Welding Science and Technology_8122420737

289

Transcript of Welding Science and Technology_8122420737

Page 1: Welding Science and Technology_8122420737
Page 2: Welding Science and Technology_8122420737
Page 3: Welding Science and Technology_8122420737

This pageintentionally left

blank

Page 4: Welding Science and Technology_8122420737
Page 5: Welding Science and Technology_8122420737

Copyright © 2007, New Age International (P) Ltd., PublishersPublished by New Age International (P) Ltd., Publishers

All rights reserved.No part of this ebook may be reproduced in any form, by photostat, microfilm,xerography, or any other means, or incorporated into any information retrievalsystem, electronic or mechanical, without the written permission of the publisher.All inquiries should be emailed to [email protected]

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS4835/24, Ansari Road, Daryaganj, New Delhi - 110002Visit us at www.newagepublishers.com

ISBN (13) : 978-81-224-2621-5

Page 6: Welding Science and Technology_8122420737

. %( $ ' $' (((

%- ( % ''(

0 ( % ( & (1(%

% (' %'( .$' &(

% ( ('($2 & %'%% (

3''0 ( #' (( (

(' % (% ($2$' $

)& .'0% & $

' % ($ $'

(((%'(&11'

'( (%( ('. %

4 %( 0($

$% 1'( (( .&('($

% 5$(6.(78($ ( %9.9(&

($ ('% ' ( %

(( %'(( (

'(

3(( & % 1

( % '' %(($ ($3

( (( $ (: )' $

( %''% ( (( (&'

&'(' $ $( )

' ( %')

($ % ' ( ;%&

' (%$($

&' & ((& 1

% % (%( %%$$

%) & $ %%

% 0((( &% 1

%' %'$' '&' %

$

Page 7: Welding Science and Technology_8122420737

.&) %(%1

( (%( %''% &.(1

& & %( $%)((

. %%36&<%3:2

<%9$ %& (' .)

% ( % (%"' -

-3:=%)( ('' %-

>?/%-@/%('

. &%:A %'$ %%

&(')(1

$

Page 8: Welding Science and Technology_8122420737

!"#

BB -% %( B

B %+3 %(6

B4 '(%6 ( C

BC 3(%6( D

BD 6E%'( D

B / 6 F

(6 BB

4 @ (6 BF

C 3 6 4

D G"- 6( F

4B ( 4

4 ( ( %63( 4

44 (63"2' C4

4C 61 (3( CH

4D 6" CH

4I "3( !6 DB

4 (( ( D

4F :. %:@ DC

4H 6' ."%%( I4

!!

CB (%+ IH

C 6< - IH

C4 $"( B

$

Page 9: Welding Science and Technology_8122420737

CC :313"( F

CD 6"( 3(%(3' F

" !

DB /: H

D 6: B C

D4 .':((.'%6 B H

DC @ 3 - 6 BB4

IB G6 B4

I @6 1 (" BC

I4 .G@ BD

IC G!"2 8((( BI

ID 6%G%%(J BF

II @ BH

I (1@ (G3( B4B

"

B 6% B4D

6%'' B4I

4 6%G=3 B4

C 6%3 3 B4H

D 6%- ': BC

I G3%( BCC

!

FB 63' BCH

F 6(3 BDB

F4 6( BD

FC K %! 6 BD4

FD 6 BI

FI 3'' BIC

F 6(3 BIC

FF 3'(6(3 B

FH 6(%:/A+6 B

! # $

HB 9( BFB

H (& BFB

H4 BF

HC 3( BF

HD (&%! BF

HI (&% BF4

$

Page 10: Welding Science and Technology_8122420737

H !63;% BF4

HF %6 BFC

HH . %6K BF

$ !$

B B . BFH

B >. BHD

B 4 1 ($ (%6 B

$

BBB F

BB K- B4

BB4 >(&@ BC

BBC G.' B

BBD +%% & BF

BBI 1( BH

BB 6

!

BB ( H

B @ % '%63( H

B4 $$'%")( !!3@ 4

BC %-'3$( 4B

BD (.(2 %!!3A@3 44

BI 6! 4C

"$

B4B ( 4D

B4 G6%< ( 4

B44 6( 4

B4C "2' 4

B4D . %K C

%

BCB :(! C

BC . $ :(! C

BC4 :(! C

BCC '$'%6( ( (%:(! C4

BCD :('(6 CC

"

BDB ' %9'6 CI

BD 6( CF

BD4 . %96 CF

BDC 966( -$' DC

)

Page 11: Welding Science and Technology_8122420737

)

BDD -$' 96 DI

BDI ( ( - "( %::616 IB

BD I

BDF 3%36 I4

BDH 63( ( I4

BDB :( (%96 IC

BDBB -$' ID

BDB 3'' II

BDB4 !-$' I

%

Page 12: Welding Science and Technology_8122420737

1

Classification of Welding Process

!""#

$ %

" &

'()

'()

*

'+

',

'

'-

.-&,-&

'$

'/

0 1

'

'

'$

Page 13: Welding Science and Technology_8122420737

2 Welding Science and Technology

'2

'-

3

'!

'4

'/)

'!

5 .

'.

' 6*

7 1/

'/ 2

'82

- )

$ )

-

)-

9

!

. %

• !4 -(: $1/ 41/

• +(:.,-::.

• +(:.,-:.-(:

• ,/.8841&;

1.2.1 Source of Energy

/

) -

-

. .

<

Page 14: Welding Science and Technology_8122420737

Introduction to Welding Technology 3

1.2.2 Surface Contaminants

)6

) !)

)

)

Solidstate

weldingISSWI

Arcwelding

(AW)

Brazing(B)

Weldingprocesses

Soldering(S)

Otherwelding

Resistancewelding(RW)

Oxyfuelgas

welding(OFW)

Thermalspraying(THSP)

Alliedprocesses

Adhesivebonding(ABD)

Oxygencutting(OC)

Thermalcutting(TC)

Arccutting(AC)

Othercutting

atomic hydrogen welding.........AHWbare metal arc welding............BMAWcarbon arc welding..................CAW

–gas.....................................CAW.G–shielded..............................CAW.S–twin.....................................CAW.T

electrogas welding...................EGWflux cored arc welding..............FCAW

coextrusion welding............CEWcold welding........................CWdiffusion welding.................DFWexplosion welding...............EXWforge welding......................FOWfriction welding....................FRWhot pressure welding..........HPWroll welding..........................ROWultrasonic welding...............USW

dip soldering........................OSfurnace soldering.................FSinduction soldering...............ISinfrared soldering.................IRSiron soldering.......................INSresistance soldering.............RStorch soldering.....................TSwave soldering.....................WS

flash welding.....................FWprojection welding.............PWresistance seam welding..RSEW

–high frequency............RSEW.HF–induction......................RSEW.I

resistance spot welding.....RSWupset welding....................UW

–high frequency............UW.HF–induction......................UW.I

electric arc spraying........EASPflame spraying.................FLSPplasma spraying..............PSP

chemical flux cutting...........FOCmetal powder cutting..........POCoxyfuel gas cutting..............OFC

