = –9dBm

Figure 5. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings

for Various LO Inputs, BB I/Q Amplitude = −15 dBm

–15

–10

–5

0

5

10

15

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

CO

NVE

RSI

ON

GA

IN (d

B)

VATT (V)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-00

6

Figure 6. Conversion Gain vs. VATT for Various RF Frequencies (fRF)

–10

–5

0

5

10

15

5 7 9 11 13 15 17 19 21 23 25

P1dB

(dB

m)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-00

8

Figure 7. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a

10 dB Gain Setting for Various Temperatures

–10

–5

0

5

10

15

5 7 9 11 13 15 17 19 21 23 25

P1dB

(dB

m)

RF FREQUENCY (GHz)

4.75V/3.15V5.00V/3.30V5.25V/3.45V

1410

6-00

9

Figure 8. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a

10 dB Gain Setting for Various Supply Voltages

Page 10: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 10 of 35

–8

–6

–4

–2

0

2

4

6

8

10

12

5 7 9 11 13 15 17 19 21 23 25

P1dB

(dB

m)

RF FREQUENCY (GHz) 1410

6-01

0

LO = +9dBmLO = +6dBmLO = +3dBmLO = 0dBm

LO = –3dBmLO = –6dBmLO = –9dBm

Figure 9. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a

10 dB Gain Setting for Various LO Inputs

–10

–5

0

5

10

15

5 7 9 11 13 15 17 19 21 23 25

P1dB

(dB

m)

RF FREQUENCY (GHz) 1410

6-01

1

MAXIMUM GAIN10dB GAIN

Figure 10. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at

a 10 dB Gain Setting and the Maximum Gain Setting

–10

–5

0

5

10

15

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P1dB

(dB

m)

BB INPUT FREQUENCY (GHz) 1410

6-21

1

Figure 11. Output 1 dB Compression Point (P1dB) vs. BB Input Frequency

at a 10 dB Gain Setting

–80

–70

–60

–50

–40

–30

–20

–10

0

5 7 9 11 13 15 17 19 21 23 25

CA

RR

IER

FEE

DTH

RO

UG

H (d

Bm

)

RF FREQUENCY (GHz) 1410

6-01

2

+85°C, VATT = 2.6V+85°C, VATT = 1.5V+85°C, VATT = 0.4V

–40°C, VATT = 2.6V–40°C, VATT = 1.5V–40°C, VATT = 0.4V

+25°C, VATT = 2.6V+25°C, VATT = 1.5V+25°C, VATT = 0.4V

Figure 12. Carrier Feedthrough vs. RF Frequency (fRF) at Three Gain

Settings and Temperatures Before Nulling

0

10

20

30

40

50

60

5 7 9 11 13 15 17 19 21 23 25

SID

EBA

ND

SU

PPR

ESSI

ON

(dB

)

RF FREQUENCY (GHz) 1410

6-01

3

+85°C, VATT = 2.6V+85°C, VATT = 1.5V+85°C, VATT = 0.4V

–40°C, VATT = 2.6V–40°C, VATT = 1.5V–40°C, VATT = 0.4V

+25°C, VATT = 2.6V+25°C, VATT = 1.5V+25°C, VATT = 0.4V

Figure 13. Sideband Suppression vs. RF Frequency (fRF) at Three Gain

Settings and Temperatures Before Nulling

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

SID

EBA

ND

SU

PPR

ESSI

ON

(dB

)

RF FREQUENCY (GHz) 1410

6-01

4

+85°C, VATT = 2.6V+85°C, VATT = 1.5V+85°C, VATT = 0.4V

–40°C, VATT = 2.6V–40°C, VATT = 1.5V–40°C, VATT = 0.4V

+25°C, VATT = 2.6V+25°C, VATT = 1.5V+25°C, VATT = 0.4V

Figure 14. Sideband Suppression vs. RF Frequency (fRF) at Three Gain

Settings and Temperatures after Nulling Using I_PATH_PHASE_ACCURACY and Q_PATH_PHASE_ACCURACY at 25°C

Page 11: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 11 of 35

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

IMD

3 (d

Bc)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-01

7

Figure 15. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various Temperatures,

BB I/Q Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

5 10 15 20 25

IMD

3 (d

Bc)

RF FREQUENCY (GHz)

–40°C, RDAC_LINEARIZE+25°C, RDAC_LINEARIZE+85°C, RDAC_LINEARIZE–40°C+25°C+85°C

1410

6-21

5

Figure 16. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various RDAC_LINEARIZE Settings and Various Temperatures, BB I/Q Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

IMD

3 (d

Bc)

RF FREQUENCY (GHz)

4.75V/3.15V5.00V/3.30V5.25V/3.45V

1410

6-11

7

Figure 17. Third-Order Intermodulation Distortion (IMD3) vs.

RF Frequency (fRF) for Various Supply Voltages, BB I/Q Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

IMD

3 (d

Bc)

RF FREQUENCY (GHz) 1410

6-01

9

LO = +9dBmLO = +6dBmLO = +3dBmLO = 0dBm

LO = –3dBmLO = –6dBmLO = –9dBm

Figure 18. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various LO Inputs,

BB I/Q Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

IMD

3 (d

Bm

)

BB INPUT FREQUENCY (GHz) 1410

6-21

9

Figure 19. Third-Order Intermodulation Distortion (IMD3) vs. BB Input Frequency at a 10 dB Gain Setting, BB I/Q Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

–30 –25 –20 –15 –10 –5 0

IMD

3 (d

Bc)

POUT (dBm PER TONE; PIN = –15dBm PER TONE)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-02

1

Figure 20. Third-Order Intermodulation Distortion (IMD3) vs.

Output Power (POUT) for Various RF Frequencies (fRF), BB I/Q Amplitude = −15 dBm per Tone

Page 12: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 12 of 35

0

5

10

15

20

25

30

35

40

5 7 9 11 13 15 17 19 21 23 25

OIP

3 (d

Bm

)

RF FREQUENCY (GHz) 1410

6-02

0

Figure 21. Output Third-Order Intercept (OIP3) vs. RF Frequency (fRF) at a

10 dB Gain Setting, BB I/Q Amplitude = −15 dBm per Tone

0

5

10

15

20

25

30

35

40

–25 –23 –21 –19 –17 –15 –13 –11 –9 –7 –5

OIP

3 (d

Bm

)

BB INPUT POWER (dBm PER TONE)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-22

2

Figure 22. Output Third-Order Intercept (OIP3) vs. BB Input Power at a

10 dB Gain Setting for Various RF Frequencies (fRF)

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

IMD

5 (d

Bc)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-02

3

Figure 23. Fifth-Order Intermodulation Distortion (IMD5) vs.

RF Frequency (fRF) at a 10 dB Gain Setting for Various Temperatures, BB I/Q Amplitude = −15 dBm per Tone

POUT (dBm PER TONE; PIN = –15dBm PER TONE)

0

10

20

30

40

50

60

70

80

–30 –25 –20 –15 –10 –5 0

IMD

5 (d

Bc)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-02

4

Figure 24. Fifth-Order Intermodulation Distortion (IMD5) vs.