–oxyacetylene cutting.....OFC.A–oxyhydrogen cutting.....OFC.H–oxynatural gas cutting..OFC.N–oxypropane cutting.......OFC.P

oxygen arc cutting..............AOCoxygen lance cutting..........LOC

gas metal arc welding.............GMAW–pulsed arc.........................GMAW.P–short circuiting arc.............GMAW.S

gas tungsten arc welding........GTAW–pulsed arc.........................GTAW.P

plasma arc welding.................PAWshielded metal arc welding.....SMAWstud arc welding......................SWsubmerged arc welding...........SAW

–series.................................SAWS

arc brazing......................ABblock brazing..................BBcarbon arc brazing.........CABdiffusion brazing.............DFBdip brazing......................DBflow brazing....................FLBfurnace brazing..............FBinduction brazing............IBinfrared brazing...............IRBresistance brazing..........RBtorch brazing...................TB

electron beam welding......EBW–high vacuum................EBW.HV–medium vacuum..........EBW.MV–nonvacuum.................EBW.NV

electrostag welding...........ESWflow welding......................FLOWinduction welding..............IWlaser beam welding...........LBWpercussion welding...........PEWthermit welding..................TW

air acetylene welding......AAWoxyacetylene welding.....OAWoxyhydrogen welding.....OHWpressure gas welding.....PGW

air carbon arc cutting..........AACcarbon arc cutting...............CACgas metal arc cutting..........GMACgas tungsten arc cutting.....GTACmetal arc cutting.................MACplasma arc cutting..............PACshielded metal arc cutting..SMAC

electron beam cutting..........EBClaser beam cutting...............LBC

–air...................................LBC.A–evaporative....................LBC.EV–inert gas.........................LBC.IG–oxygen...........................LBC.O

Fig. 1.1 Master Chart of Welding and Allied Processes

Page 15: Welding Science and Technology_8122420737

4 Welding Science and Technology

1.2.3 Protecting Metal From Atmospheric Contamination

.

) .

))+ )

)

1.2.4 Control of Weld Metallurgy

= 6> $

6>

)

.

< 9

9

"#$ $$

1.3.1 Importance of Welding

-

.

.

.

1.3.2 Applications of Welding

<

• -<) 9

• 1 )

< .

<

• . <

Page 16: Welding Science and Technology_8122420737

Introduction to Welding Technology 5

< <

-

)

% $

-

.

" .

* .

0 /

3 +

5 =

7

? /)

@ A

B A

"C 9

"" 9

"* <9

"0 <

!9 .

9 .

.*" * DE<

<

. <

.

.

& '(!$#

. 9

Page 17: Welding Science and Technology_8122420737

6 Welding Science and Technology

.9

%

" <

*

0

3 <

5 <

7 $

? !

@ $

B

"C +

""

.

+ .-& <

7

$ *< 3< 3< 5<

<

. 0< 7< 5C< 7<

. *F 5?F "7F 3CF

$ & & ; 19

19

: : ,

< , ,

# #

: : < #

$ 8 8

19 G

4 4 # 1

& $ <

Page 18: Welding Science and Technology_8122420737

Introduction to Welding Technology 7

'(

"" HI/)

9J

"* /)

"0

Page 19: Welding Science and Technology_8122420737

8

!"

#$ #$ #$#$

#$ #$

%&

'(

( ) ')')

'(*(+( !

(,-. -(,(

+-/-(

!(+& (,(.(.

( 01

' &

&2&

& 345678

& 9:6678

3 2&&2&

&

Page 20: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 9

,;3 30)!

88;<;=

;2>8#2=$

;<8

;=;

8<(> <

1 m

1.4 m

Acetylene regulator

Pressure gages

Tank valve

All fittingshave left handthreads forAcetylene cylinder175 N/mm (max.)2

Tank pressure gage

Tank valve Line pressure gage

All fittings on oxygencylinder have righthand threads

Regulator

To welding torch

Oxygen tankpressure 1550 N/mm (max.)

2

Fig. 2.1 Cylinders and regulators for oxyacetylene welding [1]

; 89:?@*

9 3A2;3A&

33

;A &

0 (&

& &B

: 1

• *

• 2&B

Page 21: Welding Science and Technology_8122420737

10 Welding Science and Technology

Reducing valvesor regulators

Hoses

Gassupply

Combustiblegas

Oxygen

Torch andmixing device Flame

TipManual controlvalves

Torch tip

Oxyacetylenemixture

3500 C 2100 C 1275 C

Inner Luminous cone: 1st reaction Outer envelope (used for pre-heating): 2nd reaction

C2H2 + O2 → 2 CO + H2 2CO + O2 = 2CO2 + 570 kJ/mol of acetylene

Total heat liberated by 1st reaction H2 + 1

2O2 = H2O + 242 kJ/mol

(227 + 221) = 448 kJ/mol C2H2 Total heat by second reaction = (570 + 242) = 812 kJ/mol of C2H2

Total heat supplied by the combustion = (448 + 812) = 1260 kJ/mol of C2H2

Fig. 2.2 Schematic sketch of oxyacetylene welding torch and gas supply [1].

3 +

; + %

9 +

&

&

&&

!

! "

&& &

#B$

2&B#B$B B

#$

1

&3"333:"3)

( =C

Page 22: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 11

#)!!$

No acetylenefeather

2x2x

xx

5x5x

xx

Inner cone

Inner cone2/10th shorter

Inner cone1/2 of outer

coneAcetylenefeather twotimes the

inner cone

NEUTRAL(most welding)

OXIDIZING(brass, bronze,

Cu, Zn & Sn alloys)

REDUCING(LC + Alloy

steels, monel)

Fig. 2.3 Neutral, oxidizing and reducing flames

Penetration

Slag

Electrode

Arc stream

Molten metalExtruded coating

Gaseous shield

Base metalCrater

Fig. 2.4 Diagrammatic sketch of arc flame

• # )($

• (# ($

• '#'))')'$• '#''$

Page 23: Welding Science and Technology_8122420737

12 Welding Science and Technology

• !#!($

• +%+(

+ !#

1

,

(

& # &

$

&

2.2.1 Shielded Metal Arc Welding

,;0

&

&&

&

• B

• + 0

;#$5

# $

&

• (

+ !

36(

• 934

'9

• =

)( :6966

35%

• 1 0:

)?6@

Page 24: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 13

86; )(

-&

"

$%& &

#&$

&

' ! 3 B; 9

0 :

,% ?) D*

5 4 36*

33

(!

3 " 2;)2

;,2 2; 9

#$

; "1;282)22

;

9 E&B"'

0 -" F

: ""A88)C81)(

(! ! E*'

8218

Excessive granular flux

Fused flux shieldSolidifiedweld

Consumable electrode

Flux feed tube

Granular flux

Fig. 2.5 Submerged arc welding-working principle

2.2.2 Submerged Arc Welding

# ($& )(

,;:

&

&&828,; 2;

&

• *

• !B=#;66G;666$

#;D0:%$

Page 25: Welding Science and Technology_8122420737

14 Welding Science and Technology

To automatic wire feed

Flux feed tubeWelding electrode

Electrode lead

Fused flux

Granulatedflux

Finished weld surfaceSolidified slag

Base metalWeld metal

Work lead (Ground)Weld pool

Direction of weldingWeld backing

V-groove

Fig. 2.5 Submerged arc welding process

• !?66;666

B

( 56% 0:%

• ! ;:

• !

• A&

1&

• 8

2.2.3 Tungsten inert gas (Tig) Welding

• '

,

,;?

• E

& &

(

&

&

Page 26: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 15

Direction ofwelding

Gasnozzle

Currentconductor

Shieldinggas in

NonconsumabletungstenElectrode

Gaseous shieldArcWelding wire

Optional copper backing bar

Fig. 2.6 Tungsten Inert Gas (TIG) Welding

• (/

E

&

2&

• + B

+B

• "&,

E&

• 8 1

(

?H

;:

• BB

H

%

Page 27: Welding Science and Technology_8122420737

16 Welding Science and Technology

!

2.2.4 Metal Inert Gas (MIG) Welding

)'

,;D

8

Shieldinggas in

Solidelectrodewire

Currentconductor

Wire guide andcontact tube

Gas nozzle

Gaseousshield

Weld metal

Arc

Basemetal

Directionof welding

Weldingelectrode

Fig. 2.7 Metal Inert Gas (MIG) Welding

• +3:96

366966 #

366 " $

&

• !-

• (

(6D:

• E

Page 28: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 17

( E

• &&#&";6@$

56@<;6@82;

82;

'

• )'

2.2.5 Metal Active Gas (MAG) Welding

)'82;#$

"

,;5

Note: Sometimes a watercirculator is used

Shielding gas

Weldingmachine Contactor

Controls forgoverning wiredrive, current.Gas flow and coolingwater, if used

Wiredrive

Wirereel

Gassupply

Fig. 2.8 Schematic diagram of MIG/MAG (CO2) welding

• 82;

&

#

$

&

Page 29: Welding Science and Technology_8122420737

18 Welding Science and Technology

&;663:

• &&&

& &B

06@

2.2.6 Atomic Hydrogen Welding

8

=

?36678(

& )(

#$&

"

3 =

; =&

9 ,

0 ) )'

Tungstenelectrodes

Trigger for separatingelectrodes

Fig. 2.8 Atomic hydrogen welding torch

!

Page 30: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 19

2.3.1 Electroslag Welding

;: ,;4

&

)

&

Filler wires(electrodes)

Directionof welding

Electrode

Slag pool

Weld pool

Weld metal

Section ofelectroslag weldStarting

piece

Water-cooleddam

Weld

Fig. 2.9 Electroslag welding set-up

! (

=C

B

B

&B

+ 3;

2.3.2 Spot Welding

, ;36

2

Page 31: Welding Science and Technology_8122420737

20 Welding Science and Technology

B

#36666 $ #$

"

#$

Electrodes

Fig. 2.10 Principle of resistance spot welding

• 8 63:@

• +

8 #8G6:@8 $

&

• !

• 8& &

2.3.3 Projection Welding

! !

,;33

Before welding After welding

Fig. 2.11 Projection welding

Page 32: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 21

2.3.4 Seam Welding

# $#,;3;$

Force

Force

Cur

rent

Fig. 2.12 Sketch of seam welding

2.3.5 Flash Welding

(

&

1&(

6;;:#$3D?#$

) 36A3:66A

2.3.6 Butt (Upset) Welding

,;39=

#$

,

.

&

Page 33: Welding Science and Technology_8122420737

22 Welding Science and Technology

Power source

Solid contact

Bar stock

Clamps or dies

Force or impact

1. Light contact – welding2. Solid contact – butt welding3. Airgap – Percussion welding

FlashUpset

Fig. 2.13 Sketch of resistance butt welding

2.3.7 Percussion Welding

!#

#,;30$

Fixed clampWork

Trigger Sliding clamp

Spring

Powersupply

Fig. 2.14 Principle of percussion welding

(

3?

& #666363$

!

# $

$! !

• =

• !

,&

Page 34: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 23

B

)

?:6;

2.3.8 High Frequency Resistance Welding

,;3: ;66G0:6666=B

Force

Butt weld

Highfrequency

current

Force

Fig. 2.15 Sketch of high frequency resistance welding

"#$

# $

"E-8(+& (,

(=,!(,(=(.

(

2.4.1 Friction Welding

,%

,;3?

2!

Page 35: Welding Science and Technology_8122420737

24 Welding Science and Technology

Stationary chuck

Rotating chuck

Thrust cylinderBrake

Motor

Direction of rotation

(A)

Start

Thrust applied

Stage 3 begins

Forge and brake

(B)

Fig. 2.16 Friction welding (A) Equipment (B) Stages

2.4.2 High Frequency Pressure Welding

=,

(

#,;3D$

=,(

Force

Force

Joint area heatedby induced eddycurrents

Coilcarrying high-frequency current

Fig. 2.17(a) Using a high-frequency current to heat the interface in pressure welding

Page 36: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 25

Impeder

Tube

trave

l

Induction coil

Vee

Current

Weld rolls

Weld point

Weld seam

Fig. 2.17(b) Sketch of high-frequency pressure welding

2.4.3 Ultrasonic Welding

• . , ;35

#3:?6=B$

# $:

Motion ofwelding tip

Anvil

Welding tip

Appliedforce

Transducer

Fig. 2.18(a) Ultrasonic welding

• ,&

&&

(

"

3

Page 37: Welding Science and Technology_8122420737

26 Welding Science and Technology

; =,#3:666GD:666=B$

& &

9

Clampingforce

Coupling system

R-F excitation coilTransducer

Polarizationcoil

Vibration (H.F.)(15000 – 75000 Hz)

Anvil

Sonotrodetip

Fig. 2.18(b) Ultrasonic welding (detailed sketch)

0 -

#11$

!

!

3

: 8

? )

D ) 9

5

#$ &!*

#$ / &

#$ *

#$ ) %

Page 38: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 27

#$ "

B

#$ 2 "

#$ ( 46@

#$ ?:GD6@

+,

+

>?99%;3:

>

> AI

>

1 8

653

2.4.4 Explosive Welding

+&

& B

&

=C8

+(

,;34

Detonator

Gap.

= to of

flayer platethickness

14

12

Anvil

ExplosiveRubber spacerFlayer plate

Target plate

15–24° contact angle

Weldinterface

Fig. 2.19 Principle of operation of explosive welding

Page 39: Welding Science and Technology_8122420737

28 Welding Science and Technology

"

3

; 2 &

3:G;07

3

03

;

9 &

0 (&

#;066G9?66%$

:

? &%

D 6D;;

5 !