Output Power (POUT) for Various RF Frequencies, BB I/Q Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

OIP

2 (d

Bm

)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-02

5

Figure 25. Output Second-Order Intercept (OIP2) vs. RF Frequency (fRF) at

a 10 dB Gain Setting for Various Temperatures, BB I/Q Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

OIP

2 (d

Bm

)

RF FREQUENCY (GHz) 1410

6-02

6

LO = +9dBmLO = +6dBmLO = +3dBmLO = 0dBm

LO = –3dBmLO = –6dBmLO = –9dBm

Figure 26. Output Second-Order Intercept (OIP2) vs. RF Frequency (fRF) at

a 10 dB Gain Setting for Various LO Inputs, BB I/Q Amplitude = −15 dBm per Tone

Page 13: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 13 of 35

0

10

20

30

40

50

60

70

80

–30 –25 –20 –15 –10 –5 0

OIP

2 (d

Bm

)

POUT (dBm PER TONE; PIN = –15dBm PER TONE)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-22

7

Figure 27. Output Second-Order Intercept (OIP2) vs. Output Power (POUT)

for Various RF Frequencies (fRF), BB I/Q Amplitude = −15 dBm per Tone

125

130

135

140

145

150

155

5 7 9 11 13 15 17 19 21 23 25

CA

RR

IER

TO N

OIS

E (d

Bc/

Hz)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-12

7

Figure 28. Output Noise Density vs. RF Frequency (fRF) at a 10 dB Gain Setting for Various Temperatures with an Output Carrier of −5 dBm

125

130

135

140

145

150

155

–11 –6 –1 4 9 14

CA

RR

IER

TO N

OIS

E (d

Bc/

Hz)

VATT GAIN (dB)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-02

8

Figure 29. Output Noise Density vs. VATT Gain for Various RF Frequencies

(fRF) with an Input Carrier of −15 dBm

–20

–15

–10

–5

0

5

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P OU

TAT

15G

Hz,

MA

X G

AIN

(dB

m)

BB FREQUENCY (GHz) 1410

6-23

0

Figure 30. Bandwidth, POUT at 15 GHz and the Maximum Gain Setting vs. BB Input Frequency

–10

–8

–6

–4

–2

0

2

4

6

8

10

5 7 9 11 13 15 17 19 21 23 25

RF FREQUENCY (GHz)

MA

GN

ITU

DE

DEL

TA, R

FON

TO R

FOP

(dB

)

VATT = 2.6VVATT = 1.5VVATT = 0.4V

1410

6-03

1

Figure 31. Magnitude Delta, RFON minus RFOP vs. RF Frequency (fRF) at

Three Different Gain Settings

Page 14: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 14 of 35

IF MODE IF frequency (IF mode) = 1900 MHz, IF amplitude = −12 dBm, input ac-coupled, unless otherwise noted.

–40

–35

–30

–25

–20

–15

–10

–5

0

5

5 7 9 11 13 15 17 19 21 23 25

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

VATT = 2.6V

VATT = 1.5V

VATT = 0.4V

1410

6-03

7

Figure 32. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings

for Various Temperatures, IF Amplitude = −12 dBm

–40

–35

–30

–25

–20

–15

–10

–5

0

5

5 7 9 11 13 15 17 19 21 23 25

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

VATT = 2.6V

VATT = 1.5V

VATT = 0.4V

4.75/3.155.00/3.305.25/3.45

1410

6-03

8

Figure 33. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings

for Various Supply Voltages, IF Amplitude = −12 dBm

–40

–35

–30

–25

–20

–15

–10

–5

0

5

5 7 9 11 13 15 17 19 21 23 25

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

VATT = 2.6V

VATT = 1.5V

VATT = 0.4V

1410

6-03

9

LO = +9dBmLO = +6dBmLO = +3dBmLO = 0dBm

LO = –3dBmLO = –6dBmLO = –9dBm

Figure 34. Output Power (POUT) vs. RF Frequency (fRF) at Three Gain Settings

for Various LO Inputs, IF Amplitude = −12 dBm

–15

–10

–5

0

5

10

15

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

CO

NVE

RSI

ON

GA

IN (d

B)

VATT (V)

1410

6-04

0

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

Figure 35. Conversion Gain vs. VATT at Various RF Frequencies (fRF)

1410

6-03

5–10

–5

0

5

10

15

5 7 9 11 13 15 17 19 21 23 25

P1dB

(dB

m)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

Figure 36. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a

7 dB Gain Setting for Various Temperatures

–10

–5

0

5

10

15

5 7 9 11 13 15 17 19 21 23 25

P1dB

(dB

m)

RF FREQUENCY (GHz)

4.75V/3.15V5.00V/3.30V5.25V/3.45V

1410

6-13

7

Figure 37. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a

7 dB Gain Setting for Various Supply Voltages

Page 15: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 15 of 35

–15

–10

–5

0

5

10

15

5 7 9 11 13 15 17 19 21 23 25

P1dB

(dB

m)

RF FREQUENCY (GHz) 1410

6-13

8

LO = +9dBmLO = +6dBmLO = +3dBmLO = 0dBm

LO = –3dBmLO = –6dBmLO = –9dBm

Figure 38. Output 1 dB Compression Point (P1dB) vs. RF Frequency (fRF) at a

7 dB Gain Setting for Various LO Inputs

–10

–5

0

5

10

15

5 7 9 11 13 15 17 19 21 23 25

P1dB

(dB

m)

RF FREQUENCY (GHz)

MAXIMUM GAIN7dB GAIN

1410

6-13

9

Figure 39. 1 dB Output Compression Point (P1dB) vs. RF Frequency (fRF) at a

7 dB Gain Setting and the Maximum Gain Setting

–10

–5

0

5

10

15

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P1dB

AT 1

5GH

z (d

Bm

)

IF FREQUENCY (GHz) 1410

6-24

0

Figure 40. Output 1 dB Compression Point (P1dB) at 15 GHz vs.

IF Frequency at a 7 dB Gain Setting

–80

–70

–60

–50

–40

–30

–20

–10

0

5 7 9 11 13 15 17 19 21 23 25

CA

RR

IER

FEE

DTH

RO

UG

H (d

Bm

)

RF FREQUENCY (GHz) 1410

6-04

7

+85°C, VATT = 2.6V+85°C, VATT = 1.5V+85°C, VATT = 0.4V

–40°C, VATT = 2.6V–40°C, VATT = 1.5V–40°C, VATT = 0.4V

+25°C, VATT = 2.6V+25°C, VATT = 1.5V+25°C, VATT = 0.4V

Figure 41. Carrier Feedthrough vs. RF Frequency (fRF) at Three Gain Settings

for Various Temperatures Before Nulling

0

5

10

15

20

25

30

35

40

5 7 9 11 13 15 17 19 21 23 25

SID

EBA

ND

SU

PPR

ESSI

ON

(dB

)

RF FREQUENCY (GHz) 1410

6-04

8

+85°C, VATT = 2.6V+85°C, VATT = 1.5V+85°C, VATT = 0.4V

–40°C, VATT = 2.6V–40°C, VATT = 1.5V–40°C, VATT = 0.4V

+25°C, VATT = 2.6V+25°C, VATT = 1.5V+25°C, VATT = 0.4V

Figure 42. Sideband Suppression vs. RF Frequency (fRF) at Three Different

Gain Settings for Various Temperatures Before Nulling

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

IMD

3 (d

Bc)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-05

0

Figure 43. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF)

at a 7 dB Gain Setting for Various Temperatures, IF Amplitude = −15 dBm per Tone

Page 16: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 16 of 35

0

10

20

30

40

50

60

70

80

90

100

5 7 9 11 13 15 17 19 21 23 25

IMD

3 (d

Bc)

RF FREQUENCY (GHz)

–40°C, RDAC_LINEARIZE+25°C, RDAC_LINEARIZE+85°C, RDAC_LINEARIZE–40°C+25°C+85°C

1410

6-24

3

Figure 44. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at 7 dB Gain Setting for Various RDAC_LINEARIZE Settings and Various

Temperatures, IF Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

IMD

3 (d

Bc)

RF FREQUENCY (GHz)

4.45V5.00V5.25V

1410

6-05

1

Figure 45. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF)

at a 7 dB Gain Setting and for Various Supply Voltages, IF Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

IMD

3 (d

Bm

)

RF FREQUENCY (GHz) 1410

6-05

2

LO = +9dBmLO = +6dBmLO = +3dBmLO = 0dBm

LO = –3dBmLO = –6dBmLO = –9dBm

Figure 46. Third-Order Intermodulation Distortion (IMD3) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various LO Inputs, IF Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

IMD

3AT

15G

Hz

(dB

c)

IF FREQUENCY (GHz) 1410

6-14

7

Figure 47. Third-Order Intermodulation Distortion (IMD3) at 15 GHz vs.