4 /

36 +& &;066G9?66%

&

33 /

%$$&!&#

2.5.1 Electron Beam welding

• +

, ;;6 36G9

;6;66A

)(&

3G366(%;

36)(%;

• J

J

• , (

Page 40: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 29

&

Wel

ding

volta

ge

Con

trol

volta

ge

Filament

Controlelectrode

Anode

Positioningdiaphragm

Magneticfocussinglens

Workpiece

Fig. 2.20 Principle of electron beam welding

B#$

!

&

B 8

# # $$

:6

B

.

• # $

+-(

"

Page 41: Welding Science and Technology_8122420737

30 Welding Science and Technology

-# (! +.&!

! "

3 = 36G0 . 3G;:( '

#6639!$ D:6

;;:

; 36G3 . . :6 3:( GG

#39!$ 966

9 1 366! ;: 39 K 8

#3$

• E ;6"3

B

82;

2.5.2 Laser Beam Welding

/

&3G36

36F(%;/

,

- LI

L/I

• B=C

/

8

• /(,;;3#$

36

Page 42: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 31

66:@&

+&

Laser media

Pumpingenergy input

Totallyreflective

mirror Randomfluorescence

(losses)

Output mirror(partially transparent)

Laserbeamoutput

(a)

Powersupply and

controls

Laser light sourceLaser

beam

Turningmirror

Focusingoptics

Work(b)

Fig. 2.21(b) Schematic diagram of laser welding

(

• / "

3

;'/#/82;$

1"'1"M'/

#1"'$M'#1"M'$

1#$82;

• *1"' &

1M'82;/

Page 43: Welding Science and Technology_8122420737

32 Welding Science and Technology

*

1"'

• E 3G:6

& 1 "M' 82;

' ).&

L#I

LI 0

L#I

#> 0

#;>0

>#

;

0

#$,

6396;:

B

B

B

LI 36

3

(&).&

/1"M'82;

/I:66 6;:

%82; 36 (

39 ;:%

(/

N%9 % ,

&

(%;O %>N%9

Page 44: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 33

BLI

θ $%

$%>0 3$

π ;

$3

$%>0 3$

π θ# $;

,

θ ∝λ

$%∝ 0$

3;

; ;

λπ

λ

&

BLL II

E

3 A

; J

9 /

0 8

: - 8

Page 45: Welding Science and Technology_8122420737

34 Welding Science and Technology

-! (/).& ' !

&$ $

&! '

3 :( 8 ;: 5:%

:6 0;%

; 36( :6 95%

:66 :D%

9 3:( 960 35 5%

3: ;:%

0 ?( 3;D6%

? *

D 366(

5 36G;6@

4 (

36 36

36

-# - ! # !

()* (+, -.

8 669: 6550 303

660D 33D6 355

3@8 6999 5996 3999

3660 ;:36 063D

6:49 305 ;9D9

66?6 3:64 903

2.5.3 Plasma Arc Welding

!#"$B

"

• !

• )

• !

Page 46: Welding Science and Technology_8122420737

Review of Conventional Welding Processes 35

' &

• ! & '

BB

3??66G996678

,;;; "1

#$

BB

BB

• (#$

#3??66G9966678$

BB BB

#$&

#$,

% &

BB

# $

Electrode: normally tungsten withnegative polarity. Water cooledcopper electrode with positive

polarity used for aluminium weldingTungstenelectrode

– –

+

Water coolednozzle

Powderinjection

+WorkpieceWorkpiece

Transferred arc Non-transferred arc

Water coolednozzle

Fig. 2.22 Plasma arc welding

• !(

Page 47: Welding Science and Technology_8122420737

36 Welding Science and Technology

3;:

• !

%!' !& 63G36

&66:G3?

LL!II

' $

BB

BB,

(

:;:@&

!

'(!#

;3 ( -

( P

;; (

;9 E"

#$'()'()'(

#$1*(

#$,(!(

#$,(=!(.(

;0 -

"

#$/-(

#$+-(

#$!(

Page 48: Welding Science and Technology_8122420737

37

!" #$ $

"

%

&

$ $ $ ' $

$

($ $

%)"

)

3.2.1 Arc Welding Power Sources

*+

, $-

./0//1/23/2

4 $

Page 49: Welding Science and Technology_8122420737

38 Welding Science and Technology

+0/

03/ 5/3/67

8/9/6 $

$

3.2.2 Arc Characteristics

( $

:98% 7;

Current

Ohm's law

Arc characteristic

Vol

tage

Fig. 3.1 Typical arc characteristic compared with Ohm’s law

• #

3.2.3 Arc-length Control

:

:9+:

: 9+< =(

85/ :9+

+ $ 856

85/

+

$

$$: $

:99$

=(

:90

Page 50: Welding Science and Technology_8122420737

Welding Science 39

Arc length

Arc

volta

ge

I > > 13 2I I

I3

I2

I1

I3

I2

I1

Increasingcurrent

150 ACurrent

Vol

tage

15 V

3

2

1

mm(medium)mm

Arc length(mm)6 (long)

(short)

Fig. 3.2 Arc characteristics for welding copper (G.T.A. welding)

Vol

tage

16.5

15

13.3

16.5 V

15 V

13.3 V

Arc length4 mm

3 mm

2 mm

1 mm

B

A

C

X ZYCurrentX = 143 A

Y = 150 AZ = 156 A

Fig. 3.3 Variations in voltage and current with change in arc-length

( $

7*65/>3/6

8/9/6 ,

?@A;

Page 51: Welding Science and Technology_8122420737

40 Welding Science and Technology

O.C.V.

Vol

tage

Normaloperatingrange

Current

Fig. 3.4 Typical power supply characteristics used in manual GTA welding operation

% :

99 B$"

=(85/$856+ %

9$ 8156 809

C032* 8$ 899

6851 >.32%

$

32

%<(

%

<(

3.2.4 Self Adjusting Arc in GMA Welding

• 4$

• %=-=(

<%=( $

<

"

:95*

(

Page 52: Welding Science and Technology_8122420737

Welding Science 41

: $

<

02 4 6 8 10 12 14

Arcunstable

400

300

200

100

Wel

ding

curr

ent(

A)

1.6 mmdia

1.2 mm diameterwire electrode

0.8 mm dia

Wire feed speed m/min

Fig. 3.5 Wire feed rate Vs current for three electrodes in CO2 welding

• <

:91 +68//

100 200 300 400 500

40

30

20

10

Vol

tage

(V)

Current (A)

35 V

B ASlope 2 V/100 A

Fig. 3.6 Output characteristics for a constant-potential power-supply unit

• *9//$956:91% $

) $

$ (

Page 53: Welding Science and Technology_8122420737

42 Welding Science and Technology

• * $ $ $ $

$ $

• ( /38 1$

:" $8+" $

+//5-8

1/-5//D/8+,

8

*7+( 81 +/E /9-EE /+/

*7+( 8+ +/ /5/- 58>51 /8+

*7+( /3 +/ 88- 8/0>885 //50

<( 0 +/ //+- 9//

+//

E+//>>++/ EE+5+3

9

$(

!!!"#

%= ( ( F ,

%= , , ( !

( ( ( ,

Page 54: Welding Science and Technology_8122420737

Welding Science 43

#

• "

3.3.1 Alternating-current Welding Power Sources

=( :

)

:

#

&

&

&

:9.*

$

Mainsinput

Transformer Reactor

Arc

Fromtransformer To arc

Tappings

Laminatediron core

Fig. 3.7 Tapped reactors

Page 55: Welding Science and Technology_8122420737

44 Welding Science and Technology

!$ $

<:93

Mainsinput

Transformer Reactor

Arc

From

Trans-former

Reactor windingTo arc

CoreIn out

Laminated core

Fig. 3.8 Moving core reactor

% 4

<: 9G'

!$ *

<:98/

!$

$

<:988

=(

91 %

$

<:98+

Page 56: Welding Science and Technology_8122420737

Welding Science 45

TransformerSaturablereactor

Arc

Controlcurrent

–+

Auxiliarytransformer

Variable resistoradjusts currentsupply to controlwinding.

To arcFromtransformer

Control winding: amount ofcurrent flowing in this windingdetermines magnitude of currentsupplied to the arc.

Fig. 3.9 Saturable reactor used to regulate welding current

Rotating the screw feedmoves the coils closertogether or farther apart.

Laminatedcore

Moveablecoil

Fixedcoil

Core moved inor out to raiseor lower current

Fig. 3.10 Moving-coil transformer Fig. 3.11 Moveable-core transformer

Page 57: Welding Science and Technology_8122420737

46 Welding Science and Technology

Mainsinput

Primarywinding

Secondarywinding

Tappedreactors

Arc

Arc

ArcTransformer

Fig. 3.12 Multi-operator transformer unit

3.3. 2 Direct-Current Welding Power Sources

' #

&

&

$

=

$

&

% 5/4H$

8//4H

$ :989989

:%=

< $

Page 58: Welding Science and Technology_8122420737

Welding Science 47

RectifierTransformerMains Output

Block diagram

(a)

(b)

Circuit diagram

Transformer

Mainsinput Output

Rectifier +

Fig. 3.13 Simple three-phase full-wave rectifier unit for welding

% =

:

980 <

%

% #

$ =(

+

Outputto arc

Reactor

Transformer

Mains

Input

Fig. 3.14 Drooping characteristic output from rectifier unit

) "$

- =

Page 59: Welding Science and Technology_8122420737

48 Welding Science and Technology

" $

3.3.3 Solid-state Welding Power Sources

$

$

=

(

• 7:985

= $

$

=(

Mainsinput

T C

S

F

Tr

R+

–A

Elements of a transistorised power-supply unit to give either a drooping characteristic or aconstant-potential output

T—transformer R—rectifier Tr—transistor regulator A—arc F—feedback voltage and/or current from arc S—reference setting C—command unit (compares signals from Fand S ; amplifiers error to give command signal for Tr)

Fig. 3.15 Transisterised power supply unit

• %

: "

$

H

• %==

Page 60: Welding Science and Technology_8122420737

Welding Science 49

!"

8 %

+ *

9 #++/6$00/6

0 <

5 (

1 ;

. (

3

G * H

8/ ;

88

8+ (

89 ( "

80 F

85 ; $$$

#

3.5.1 Arc Energy Input

$?!@$ $A;$

$A;$-

!D

98

%

!D"

9+

D "D

, $

!

D "

899

$8D 3/2G/2

Page 61: Welding Science and Technology_8122420737

50 Welding Science and Technology

%

$ +$

+D

#

!

$

D# %

"

$

8

90

$ # D

"#

#D C+.9+-9//$///I-9

$ D $J* 95

$D

C

91

D

D

$D

ArAm

Az

Fig. 3.16 Bead-on-plate cross section

$D

"

#

8 + 9.

B" $

#

D+/6 8D/G

"D+// +D/9

D5- #D8/I-9

9.

$D

/ G / 9 +/ +//

5 8/

× × ××

D+81+

Page 62: Welding Science and Technology_8122420737

Welding Science 51

$

( #

&!

&*

&7

&

&<

7 $

3.6.1 Arc Welding

H

• , " " φ * F

H 6

H +/35! H

=($<(<(

• ( H

$

3.6.2 Resistance Welding

"

#

!D"+& 93

!D $I

"D $

&D $

D

• "

%#

&

&

&

&

• % 8//µ Ω $

%

+//$///

Page 63: Welding Science and Technology_8122420737

52 Welding Science and Technology

' 8/ %

8/$////8$

$

9/$//////5*

8//µ Ω

!D8/$///+////8/8D8///I

!D9/$///+////8///5D05/I

"8938I 8

H 585

( π-05+K85KρD/+01

99GIρD3951K8/>9-9

%

3.7.1 Introduction

• :

$

• 4%=4

%F!F<%L

• % $"

• #

< &

M &

* F #

, # %

3.7.2 The Plasma

• ,B<$H

• 7 $ $ "

Page 64: Welding Science and Technology_8122420737

Welding Science 53

• % =BB

#

/

D+ +

9 +

/9

' (

'

(

− 9G

$

$

/D $

D

D

''

/D

D , ;

D

(D ) H;

• 5/// 5/$///N

• %

*

H

3.7.3 Arc Temperature

5///9/$///N$

• % $ H

"1///N%

" 9/$///N

• +//$8+86

200 A12.1 V2420 W

5 mm (0.2 in.)

+

18 × 10 K1615

3

1413121110

Tungsten

Copper

Fig. 3.17 Isothermal map of an argon-tungsten arc

Page 65: Welding Science and Technology_8122420737

54 Welding Science and Technology

3.7.4 Radiation Losses

• O +/

• O 8/

3.7.5 Electrical Features

• !

• "

+

Axialdistance

Axial potential E-total

CathodefallspaceEc

Plasmacolumn

Ep

AnodefallspaceEa

Contraction spaces

Fig. 3.18 Arc potential distribution between electrode and work.

$, :

:983"

(D"C

C

) 98/

D

D

)D

&

3.8.1 Metal Transfer

• < "

• : $

Page 66: Welding Science and Technology_8122420737

Welding Science 55

• #

$

=

• %=( $

$ " ( $

$

• <

,

=

A ; $

!"

!

:

3.8.2 Polarity and Metal Transfer

($

• H

• H

• ( $ $$

• $

• % $ $$

<:98G

• " $

• A; H

P

Page 67: Welding Science and Technology_8122420737

56 Welding Science and Technology

Electrode

Arc

A A A A

B

B

End of electrodeheats up.

As end becomesmolten, pinchforces (A) reducethe diameter ofthe electrode.

Longitudinalforce (B) detachesthe droplet andtransfers itacross the arc.

Cyclerestarts.