IF Frequency at a 7 dB Gain Setting

0

10

20

30

40

50

60

70

80

–30 –25 –20 –15 –10 –5 0

IMD

3 (d

Bc)

POUT (dBm PER TONE; PIN = –15dBm PER TONE)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-05

3

Figure 48. Third-Order Intermodulation Distortion (IMD3) vs. Output Power

(POUT) for Various RF Frequencies (fRF), IF Amplitude = −15 dBm per Tone

0

5

10

15

20

25

30

35

40

5 7 9 11 13 15 17 19 21 23 25

OIP

3 (d

Bm

)

RF FREQUENCY (GHz) 1410

6-14

8

Figure 49. Output Third-Order Intercept (OIP3) vs. RF Frequency (fRF) at a

7 dB Gain Setting, IF Amplitude = −15 dBm per Tone

Page 17: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 17 of 35

0

5

10

15

20

25

30

35

40

–25 –23 –21 –19 –17 –15 –13 –11 –9 –7 –5

OIP

3 (d

Bm

)

IF INPUT POWER (dBm PER TONE)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-25

0

Figure 50. Output Third-Order Intercept (OIP3) vs. IF Input Power at a

7 dB Gain Setting for Various RF Frequencies (fRF)

0

10

20

30

40

50

60

70

80

90

5 7 9 11 13 15 17 19 21 23 25

IMD

5 (d

Bc)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-05

5

Figure 51. Fifth-Order Intermodulation Distortion (IMD5) vs. RF Frequency (fRF)

at a 7 dB Gain Setting for Various Temperatures, IF Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

90

–30 –25 –20 –15 –10 –5 0

IMD

5 (d

Bc)

POUT (dBm PER TONE; PIN = –15dBm PER TONE)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-05

6

Figure 52. Fifth-Order Intermodulation Distortion (IMD5) vs. Output Power

(POUT) for Various RF Frequencies (fRF), IF Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

OIP

2 (d

Bm

)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-05

7

Figure 53. Output Second-Order Intercept (OIP2) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various Temperatures, IF Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

OIP

2 (d

Bm

)

RF FREQUENCY (GHz) 1410

6-05

8

LO = +9dBmLO = +6dBmLO = +3dBmLO = 0dBm

LO = –3dBmLO = –6dBmLO = –9dBm

Figure 54. Output Second-Order Intercept (OIP2) vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various LO Inputs, IF Amplitude = −15 dBm per Tone

0

10

20

30

40

50

60

70

80

–30 –25 –20 –15 –10 –5 0

OIP

2 (d

Bm

)

POUT (dBm PER TONE; PIN = –15dBm PER TONE)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-05

9

Figure 55. Output Second-Order Intercept (OIP2) vs. Output Power (POUT)

for Various RF Frequencies (fRF), IF Amplitude = −15 dBm per Tone

Page 18: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 18 of 35

125

130

135

140

145

150

155

5 7 9 11 13 15 17 19 21 23 25

CA

RR

IER

TO N

OIS

E (d

Bc/

Hz)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-15

5

Figure 56. Output Noise Density vs. RF Frequency (fRF) at a 7 dB Gain Setting for Various Temperatures with an Output Carrier of −5 dBm

125

130

135

140

145

150

155

–13 –8 –3 2 7 12

CA

RR

IER

TO N

OIS

E (d

Bc/

Hz)

VATT GAIN (dB)

fRF = 6GHzfRF = 10GHzfRF = 15GHzfRF = 20GHzfRF = 24GHz

1410

6-15

6

Figure 57. Output Noise Density vs. VATT Gain for Various RF Frequencies

(fRF) with an Input Carrier of −12 dBm

–20

–15

–10

–5

0

5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P OU

TAT

15G

Hz,

MA

X G

AIN

(dB

m)

IF FREQUENCY (GHz) 1410

6-15

8

Figure 58. Bandwidth, POUT at 15 GHz and Maximum Gain Setting vs.

IF Frequency (fIF)

–10

–8

–6

–4

–2

0

2

4

6

8

10

5 7 9 11 13 15 17 19 21 23 25

MA

GN

ITU

DE

DEL

TA, R

FON

TO R

FOP

(dB

)

RF FREQUENCY (GHz)

VATT = 2.6VVATT = 1.5VVATT = 0.4V

1410

6-15

9

Figure 59. Magnitude Delta, RFON to RFOP vs. RF Frequency (fRF) at

Three Different Gain Settings

Page 19: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 19 of 35

OUTPUT DETECTOR PERFORMANCE

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

–35 –30 –25 –20 –15 –10 –5 0 5 10

VDET

(V)

POUT AT 15GHz (dBm)

–40°C+25°C+85°C

1410

6-06

0

Figure 60. Detector Output (VDET) vs. Output Power (POUT) at 15 GHz for Various Temperatures

–5

–4

–3

–2

–1

0

1

2

3

4

5

–35 –30 –25 –20 –15 –10 –5 0 5 10

DET

ECTO

R E

RR

OR

(dB

)

POUT AT 15GHz (dBm)

–40°C+25°C+85°C

1410

6-06

1

Figure 61. Detector Error vs. Output Power (POUT) at 15 GHz for

Various Temperatures

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

5 7 9 11 13 15 17 19 21 23 25

VDET

(V)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-06

2

Figure 62. Detector Output (VDET) vs. RF Frequency (fRF), −5 dBm Output Power (POUT) for Various Temperatures

Page 20: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 20 of 35

RETURN LOSS

–25

–20

–15

–10

–5

0

5 7 9 11 13 15 17 19 21 23 25

RET

UR

N L

OSS

(dB

)

RF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-26

3

Figure 63. RF Output Return Loss S11 vs. RF Frequency for Various Temperatures

–25

–20

–15

–10

–5

0

5 7 9 11 13 15 17 19 21 23 25

RET

UR

N L

OSS

(dB

)

LO FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-26

4

Figure 64. LO Input Return Loss S11 vs. LO Frequency for Various

Temperatures

–25

–20

–15

–10

–5

0

0 1 2 3 4 5 6

RET

UR

N L

OSS

(dB

)

IQ FREQUENCY (GHz)

–40°C, BASEBAND I PORT+25°C, BASEBAND I PORT+85°C, BASEBAND I PORT–40°C, BASEBAND Q PORT+25°C, BASEBAND Q PORT+85°C, BASEBAND Q PORT

1410

6-26

5

Figure 65. I/Q Input Return Loss S11 vs. I/Q Frequency for Various

Temperatures

–30

–25

–20

–15

–10

–5

0

0 1 2 3 4 5 6

RET

UR

N L

OSS

(dB

)

IF FREQUENCY (GHz)

–40°C+25°C+85°C

1410

6-26

6

Figure 66. IF Input Return Loss S11 vs. IF Frequency for Various

Temperatures

Page 21: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 21 of 35

THEORY OF OPERATION The ADRF6780 is a wideband microwave upconverter optimized for point to point microwave radio designs operating in the 5.9 GHz to 23.6 GHz frequency range. A functional block diagram of the device is shown in Figure 1. The ADRF6780 is programmed via an SPI.

BASEBAND The input impedance of the basebands are high input impedance. These inputs are designed to operate with a 0.5 V common-mode voltage. These inputs are differentially terminated to a 100 Ω resistor using an off chip termination.

The linearity can be optimized by adding phase correction signals to the current output via adjusting the I_PATH_PHASE_ ACCURACY register (Register 0x05, Bits[3:0]) and the Q_PATH_ PHASE_ACCURACY (Register 0x05, Bits[7:4]) register.

SINGLE SIDEBAND (SSB) UPCONVERSION The IF input path can be fed anywhere from 0.8 GHz to 3.5 GHz. The IF inputs path can be upconverted to 5.9 GHz to 23.6 GHz, while suppressing the unwanted sideband by typically better than 25 dBc. The IF upconversion inputs are 100 Ω differential and must be ac-coupled. In addition, the I/Q baseband input must stay floating without any termination on their inputs.

LO INPUT PATH The LO input path operates from 5.4 GHz to 14 GHz with a LO amplitude range of −6 dBm to +6 dBm. It is built from two modes: ×1 mode (Register 0x03, Bit 2), which provides an LO output frequency equal to the LO input frequency, and ×2 mode (Register 0x03, Bit 3), which doubles the LO output frequency from the LO input frequency. Note that, when enabling the LO ×2 mode (Register 0x03, Bit 3), the LO ×1 mode (Register 0x03, Bit 2) must be disabled.

The LO path is designed to operate differentially. LOIP and LOIN are the inputs to the LO path. It is recommended to use the ADRF6780 with a LO differential input to achieve the best performance.

Figure 67 shows a block diagram of the LO path.

×2 PPF

MUX

PPF

AMP1LOIPLOIN

1410

6-07

8

Figure 67. LO Path Block Diagram

SERIAL PORT INTERFACE (SPI) The SPI of the ADRF6780 allows the user to configure the device for specific functions or operations via a 4-pin SPI port. This interface provides users with added flexibility and customization. The SPI consists of four control lines: SCLK, SDIN, SDTO, and SEN.

The ADRF6780 protocol consists of a write/read bit followed by six register address bits, 16 data bits, and a parity bit. Both the address and data fields are organized MSB first and end with the least significant bit (LSB). For a write, set the first bit to 0, and for a read, set this bit to 1.

The write cycle sampling must be done on the rising edge. The 16 bits of the serial write data are shifted in, MSB to LSB. The ADRF6780 input logic level for the write cycle supports an 1.8 V interface.

For a read cycle, up to 16 bits of serial read data are shifted out, MSB first. After the 16 bits of data shift out, the parity bit shifts out. The output logic level for a read cycle is 1.8 V.

The parity bit always follows the direction of the data. If parity is not used, the transmitting end transmits zero instead of parity. The parity is odd, which means that the total number of ones transmitted during a command, including the read/write bit, the address bit, the data bit, and the parity bit, must be odd.

Table 5. Serial Port Register Timing Parameter Description Min Typ Max Unit tDI, SETUP Data to clock setup time 10 ns tDI, HOLD Data to clock hold time 10 ns tCLK, HIGH Clock high duration 40 to 60 % tCLK, LOW Clock low duration 40 to 60 % tCLK, SEN_SETUP Clock to SEN setup time 30 ns

tCLK, DOT Clock to data out transition time 10 ns tCLK, DOV Clock to data out valid time 10 ns tCLK, SEN_INACTIVE Clock to SEN inactive 20 ns

tSEN_INACTIVE Inactive SEN (between two operations) 80 ns

Page 22: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 22 of 35

tCLK, LOW

tCLK, DOT

SDINtCLK, DOV

SDTOtDI, SETUP

tDI, HOLD

SCLK

tSEN_INACTIVE

tCLK, HIGH

tCLK, SEN_INACTIVE

tCLK, SEN_SETUP

SEN

1410

6-07

9

Figure 68. Serial Port Register Timing Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SCLK

SDIN D11R/W A5 A4 A3 A2 A1 A0 D15 D14 D13 D12 PD10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

SEN

1410

6-08

0

Figure 69. Write Serial Port Timing Diagram

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

SCLK

SDIN

SDTO D0 PD5 D4 D3 D2 D1D10 D9 D8 D7 D6D15 D14 D13 D12 D11

A1 A0R/W A5 A4 A3 A2

1410

6-08

1

SEN

Figure 70. Read Serial Port Timing Diagram

Page 23: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 23 of 35

APPLICATIONS INFORMATION CARRIER FEEDTHROUGH NULLING Carrier feedthrough results from minute dc offsets that occur on the differential baseband inputs. In an I/Q modulator, nonzero differential offsets mix with the LO and result in carrier feedthrough to the RF output. In addition to this effect, some of the signal power at the LO input couples directly to the RF output (this may be because of the bond wire to bond wire coupling or coupling through the silicon substrate). The net carrier feedthrough at the RF output is the vector combination of the signals that appear at the output because of these two effects. A TxDAC can externally accomplish carrier feedthrough nulling.

SIDEBAND SUPPRESSION OPTIMIZATION Sideband results from gain and phase imperfections between the I and Q channels. Sideband also results from the quadrature error in generating the quadrature LO signals. Quadrature I and Q signals are constructed in the LO path, and the vector combination of these signals at the RF output results in suppression of the unwanted sideband. Deviation from perfect quadrature on these signals limits the amount of achievable sideband suppression.

The ADRF6780 offers quadrature phase adjustment in the LO path quadrature signals. Make these adjustments through the I_PATH_PHASE_ACCURACY bits (Register 0x05, Bits[3:0]) and Q_PATH_PHASE_ACCURACY (Register 0x05, Bits[7:4]) bits to reject the unwanted sideband signal.

Figure 14 shows the level of unwanted sideband signal achievable from the ADRF6780 across the I_PATH_PHASE_ACCURACY bits (Register 0x05, Bits[3:0]) and Q_PATH_PHASE_ACCURACY (Register 0x05, Bits[7:4]) bits.

If further optimization is needed, adjust the amplitude and phase externally through a TxDAC.

LINEARITY The linearity in the ADRF6780 can be optimized through the distortion cancellation circuit that is set up by the RDAC_ LINEARIZE bits (Register 0x04, Bits[7:0]) SPI settings. The distortion cancellation circuit connects in parallel with the baseband signal path in such a way that the fundamental is minimally affected whereas the third-order portions cancel to some degree. Adjusting the value of the RDAC_LINEARIZE bits (Register 0x04, Bits[7:0]) changes the resistance value in the cancellation path by fine tuning the amount of third-order destructively added to the main signal path. It also serves as a form or predistortion for third-order impedance generated further down in the signal path.

Figure 16 and Figure 44 show the level of linearity improvement achievable across the ADRF6780 RDAC_LINEARIZE bits.

ADC The ADRF6780 includes an ADC that connects to a detector. The user has an option to read the detector output from the

detector output pin (VDET, Pin 1) or using the ADC from the SPI. Figure 71 shows normal operation at I/Q mode, an RF output of 6.7 GHz, an I/Q input of 1 MHz, and a maximum gain. Figure 72 shows normal operation at IF mode and an RF output of 6.7 GHz, an IF input of 800 MHz, and a maximum gain.

0.05

0.25

0.45

0.65

0.85

1.05

1.25

0

50

100

150

200

250

300

DET

ECTO

R V

OLT

AG

E (V

)

AD

CVA

LUE

RF OUTPUT POWER (dBm)

ADC VALUEDETECTOR VOLTAGE(V)

–35 –31 –27 –23 –19 –15 –11 –7 –3 1

1410

6-08

9

Figure 71. ADC Detector Output and Detector Output Power, I/Q Mode

0.05

0.25

0.45

0.65

0.85

1.05

1.25

0

50

100

150

200

250

300

–35 –31 –27 –23 –19 –15 –11 –7 –3 1

DET

ECTO

R V

OLT

AG

E (V

)

AD

CVA

LUE

RF OUTPUT POWER (dBm)

ADC VALUEDETECTOR VOLTAGE (V)

1410

6-09

0

Figure 72. ADC Detector Output and Detector Output Power, IF Mode

To read back from the detector using the ADC, take the following steps.

1. Set Bit 7 of Register 0x03 to 1 (DETECTOR_ENABLE). 2. Set Bit 1 of Register 0x06 to 1 (ADC_ENABLE). 3. Set Bit 0 of Register 0x06 to 1 (ADC_CLOCK_ENABLE). 4. Set Bit 2 of Register 0x06 to 1 (ADC_START). 5. Wait 200 µs for the ADC to be ready. 6. Set Bit 8 of Register 0x0C to 1 (ADC_STATUS). 7. Set Bit 2 of Register 0x06 to 0 (ADC_START). 8. Set Bits[7:0] of Register 0x0C to read back the ADC

value (ADC_VALUE). To read the ADC value, the ADC_CLOCK_ENABLE, ADC_ENABLE, and ADC_START bits must be enabled.

To disable the ADC, disable the ADC_CLOCK_ENABLE, ADC_ENABLE, and ADC_START bits.

Page 24: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 24 of 35

WIDE FREQUENCY PERFORMANCE Figure 73 and Figure 74 show the typical performance of the ADRF6780 when using values outside of the RF output frequency range. It is important to understand that this performance is typical and not guaranteed.