1200

1100

th to th second

(a) Argon + 5% oxygen or argon + 20% carbon-dioxide shielding

Arc

Electrode

1150

175

th to th second

Carbon-dioxide shielding(b)

D = 2d

D = dD = d/2

Metal transfer in the spray mode of the pulsed GMAW welding Process

Electrode

Molten metalglobules formspatter

Molten metal dropsare very small

Fig. 3.19 Horizontally held electrode wires are shown producing globularand spray transfer during gas-metal-arc welding

Page 68: Welding Science and Technology_8122420737

Welding Science 57

• #

$:9+/

"

" "

• <

'

H

• ( "

?I@

)$

• =(

H

• < %

"

" "

• " $

$

• $

3.8.3 Effect of Other Gases on Metal Transfer

• 4 $ $"

• 4 $ $

• < " +/

( $ F "

+5

• " $

• <

#

"

"

Page 69: Welding Science and Technology_8122420737

58 Welding Science and Technology

• $

• <

*7+

3.8.4 Short Circuiting Transfer (Dip Transfer)

% +86$+// $

$$

:98G

Arc heats weld pool.Electrode tip is moving towardssurface of pool.

Directionof welding

Arc length gets shorter sincecurrent is not high enoughto produce rapid meltingof electrode.

Tip of electrode touchesthe weld pool. Power supplyoutput is short-circuited andthe current rises.

Heatedregion

The rise in current iscontrolled so that the endof the electrode isresistance heated.

End of electrodemelts and flows intothe weld pool.

The arc is re-establishedand the sequenceis repeated.

Time for complete sequence = 1200

150

th to th second

Fig. 3.19 (c) Dip transfer in MAGS welding

• $

• %

• !

Page 70: Welding Science and Technology_8122420737

Welding Science 59

0 0.02 0.04 0.06 0.08 0.10

400

300

200

100

0

Electrode dia, in.

Dro

p/S

pray

tran

sitio

ncu

rren

t,A

Mild steelAr + 1% O

d.c.e.p. 1/4 arc2

²

Electrodeextension0 , 1 , 2 & 3² ² ² ²

Fig. 3.20 (a) Influence of electrode diameter and extension on drop-to-spray transition currents

A B

C D

300

150

00 0.01

Time, s

Cur

rent

,A

AB A

B

DC

Fig. 3.20 (b) Schematic representation of short circuiting metal transfer

Page 71: Welding Science and Technology_8122420737

60 Welding Science and Technology

• *

• (

• < $ $

3.8.5 Pulsed Current Consumable Electrode Transfer

:9+8

Time

Cur

rent

AM

P

Pulse peak current

Pulse transition current

Background current1 2 3 4 5

Globular transfercurrent range

Spray transfercurrent range

1

2

3

4

5

Fig. 3.21 (a) Output current wave form of the pulsed current power supply;Metal transfer sequence is also shown

Low-current arc keepsweld pool molten.

Directionof welding

High-current pulse heatsweld pool and meltsend of electrode.

High current createspinch forces (A)which detach droplet.

AA

Droplet transferredto weld pool atthe end of high-currentpulse.

Arc returns tolow backgroundcurrent.

Time for complete

sequence = th second.150

Fig. 3.21 (b) Pulsed transfer in MAGS welding

Page 72: Welding Science and Technology_8122420737

Welding Science 61

• *

• '

• *

8/

3.8.6 Covered Electrode Transfer

• % "

• < %$$

"$ "$

" $

• $ O $

$ H

• * $ "

< $

$

• (*$H

,

$

• !

*

3.8.7 Melting Rates

(

• $

• 4 $

• *

$

Page 73: Welding Science and Technology_8122420737

62 Welding Science and Technology

• !

• ! "#

OD"C *"+ 988

D %

$$

D

*D "

"D

&$

+

+(, (,%-%

50K8/>9 00K8/>1

31K8/>9 +5K8/>5

83K8/>+ +5K8/>5

DN- DN-+

3.8.8 Melting Rates with GMAW

• #

"

: $

• !988

, $

"

"

"

81

99

988

: %

A; ::++/

A; '

Page 74: Welding Science and Technology_8122420737

Welding Science 63

:++/$

( A;

(

A;

":

( $

$

$$ (

$

!&%"#

% =( <(

* "

3.8.9 Melting Rates with SMAW

• <(

• * "$

• B $ "M

"

" "

• * !1/8/ 1

+//9// $ !1/8+

+//0//

'

( $

#

8(

+6

9(

0! :

5! "

1!

.I

!$ "$ #

8'

+(

Page 75: Welding Science and Technology_8122420737

64 Welding Science and Technology

9'

0*

5(

4$

=

3.9.1 Welding Current

'* , # . $

"..

)C.

$

./.

#D. C.

C.

)C.

C.

/C.

$ #D"I-<

D"+&I-<

#D

"D

D

&D

qcp qcp conduction to plate

q (radiation)r

q (convection)v

Nozzle

Electrode

qf

qceConduction toelectrode

(used for meltingelectrode + flux)

Q

Fig. 3.22 Heat balance in SAW

( $$

% $ #

• "

• !" &'$

% $ #

Page 76: Welding Science and Technology_8122420737

Welding Science 65

* '**'* $

$ H$ $

3.9.2 Arc Voltage

:

7

7 5/>8//6 8.6

0/6($

$$ %%0

"

,

(

Plate

Arc-voltage

VWeldingtorch

Weldingarc

Open circuit voltage

Vo

Powersource

G G

Fig. 3.23 Concept of open circuit voltage and arc-voltage

Weld reinforcement

Depth ofpenetration

25 V 35 V 45 V

2.4 mm wire, 500 A, 10 mm/s Weld width

Fig. 3.24 Effect of arc-voltage variations on weld bead shape

<#

B& $ $

$

( %

$ O

Page 77: Welding Science and Technology_8122420737

66 Welding Science and Technology

# $$ $$

3.9.3 Welding Speed

(

(

%

• 4

• B $

• M$ $

%

• : $

• 4

• ( "

• ,

• $

( $ "

"

$ ("

$

(

H

3.9.4 Electrode Feed Speed

!

%

3.9.5 Electrode Extension

! "$ $

: 9+5

"

" $

)

%%0 "$

8+5-+$ "

5/2

Page 78: Welding Science and Technology_8122420737

Welding Science 67

"

Nozzle towork distance

Arc length

Electrode extension

Nozzle

Contact tube

Fig. 3.25 GMA welding terminology

" 7

$ $

" % "

3.9.6 Electrode Diameter

! $:9+1

$

$

%

H

%

H

600 A, 30 V, 13 mm/s

3.15 mm 4 mm 5.6 mm

Fig. 3.26 Effect of electrode size on bead geometry

98 ( Q

9+ O

7;B

$6%

Page 79: Welding Science and Technology_8122420737

68 Welding Science and Technology

6%*

=

(

99 ' #

O

=

O

<

90 '

95 ' (

Q

91 ' $ +/6

+//$ 5- +/

+4 8/I-9

/35* 9-

Page 80: Welding Science and Technology_8122420737

69

• !

" "

• #

$ #

#

#

%&&&'(#

) !

"

*

+ "

"

!"# $%!

* + # "!

",-./&0 !"1&.%%&

# 2 "

3

Page 81: Welding Science and Technology_8122420737

70 Welding Science and Technology

#

4

5/,

Fig. 4.1 Arc blow in SMA welding with direct current

• 2

"%&6+ "

"2 7&0

+"

+ "-&0"

Arc extinguishes ascurrent passes throughzero

Arc

curr

ent

Arc

volta

ge

+

0

+

0

o.c.v.