Figure 73 was tested in I/Q mode with an RF output frequency of 1 GHz to 31 GHz. The LO input frequency was switched to LO ×2 doubler mode above 14 GHz.

Figure 74 was tested in IF mode with an RF output frequency of 1 GHz to 31 GHz. The LO input frequency was switched to LO ×2 doubler mode above 14 GHz.

–65

–55

–45

–35

–25

–15

–5

5

1 6 11 16 21 26 31

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

MAIN TONESIDEBANDLO FEEDTHROUGH

1410

6-07

3

Figure 73. Output Power (POUT) vs. RF Frequency (fRF) in I/Q Mode at

the Maximum Gain Setting, BB I/Q Amplitude = −15 dBm

–65

–55

–45

–35

–25

–15

–5

5

1 6 11 16 21 26 31

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

MAIN TONESIDEBANDLO FEEDTHROUGH

1410

6-07

4

Figure 74. Output Power (POUT) vs. RF Frequency (fRF) in IF Mode at

the Maximum Gain Setting, IF Amplitude = −12 dBm

LO Path ×1, ×2 Full Range

Figure 75 shows the typical performance of the ADRF6780 when the LO input frequency is used within the full frequency range. It is important to understand that this performance is typical and not guaranteed.

Figure 75 was tested with the LO path set to ×1 mode and ×2 mode with a 5.9 GHz to 23.6 GHz frequency range in I/Q mode. It is recommended to switch to LO ×2 doubler mode above 14 GHz to achieve better performance out of the device.

–65

–55

–45

–35

–25

–15

–5

5

5 7 9 11 13 15 17 19 21 23 25

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

MAIN TONE (LO ×1)MAIN TONE (LO ×2)SIDEBAND (LO ×1)SIDEBAND (LO ×2)

LO FEEDTHROUGH (LO ×1)LO FEEDTHROUGH (LO ×2)

1410

6-07

5

Figure 75. LO ×1 Mode and LO ×2 Mode, Output Power (POUT) vs.

RF Frequency (fRF) in I/Q Mode at the Maximum Gain Setting, BB I/Q Amplitude = −15 dBm

LAYOUT Solder the exposed pad on the underside of the ADRF6780 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask on the evaluation board. Connect these ground vias to all other ground layers on the evaluation board to maximize heat dissipation from the device package.

1410

6-09

3

Figure 76. Evaluation Board Layout for the ADRF6780 Package

Page 25: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 25 of 35

LO INPUT DRIVEN DIFFERENTIAL vs. SINGLE ENDED This section provides performance measurements that compare the ADRF6780 using a differential LO input vs. a single-ended LO input. When the device uses a single-ended configuration, LOIP drives while LOIN terminates to 50 Ω.

The subharmonic measurement compares the two settings. The LO input was set to doubler mode (×2) at a LO frequency of 9 GHz, and the I/Q mode was set with a 10 MHz sine wave. Table 6 represents the output frequencies of the upper sideband, the lower sideband, and the LO leakage at the fundamental output as well as the subharmonic output frequency at a maximum gain.

Table 6. LO Single-Ended vs. Differential Configuration Performance

Mode LO Input Power (dBm)

Fundamental Output Subharmonic Output Wanted Upper Sideband, LO – I/Q (dBm)

Unwanted Lower Sideband, LO + I/Q (dBm)

LO Leakage (dBm)

Unwanted Upper Sideband, LO/2 – I/Q (dBm)

Unwanted Lower Sideband, LO/2 + I/Q (dBm)

LO/2 Leakage (dBm)

Single Ended −10 −2.20 −28.83 −32.36 −16.26 −32.85 −36.16 −6 −2.09 −25.15 −33.22 −18.01 −35.78 −35.46 0 −1.94 −28.36 −38.08 −22.83 −42.97 −41.50 +6 −2.01 −28.36 −42.58 −20.17 −39.80 −38.08 Differential −10 −1.84 −24.96 −43.49 −29.66 −51.54 −45.85 −6 −1.85 −27.19 −38.86 −33.18 −51.25 −47.12 0 −1.84 −29.46 −37.84 −38.04 −56.50 −58.25 +6 −1.85 −29.55 −37.70 −40.08 −58.46 −60.16

Page 26: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 26 of 35

Gain, third-order intermodulation distortion (IMD3), and sideband rejection are also measured. RF frequencies from 5 GHz to 13 GHz are produced in LO ×1 mode, while LO ×2 mode produced RF frequencies from 14 GHz to 25 GHz. In both differential (Figure 77 to Figure 79) and single-ended (Figure 80 to Figure 82) configurations, the total LO power was swept from −10 dBm to +6 dBm. In differential mode, the amplitude was the sum of the LOIP and LOIN inputs.

–40

–35

–30

–25

–20

–15

–10

–5

0

5 7 9 11 13 15 17 19 21 23 25

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

LO = –10dBmLO = –6dBmLO = 0dBmLO = +6dBm

VATT = 2.6V

VATT = 1.5V

VATT = 0.4V

1410

6-09

3

Figure 77. LO Differential Input, Output Power (POUT) vs. RF Frequency (fRF) at

Three Gain Settings for Various LO Inputs, BB I/Q Amplitude = −15 dBm

RF FREQUENCY (GHz)

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

IMD

3 (d

Bc)

1410

6-09

4

LO = –10dBmLO = –6dBmLO = 0dBmLO = +6dBm

Figure 78. LO Differential Input, Third-Order Intermodulation Distortion (IMD3) vs.

RF Frequency (fRF) at a 10 dB Gain Setting (POUT ≈ −5 dBm per Tone)

0

10

20

30

40

50

60

5 7 9 11 13 15 17 19 21 23 25

SID

EBA

ND

SU

PPR

ESSI

ON

(dB

c)

RF FREQUENCY (GHz) 1410

6-09

5

LO = –10dBmLO = –6dBmLO = 0dBmLO = +6dBm

Figure 79. LO Differential Input, Sideband Suppression vs. RF Frequency (fRF)

Before Nulling

–40

–35

–30

–25

–20

–15

–10

–5

0

5 7 9 11 13 15 17 19 21 23 25

P OU

T (d

Bm

)

RF FREQUENCY (GHz)

VATT = 2.6V

VATT = 1.5V

VATT = 0.4V

1410

6-09

6

LO = –10dBmLO = –6dBmLO = 0dBmLO = +6dBm

Figure 80. LO Single-Ended Input, Output Power (POUT) vs. RF Frequency (fRF)

at Three Gain Settings for Various LO Inputs, BB I/Q Amplitude = −15 dBm

RF FREQUENCY (GHz)

0

10

20

30

40

50

60

70

80

5 7 9 11 13 15 17 19 21 23 25

IMD

3 (d

Bc)

1410

6-09

8

LO = –10dBmLO = –6dBmLO = 0dBmLO = +6dBm

Figure 81. LO Single-Ended Input, Third-Order Intermodulation Distortion (IMD3)

vs. RF Frequency (fRF) at a 10 dB Gain Setting (POUT ≈ −5 dBm per Tone)

0

10

20

30

40

50

60

5 7 9 11 13 15 17 19 21 23 25

SID

EBA

ND

SU

PPR

ESSI

ON

(dB

c)

RF FREQUENCY (GHz) 1410

6-09

7

LO = –10dBmLO = –6dBmLO = 0dBmLO = +6dBm

Figure 82. LO Single-Ended Input, Sideband Suppression vs. RF Frequency

(fRF) Before Nulling

Page 27: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 27 of 35

REGISTER SUMMARY Table 7. Register Summary

Hex Addr Name Bits

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W

0x00 Control [15:8] PARITY_EN SOFT_RESET RESERVED CHIP_ID[7:4] 0x0075 R/W

[7:0] CHIP_ID[3:0] CHIP_REVISION

0x01 ALARM_ READBACK

[15:8] PARITY_ ERROR

TOO_FEW_ ERRORS

TOO_MANY_ ERRORS

ADDRESS_ RANGE_ ERROR

RESERVED 0x0000 R

[7:0] RESERVED

0x02 ALARM_MASK [15:8] PARITY_ ERROR_ MASK

TOO_FEW_ ERRORS_ MASK

TOO_MANY_ ERRORS_ MASK

ADDRESS_ RANGE_ ERROR_MASK

RESERVED 0xFFFF R/W

[7:0] RESERVED

0x03 Enable [15:8] RESERVED VGA_BUFFER_ ENABLE

0x0157 R/W

[7:0] DETECTOR_ ENABLE

LO_BUFFER_ ENABLE

IF_MODE_ ENABLE

IQ_MODE_ ENABLE

LO_X2_ ENABLE

LO_PPF_ ENABLE

LO_ ENABLE

UC_BIAS_ ENABLE

0x04 Linearize [15:8] RESERVED 0x0080 R/W

[7:0] RDAC_LINEARIZE

0x05 LO_PATH [15:8] RESERVED LO_ SIDEBAND

RESERVED 0x0000 R/W

[7:0] Q_PATH_PHASE_ACCURACY I_PATH_PHASE_ACCURACY

0x06 ADC_ CONTROL

[15:8] RESERVED 0x0000 R/W

[7:0] RESERVED VDET_ OUTPUT_ SELECT

ADC_ START

ADC_ ENABLE

ADC_CLOCK_ ENABLE

0x0C ADC_OUTPUT [15:8] RESERVED ADC_STATUS 0x0010 R

[7:0] ADC_VALUE

Page 28: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 28 of 35

REGISTER DETAILS: WIDEBAND UPCONVERTER CONTROL REGISTER Address: 0x00, Reset: 0x0075, Name: Control

Enable the Parity for Write Execution Chip Revis ion

SPI Soft Reset (SPI Soft Reset isNot Self-Reset)

Chip ID

0

11

02

13

04

15

16

17

08

09

010

011

012

013

014

015

0

[15] PARITY_EN (R/W) [3:0] CHIP_REVISION (R)

[14] SOFT_RESET (W) [11:4] CHIP_ID (R)

[13:12] RESERVED

Table 8. Bit Descriptions for Control Bits Bit Name Settings Description Reset Access 15 PARITY_EN Enable the Parity for Write Execution 0x0 R/W 14 SOFT_RESET SPI Soft Reset (SPI Soft Reset is Not Self-Reset) 0x0 W [13:12] RESERVED Reserved 0x0 R/W [11:4] CHIP_ID Chip ID 0x7 R [3:0] CHIP_REVISION Chip Revision 0x5 R

ALARM_READBACK REGISTER Address: 0x01, Reset: 0x0000, Name: ALARM_READBACK

Parity Error

Too Few ErrorsAddress Range Error

Too Many Errors

0

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

0

[15] PARITY_ERROR (R) [11:0] RESERVED

[14] TOO_FEW_ERRORS (R)[12] ADDRESS_RANGE_ERROR (R)

[13] TOO_MANY_ERRORS (R)

Table 9. Bit Descriptions for ALARM_READBACK Bits Bit Name Settings Description Reset Access 15 PARITY_ERROR Parity Error 0x0 R 14 TOO_FEW_ERRORS Too Few Errors 0x0 R 13 TOO_MANY_ERRORS Too Many Errors 0x0 R 12 ADDRESS_RANGE_ERROR Address Range Error 0x0 R [11:0] RESERVED Reserved 0x0 R

Page 29: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 29 of 35

ALARM_MASK REGISTER Address: 0x02, Reset: 0xFFFF, Name: ALARM_MASK

Parity Error Mask - Enable the AlarmOutput Pin

Too Few Errors Mask -Enable theAlarm Output Pin

Address Range Error Mask - Enablethe Alarm Output Pin

Too Many Errors Mask - Enable theAlarm Output Pin

0

01

02

03

04

05

06

07

08

09

010

011

012

113

114

115

1

[15] PARITY_ERROR_MASK (R/W) [11:0] RESERVED

[14] TOO_FEW_ERRORS_MASK (R/W)

[12] ADDRESS_RANGE_ERROR_MASK (R/W)

[13] TOO_MANY_ERRORS_MASK (R/W)

Table 10. Bit Descriptions for ALARM_MASK Bits Bit Name Settings Description Reset Access 15 PARITY_ERROR_MASK Parity Error Mask—Enable the Alarm Output Pin 0x1 R/W 14 TOO_FEW_ERRORS_MASK Too Few Errors Mask—Enable the Alarm Output Pin 0x1 R/W 13 TOO_MANY_ERRORS_MASK Too Many Errors Mask—Enable the Alarm Output Pin 0x1 R/W 12 ADDRESS_RANGE_ERROR_MASK Address Range Error Mask—Enable the Alarm Output Pin 0x1 R/W [11:0] RESERVED Reserved 0xFFF R/W

ENABLE REGISTER Address: 0x03, Reset: 0x0157, Name: Enable

UC Bias Enable

VGA Buffer EnableLO Enable

Detector EnableLO x1 Enable

LO Buffer EnableLO x2 Enable

IF Mode EnableIQ Mode Enable

0

11

12

13

04

15

06

17

08

19

010

011

012

013

014

015

0

[15:9] RESERVED [0] UC_BIAS_ENABLE (R/W)

[8] VGA_BUFFER_ENABLE (R/W)[1] LO_ENABLE (R/W)

[7] DETECTOR_ENABLE (R/W)[2] LO_PPF_ENABLE (R/W)

[6] LO_BUFFER_ENABLE (R/W)[3] LO_X2_ENABLE (R/W)

[5] IF_MODE_ENABLE (R/W)[4] IQ_MODE_ENABLE (R/W)

Table 11. Bit Descriptions for Enable Bits Bit Name Settings Description Reset Access [15:9] RESERVED Reserved 0x0 R/W 8 VGA_BUFFER_ENABLE VGA Buffer Enable 0x1 R/W 7 DETECTOR_ENABLE Detector Enable 0x0 R/W 6 LO_BUFFER_ENABLE LO Buffer Enable 0x1 R/W 5 IF_MODE_ENABLE IF Mode Enable 0x0 R/W 4 IQ_MODE_ENABLE IQ Mode Enable 0x1 R/W 3 LO_X2_ENABLE LO ×2 Enable 0x0 R/W 2 LO_PPF_ENABLE LO ×1 Enable 0x1 R/W 1 LO_ENABLE LO Enable 0x1 R/W 0 UC_BIAS_ENABLE UC Bias Enable 0x1 R/W

Page 30: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 30 of 35

LINEARIZE REGISTER Address: 0x04, Reset: 0x0080, Name: Linearize

RDAC 8 Bits : for IMD PerformanceImprovement (0-255)

0

01

02

03

04

05

06

07

18

09

010

011

012

013

014

015

0

[15:8] RESERVED [7:0] RDAC Linearize (R/W)

Table 12. Bit Descriptions for Linearize Bits Bit Name Settings Description Reset Access [15:8] RESERVED Reserved 0x0 R/W [7:0] RDAC_LINEARIZE RDAC 8 Bits: for IMD Performance Improvement (0 to 255) 0x80 R/W

LO_PATH REGISTER Address: 0x05, Reset: 0x0000, Name: LO_PATH

CDAC for I Phase Accuracy

Switch to the Other LO SideBandCDAC for Q Phase Accuracy

0

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

0

[15:11] RESERVED [3:0] I_PATH_PHASE_ACCURACY (R/W)

[10] LO_SIDEBAND (R/W)[7:4] Q_PATH_PHASE_ACCURACY (R/W)

[9:8] RESERVED

Table 13. Bit Descriptions for LO_PATH Bits Bit Name Settings Description Reset Access [15:11] RESERVED Reserved 0x0 R/W 10 LO_SIDEBAND Switch to the Other LO Sideband 0x0 R/W [9:8] RESERVED Reserved 0x0 R/W [7:4] Q_PATH_PHASE_ACCURACY CDAC for Q Phase Accuracy 0x0 R/W [3:0] I_PATH_PHASE_ACCURACY CDAC for I Phase Accuracy 0x0 R/W

Page 31: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 31 of 35

ADC_CONTROL REGISTER Address: 0x06, Reset: 0x0000, Name: ADC_CONTROL

ADC Clock Enable

1: Enable.0: Disable.