Voltage tries to reacho.c.v. value. This high voltagere-strikes the arc

o.c.v. o.c.v.

Fig. 4.2 Current and voltage waveforms in a.c. welding

Page 82: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 71

&$!!

4 "

"

2 "

2

.

.

. " " 2 2 "

2 "

. "#

.

#

. "

4

&'( (

• 52 "

5/8 2 2

" 2#"

2

Molten-metaldrop

Slag-blanket

Weld-bead

Molten flux layercovers the moltendrop of metal

Base plate

Fig. 4.3 Molten flux covers molten metal droplet and forms a slag blanket over theweld bead excluding oxygen and nitrogen to come in their contact

• 2 "

4!

!

2 " "

Page 83: Welding Science and Technology_8122420737

72 Welding Science and Technology

" "

• 2

"

" 2 " 2

4.3.2 Arc Stability

• 4

5

2

2

9

. $(0

. " "

. +

.

. *

2

" "

" 2

4.3.3 Control of Weld-Metal Composition

"

2 "5" 2

42

#2

4

9 2

2

2"

2 "

!

Page 84: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 73

3 2

"2 " 2

9

5$:(;5:($

2 2

$2

9

15$:;15:$1

2 5

2 + "2

2

2 #6

2 "

" 2

6"

"

2 #$22

"" " #

• $ <

(

4.3.4 Flux Covering Ingredients and their Functions

3!

24/,

2 "

9

, )"

1 5 2

8 5 "

/

%

- =

> =

7 4

? ="2

,& 3

Page 85: Welding Science and Technology_8122420737

74 Welding Science and Technology

,,

,1

,8 (

, 52 ($ 5

1 = )

4 2 (

55 2

8 ) 2 ) @

) 5 A

/ < ( A (

% 5 5 5

* # 5

- 32 5 5

> B 32 ) <

7 < ( C B

2

"$ C,?&>

9

.

.

.

" "

" 9

. (

. =

. $242

. B

/1

!

(2 8&D$ #

4

2

%%D($ :/1D61:,%D6

1$:,&D($

1

" #

5" ">&D

"

"6 4

Page 86: Welding Science and Technology_8122420737

Shielded Metal A

rc (SMA

) Welding

75

2

/

&D

619

/&D

($

:(

$1

1&D

61$

! !!"!

E

!" #$% &

, ( *.-&,& /&D 1%D ,%.8& ,.% <

$1F1&D$

8F,%D

5

G)

"

"

1 = *.-&,1 /D %&D ,&.8& &%./& <

*.-&,8 $1F,&D(($

8F-D F

$1F1&D F,&D

5 GC

8 42 *.-&1& $2 ,&.1& &%./& <"

32+

*

"

3

/ B *.>&,% -&D(($8F8&D 2 &%.>% &&.1& A

*.>&,- (51F1%D5F/D 7&D($ <

5F1%D5 1&D($1

G

,%&'(

9

+

A

9

H* ",&,&&

Page 87: Welding Science and Technology_8122420737

76 Welding Science and Technology

B

# ##

# 6 2

B "

2 " "

!

52! 2 ""

24

1%.8&E,&&!,&E,&&

$ " " 2

23"2

"

4

% "

2

"

G "#/&&

/%&'( "

2 2

"4 "

2

#

B!

&"

2

5//

;3

d D

Fig. 4.4 SMAW electrode

"

"

A ,1.,8%

,/.,>&

6" ,7.11&

Page 88: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 77

#

""" * " #

"

4

,&.%&D

4.3.5 Current Ranges for SMAW Electrodes

"/8

'!()*

' ( ) *

( + + ,- +

1% 1%&E8&&E8%& %% >& 7%

81 8%&E/%& ?& ,,& ,8&

/& 8%&E/%& ,/& ,-% ,7&

%& 8%&E/%& ,7& 1,& 1/&

-& 8%&E/%& 1&& 1%% 8,%

-8 8%&E/%& 11& 1-& 81&

4.3.6 Electrode Core-wire Composition

%,.7,

" &,D( &/%D &&8D &&1D)

&&,D4917>?,?>% !

2 &,D( &87.&-1D &&8D &&8D) &&8D &,%D(

4.3.7 Factors Affecting Electrode Selection

*

9

$

.# #

"

#

Page 89: Welding Science and Technology_8122420737

78 Welding Science and Technology

!!')!

6"!"

+ "

# "

#

"

E

2

*!"!)

0

9

, 4$4$

1

8 44

/ B4

% 3 45IJ34J

"

,

1 A

8

/

% (

- (

> J # #

7

4.5.1 International Standards Organisation System of Coding

($+ ,-.+/0'123 !)* !) (

4+(! !

. )2*9 " 5/,&

. J29/8%,

/8&.%,&)%,&.-,&) "G2 /&)

. 5 2A

;% "17K//

Page 90: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 79

. J2 "

; 2F=; FB;B F(;( F

$;$2F=;=F==;" F;

9

. ,&,,& ,1& ,8&

. J2

,F

12 "

8FF+E"

/

%8"

. J2

" 4"/%

. 6

,%,&&

($+ ,-.

. "

"/ (01 -234

5 6

*/8& /8/.%,& L L

*/8, /8/.%,& 1& :1&

*/81 /8/.%,& 11 &

*/88 /8/.%,& 1/ .1&

*/8/ /8/.%,& 1/ .8&

*/8% /8/.%,& 1/ ./&

*%,& %,&.-,& . .

*%,, %,&.-,& ,7 :1&

*%,1 %,&.-,& ,7 &

*%,8 %,&.-,& 1& .1&

*%,/ %,&.-,& 1& .8&

*%,% %,&.-,& 1& ./&

:/&) ,K;&,&1C

Page 91: Welding Science and Technology_8122420737

80 Welding Science and Technology

,(! ($+ ,-.

. 78

$

-

& :

, :. %&

1 . %&

8 : %&

/ :. >&

% . >&

- : >&

> :. ?&

7 . ?&

? : ?&

*24$1%-&

E 51 3B 160 2 1 (H)

Hydrogen controlled

dc ep or en / ac (OCV 50)

all positions welding except vertically down

deposition efficiency 160%

basic coating

tensile strength 510-610 MPa/elongation 20%& impact value of 28J at –20°C

Covered electrodes for manual arc welding

Fig. 4.15 Example of electrode designation according to ISO-2560

4.5.2 British Standards Institute Coding Systems

B 9 -8? 9 ,?>- (" * (

4$1%-&2 */84$

" "

4 34J

225/%

Page 92: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 81

*2$

E 51 32 B 150 1 2 (H)

indicates hydrogen-controlled( 15 ml/100 g)£

Electrical chs. same as in ISO 2560

Position digits same as in ISO 2560

Deposition electrode covering

Basic electrode covering

Second digit for elongation andimpact values (Table 4.7)

First digit for elongation andimpact strength (Table 4.7)

Tensile strength (Table 4.6)

Covered manual metal arcwelding electrode

Fig. 4.6 Electrode designation according to BS : 639 : 1976

- %(-'/1/0-25/'1/0-2

. "9 "/

"/ :;<=>;?>@< #;?>?=;?>@<

*/8 /8&.%%& 8-& 88&

*%, %,&.-%& 87& 8-&

Page 93: Welding Science and Technology_8122420737

82 Welding Science and Technology

0 ( "

"5 "5

# (01# -234)6* # (01#

.A= .1? .A= .1? -

4 6

.A= .1?