VDET Output Pin Select

1: VDET Output Select Enable.0: VDET Output Select Disable.

ADC Enable and Comparator on

1: Enable.0: Disable.

ADC FallEdge to Start ADCConvers ion-WriteHigh Then Low

1: Set ADC convers ion control high.

0:edge.ADC convers ion activated at falling

0

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

0

[15:4] RESERVED [0] ADC_CLOCK_ENABLE (R/W)

[3] VDET_OUTPUT_SELECT (R/W)

[1] ADC_ENABLE (R/W)

[2] ADC_START (R/W)

Table 14. Bit Descriptions for ADC_CONTROL Bits Bit Name Settings Description Reset Access [15:4] RESERVED Reserved 0x0 R/W 3 VDET_OUTPUT_SELECT VDET Output Pin Select 0x0 R/W 0 VDET Output Select Disable 1 VDET Output Select Enable 2 ADC_START ADC FallEdge to Start ADC Conversion Write High Then Low 0x0 R/W 0 ADC Conversion Activated at Falling Edge 1 Set ADC conversion control High 1 ADC_ENABLE ADC Enable and Comparator On 0x0 R/W 0 Disable 1 Enable 0 ADC_CLOCK_ENABLE ADC Clock Enable 0x0 R/W 0 Disable 1 Enable

ADC_OUTPUT REGISTER Address: 0x0C, Reset: 0x0010, Name: ADC_OUTPUT

Detector ADC 8 Bit Output

ADC Busy

1: Ready.0: Busy.

0

01

02

03

04

05

06

07

08

09

010

011

012

013

014

015

0

[15:9] RESERVED [7:0] ADC_VALUE (R)

[8] ADC_STATUS (R)

Table 15. Bit Descriptions for ADC_OUTPUT Bits Bit Name Settings Description Reset Access [15:9] RESERVED Reserved 0x0 R/W 8 ADC_STATUS ADC Busy 0x0 R 0 Busy 1 Ready [7:0] ADC_VALUE Detector ADC 8-Bit Output 0x0 R

Page 32: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 32 of 35

BASIC CONNECTIONS FOR OPERATION Figure 83 to Figure 85 show the basic connections for operating the ADRF6780 as it is implemented on the evaluation board of the device.

14

10

6-1

00

AGND

VPRF

LO

IP

VP

LO

BB

IN

BB

QN

VP

RF

AGND

RFON

AGND

RFOP

VP

LO

VDET

PW

DN

VP

BB

BB

IP

BB

QP

VA

TT

IFIN

IFIP

VP18

SDIN

SCLK

SE

NB

AG

ND

AL

MB

ADRF6780

AGND

RSTB

LO

IN

SD

TO

VPDT

VPBI

TBD0402

C0402DNI

DNI

C0603

C0402

B3S1000

C0603

C0402

R0402

5.1K

C0603

TBD0402C0402

DNI

33PF 4.7NF

R0402

DNI

0.1UF

TBD0402

0.1UF4.7NF33PF

C0402DNI

TBD0402

C0402

TBD0402

C0402 DNI

33

0

33PF

TBD0402C0402DNI

R0402

100PF

C0402

DNI

TBD0603TBD0402

DNI

10KDNI

TBD0402

33PF

DNI

C0402

TBD0402

DNI

C0603

0.1UF

C0402

C0402

33PF

C0402

C0603

C0603

4.7NF

C0402

C0603

C0603

C0402 C0402

33PF

C0402

R040250

C0402

4.7NF

0

C0603

C0402C0402

R0402

0.1UF

33

C0402

0.1UF

C0603

33PF

10K

R0603

C0402

R040250

R040250

0.1UFC0402

TBD0603

0.1UF

R0402

33

33

C0402

50R0402

R0603

69157-102

C0402

TBD0402

DNI

C0402100PF

33PF4.7NF

C0402

R0402

25-146-1000-92

4.7NF

C0402

10PF

DNI

TBD0402

R0402

C0402

4.7NF

4.7NF

C0603

0.1UF

TBD0603

C0402

25-146-1000-92

25-146-1000-92

C37

C27

C16

R5

C35

C34

C32

C30

C29

C25

C24

C21C18

R9

R3

C20

C7

C14

R6

R1

DUT

C31

C17

C15

C39

R8

R23

R100

BBIN

C36

C13

C9C3

RSTB

C2

C22

C40

C23

R7

R4

R2

C26

R24 R25

C28

BBQN BBQP BBIP

IFIN

C8

C4

C41C5 IFIP

PWDN

C11

R26

C12

C38C33

LOIP LOIN

C10

C1

C19C6

RFON

RFOP

3.3V_6780

6780_VATT

6780_MOSI

6780_CS

BBIN

BBIP

3.3V_6780

1.8V

6780_SCK

1.8V

BBQN

5V

5V

3.3V_6780

5V

PWDN1.8V

BBQP

IFINIFIP

VDET

6780_RSTB

6780_MISO

LOIP

ALMB

3.3V_6780

LOIN

6780_RFON

6780_RFOP

4

25

26

27

29

2

24

23

2

1

16

11

28

15

14

4

PA

D

6

187

2

20

1

8 1 3

1

1

1

1

5

1 1

21

19

223

30

9

12

13

32

5

10

17

23452345

4 3 2 5 4 3 2 5 4 3 2 5 4 3 2

1 1

31

1

1

AGNDAGND

AGND

AGND

AGND

AGND

AGND

AGNDAGND

AGND

AGND

AGND AGND

AGND AGND

AGND AGND

AGNDAGND

AGNDAGND

AGND

AGND

AGNDAGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

NOTES1. WHEN THE IF MODE IS SET, REMOVE THE 0Ω R10 TO R13 RESISTORS FROM THE IQ LINES.

AGND

AGND

AGNDAGND

R110

R120

R130

AGND

AGND

AGND

AGND

2 3 4

2 3 4

2 23 34 4

RED REDRED

WHTWHT

BLK

GRN

RED

BLK

3.3V_6780

GND2

1.8V3.3V5V

VATT ALMB VDET

GND1

5V 1.8V

ALMB VDET6780_VATT

3.3V_67803.3V

1

1

111

1 1

1

AGNDAGND

Figure 83. ADRF6780 Evaluation Board Schematic Page 1

Page 33: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 33 of 35

1410

6-10

1

PROGRAMMING HEADER

USB

MUSB-05-F-AB-SM-A-R

FXL4TD245BQX

C0603

10UF

C321610UF 0.1UF

C0402C0402C04020.1UF

C04020.1UF

R0603

100K

80.6

SAMTECTSW10608GS6PIN

R0402

R0402

0

0.1UF

R1206

C0603

0.1UF

0.1UFC0603

0R0603

DNI

R060310K

100K

LB L293-N1N2-25-Z(BLUE)

10K PIC18F24J50-I/ML

XP2

R22

XC4 XC8XC7XC6XC5

XR6

XU1

R16

R15

XR2

XP1 XC12

U1

C141

USB

R21

C140

R20

3.3V

3.3V

USB_VCC

CS2

USB_D+

3.3V

PGC

USB_D– SCKMOSIMISOCS1

USB_D+

USB_VCC

USB_D-

3.3V 1.8V

CS1MOSIMISO

6780_SCK6780_MISO6780_MOSI6780_CS

3.3V3.3VSCK

PGC

EN1

EN1

5

8 PAD

7

9

10

1

N

P

A

165

17

15

19

64

13

3

7

109

11

1214

8

1

2021

26

PAD

24

6

21

34

1

PAD1

23

5

2

PAD4

18

PAD3

5

2

4

6

1314

2

3PAD2

C

22

15

1112

16

2725

28

34

AGND

AGNDPAD

VCCB

T_R1_N

B0B1B2B3

T_R2_N

OE_N

GNDT_R3_N

A3A2A1A0

T_R0_N

VCCA

AGND

PINSSHIELD

AGNDAGND

AGND

AGND

AGNDAGNDAGND

AGND

RC2_AN11_CTPLS_RP13

OSC2_CLKO_RA6

RC1_T1OSI_UOE_N_RP12

PAD

RA1_AN1_C2INA_RP1RA0_AN0_C1INA_ULPWU_RP0

MCLR_N

RB7_KBI3_PGD_RP10RB6_KBI2_PGC_RP9

RB5_KBI1_SDI1_SDA1_RP8RB4_KBI0_SCK1_SCL1_RP7

RB3_AN9_CTEDG2_VPO_RP6RB2_AN8_CTEDG1_VMO_REFO_RP5

RB1_AN10_RTCC_RP4RB0_AN12_INT0_RP3

VDD

RC7_RX1_DT1_SDO1_RP18RC6_TX1_CK1_RP17RC5_D_POS_VP

RC4_D_NEG_VM

VUSB

RC0_T1OSO_T1CKI_RP11

OSC1_CLKI_RA7

VSS

RA5_AN4_SS1_N_HLVDIN_RCV_RP2

VDDCORE_VCAP

RA3_AN3_VREF_POS_C1INBRA2_AN2_VREF_NEG_CVREF_C2INB

Figure 84. ADRF6780 Evaluation Board Schematic Page 2

3.3V LDO REGULATORS

1.8V LDO REGULATORNANODAC

1410

6-10

2

3.3V3.3V_6780

1000PF

ADM7172ACPZ-3.3

C06031000PF

C0603

0

AD5601BCPZ

C3216R0603

ADM7170ACPZ-1.8

C0603

C0603

C0603

4.7UF

10UF

ADM7172ACPZ-3.3

1000PF

0R0603

4.7UFC0603

C0603

C0603

0R0603

4.7UF

4.7UF

4.7UFR06034.7UF

C0603

0

U5U4

C50

C51

R14

U2U3

C43

R18

C42

C47

R17

C46

C45

C44

C49C48

R19

CS2

5V3.3V_6780 3.3V

3.3V 5V

5V

1.8V6780_VATTSCKMOSI

6

PAD

5

3

61

478

654

3

12

1

32

4

7

PAD

8

PAD

52

AGNDAGND

AGNDAGND

EP

VINVIN

GNDENSS

SENSEVOUTVOUT

AGND

AGND

PAD

VOUTGND

VDD

SDINSCLK

SYNC_N

AGND

AGNDAGND

AGNDEP

VIN2VIN1

GNDENSS

SENSEVOUT2VOUT1

AGND

AGNDAGND

AGND

EP

VIN2VIN1

GNDENSS

SENSEVOUT2VOUT1

Figure 85. ADRF6780 Evaluation Board Schematic Page 3

Page 34: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

ADRF6780 Data Sheet

Rev. C | Page 34 of 35

Table 16. Evaluation Board Configuration Options Component Function Default Condition VPLO3.3V, VPDT5V, VPRF5V, VPBB3.3V, VPBI3.3V, 1P8V, AGND

Power supplies and ground Not applicable

LOIN, LOIP, VDET, RFON, RFOP, BBIN, BBIP, BBQN, BBQN, IFIN, IFIP, VATT

Data and clock Not applicable

SCLK, SDIN, SENB, SDTO SPI Not applicable R2 to R5 33 Ω series resistors for SPI pins R2, R3, R4, R5 = 33 Ω (0402) 5V, 3.3V, 3.3V_6780, 1.8V, VDET, ALMB, VATT, GND1 to GND2

Test points Not applicable

PWDN Power-down function Apply 1.8 V on PWDN (Pin 2) jumper to power down the device

R1, R9, R14, R15, R17 to R20, XR2, XR6 Shorts or power supply decoupling resistors

R1, R9, R17, R18, R19 = 0 Ω (0402), R8 = 5.1 kΩ (0402), R15 = 100 kΩ (0402), R14, R20 = 0 Ω (0402), XR2 = 10 kΩ (0603), XR6 = 80.6 Ω (1206)

R6, R7, R16, R22 Pull-up or pull-down resistors R6, R7, R22 = 10 kΩ (0603), R16 = 100 kΩ (0402)

C1 to C4, C6 to C11, C13 to C15, C17, C20, C22, C23, C26, C28, C31, C33, C36, C38 to C40, C42 to C51, XC12, XC4 to XC8, C140, C141

The capacitors provide the required decoupling of the supply related pins

XC4, C45 = 10 µF (3216), XC12 = 10 µF (0603), C42, C44, C46, C48, C49, C51 = 4.7 µF (0603), C1, C2, C4, C8, C22, C28, C39, C40 = 0.1 µF (0603), XC5, XC6, XC7, XC8 = 0.1 µF (0402), C3, C6, C10, C13, C20, C26, C36, C38 = 4.7 nF (0402), C43, C47, C50 = 1000 pF (0603), C9, C11, C14, C15, C17, C23, C31, C33 = 33 pF (0402), C7 = 10 pF (0402), C140, C141 = 0.1 µF (0603)

R10 to R13 Remove resistors when using IF inputs (IF mode)

R10, R11, R12, R13 = 0 Ω (0201)

R23 to R26 Resistors provide a broadband 50 Ω termination for baseband input data

R23, R24, R25, R26 = 49.9 Ω (0402)

C5, C41 AC coupling capacitors C5, C41 = 100 pF (0402) C21 CS decoupling resistor C21 = 100 pF (0402) C12, C16, C18, C19, C24, C25, C27, C29, C30, C32, C34, C35, C37, R21

Do not install (DNI) C16, C24, C34, C35 = 0402, C27, C37, R21 = 0603, C12, C18, C19, C25 = 0402, C29, C30, C32 = 0402

XP1 Programming header Not applicable XP2 Mini USB connector Connect the mini USB cable to XP2 to interface

with the SPI RSTB Reset button Click RSTB to reset the device USB Blue LED LED is blue when the USB is connected to XP2, and

the PC and the ADRF6780 evaluation board is powered on with a 5 V supply

XU1 Microcontroller PIC18F24J50 U1 Level shifter FXL4TD245BQX U3 to U5 3.3 V and 1.8 V regulators ADM7170 (U3) = 1.8 V regulator,

ADM7172 (U4) = 3.3 V regulator, ADM7172 (U5) = 3.3 V regulator for ADRF6780

U2 AD5601 nanoDAC Not applicable DUT ADRF6780, device under test Not applicable

Page 35: 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter · 5.9 GHz to 23.6 GHz, Wideband, Microwave Upconverter Data Sheet ADRF6780 Rev. C Document Feedback Information furnished by

Data Sheet ADRF6780

Rev. C | Page 35 of 35

OUTLINE DIMENSIONS

0.450.400.35

3.403.30 SQ3.20

03-1

7-20

17-B

1

0.50BSC

PIN 1INDICATOR

32

916

17

24

25

8

0.05 MAX0.02 NOM

0.20 REF

COPLANARITY0.08

0.300.250.18

5.105.00 SQ4.90

0.800.750.70

0.20 MIN

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5

3.50 REF

BOTTOM VIEWTOP VIEW

PKG

-003

530

SEATINGPLANE

EXPOSEDPAD

END VIEW

PIN 1INDIC ATOR AREA OPTIONS(SEE DETAIL A)

DETAIL A(JEDEC 95)

FOR PROPER CONNECTION OFTHE EXPOSED PAD, REFER TOTHE PIN CONFIGURATION ANDFUNCTION DESCRIPTIONSSECTION OF THIS DATA SHEET.

Figure 86. 32-Lead Lead Frame Chip Scale Package [LFCSP]

5 mm × 5 mm Body and 0.75 mm Package Height (CP-32-20)

Dimensions shown in millimeters

ORDERING GUIDE Model1 Temperature Range Package Description Package Option ADRF6780ACPZN −40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-20 ADRF6780ACPZN-R2 −40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-20 ADRF6780ACPZN-R7 −40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-20 ADRF6780-EVALZ Evaluation Board 1 Z = RoHS Compliant Part.

©2016–2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D14106-0-7/18(C)