, 1& ,7 :1& , 11 11 /> /> :1&

1 11 ,7 & 1 11 11 /> /> &

8 1/ 1& .1& 8 11 11 /> /> .1&

/ 1/ 1& .8& / J= ,7 J= /, .8&

% 1/ 1& ./& - J= ,7 J= /> .%&$

J=;J"

$434J5 2

M%N;./&'(- 2

4.5.3 German System of Coding for Electrodes

5/'16/0-2!* !74+

(

< 4$91%-&

B-8?42*/8%,

4$ 8-&)

87&) "/-

"/734J4$1%-&B-8?4

" 9

$

9

"

. B.B (.(

. E ==."

=. 2 = .

== . "

B=.

==B. "

Page 94: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 83

9

" (5 ,1&D F " (5

,1&.,%%D" "(5",%%D

$

,

12 "

8 +

/

* 4$1%-&B-8?2

&+

& ""

&: "

&. "

( $" "/?

,&%D

4$1%-&B-8?

8 !

" 5/'

"

(01)5* - -

234)6* A@4)6*

& J J & J

, 11 :1& , :1&

1 11 & 1 &

8 1/ .1& 8 .1&

/ 1/ .8& / .8&

% 1/ ./& % ./&

Page 95: Welding Science and Technology_8122420737

84 Welding Science and Technology

/ ! ! 5/'

. )*

%)$* %% $- $

$-

, , % ,

1 , %

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 1

=1 , % =

=8 1, 1 =

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 8

=(8 , 1 =(

(/ ,: &:- ( /

% 1 % " %

==- 1 1 " ==

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL -

==(- , 1 " ==(

=> 1 % " =

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL >

==B> 1 % " ==(

==7 1 1 " ==

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 7

==B7 1 % " ==B

B? ,O &:- " B

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL ?

B=? ,O - " B=

B,& 1 &:- " B

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL ,&

B=,& 1 - " B=

==,, /8 % ==P,&%D

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL ,,

=,, /8 % =P,&%D

B,1 /8 &:- BP,1&D

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL ,1

B=,1 /8 &:- B=P,1&D

HB # +E"

HHB # !

O5""

Page 96: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 85

4.5.4 Indian Standards System

497,%,?>/ "

2*=

*. 2

=.2

J2

5 "

. !"! (38,

- 7;21<

.B-

, 6 (

1 6"" =

8 " ==

/ 62

"

% 62

"" $

- 6 B

? "

/,,

( ! "

(38,

& 5 6 0 3 $ & 3:

, 5 6 0 $ , 3: ?&

1 5 6 1 3. >&

8 5 8 3. %&

/ 5 6+ / 3: >&

? % 3± >&

- 3± >&

" > 3± %&

?

55/,%,

Page 97: Welding Science and Technology_8122420737

86 Welding Science and Technology

2 "/,1

"" (38,

% " "

C -

!2 !2 5 A@46

/,& /,&.%,& 88& . .

/,, /,&.%,& 88& 1& :1>

/,1 /,&.%,& 88& 11 &

/,8 /,&.%,& 88& 1/ .1&

/,/ /,&.%,& 88& 1/ .8&

/,% /,&.%,& 88& 1/ ./&

%,& %,&.-,& 8-& . .

%,, %,&.-,& 8-& ,7 :1>

%,1 %,&.-,& 8-& ,7 &

%,8 %,&.-,& 8-& 1& .1&

%,/ %,&.-,& 8-& 1& .8&

%,% %,&.-,& 8-& 1& ./&

HG2 :/&JE1

2

C

6 6

K 4 " ,,&,8&D

C K ,8&.,%&

A K ,%&D

) 3

"",&

E,&&2"2 "

34J ,?,8 497,%

"!

497,% 2 "9

"3

" ,%D"

8&D

" ""

"

" "B

Page 98: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 87

"

"2

" ""

2 # <

3( "

"

(

" 3 ! "

!

"

" 2

+" + %

" "5 "2"

"

" 2

0" (

3(

"'3 "" !

" !

"

1""

" "

0"

1

(3(

"3 " !

! 9 !

" 2

# "

("" "

" B

" " +

"

4 " "

# ""

#

Page 99: Welding Science and Technology_8122420737

88 Welding Science and Technology

("

3( "

(

", ! 9

"

# " 2

2

"

#

# "

" "

"

4+ "

"

(3(

"-3 !

!

" !

"2

*

# ""

2 #!

" 3

#

Q

4

"2)

" (3(

(

53" "

"

4.5.5 American Coding System

*(+,:8(" ! !(*

(2*

-&>&#-&#>&#

" "

Page 100: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 89

" "" /,8 !

"/,/

9

,5 60$6

15 6

85 6 0 $6

"

/,%"

'( ; !++

+ 1*(+,2

" " "

(0A

D "/ D "/ 5

*-&,& -1 /8& %& 8/& 11

*-&,, -1 /8& %& 8/& 11

*-&,1 -> /-& %% 87& ,>

*-&,8 -> /-& %% 87& ,>

*-&1& -1 /8& %& 8/& 11

*-&11 -> /-& J! J!

*-&1> -1 /8& %& 8/& 11

*>&,/ >1 %&& -& /1& ,>

*>&,% >1 %&& -& /1& 11

*>&,- >1 %&& -& /1& 11

*>&,7 >1 %&& -& /1& 11

*>&1/ >1 %&& -& /1& ,>

*>&1> >1 %&& -& /1& 11

*>&17 >1 %&& -& /1& 11

*>&/7 >1 %&& -& /1& 11

5 ,D

>)/1&)88&)

*-&/7&)/&&)*>&

2 *-&,1 *-&,8 /%&

8-%) " *-&11

Page 101: Welding Science and Technology_8122420737

90 Welding Science and Technology

"; "*(+,

E8 B

*-&,& *-&,,

*-&1> *>&,% 1>K.1?'(

*>&,- *>&,7H

*>&1> *>&/7

*>&17 1>K.,7'(

*-&,1 *-&,8

*-&1& *-&11 J!

*-&,/ *>&1/

HG *>&,7

(0 !1>K./-'(

*>&,7,

,"! < "

"!"*(+,

- %%

*-&

*-&,& 6 ( 5 0 $6 6 3:

*-&,, 6 ( 5 0 $6 6 3:

*-&,1 6= 5 0 $6 6 3.

*-&,8 6== 5 0 $6 6 3±

*-&1& 6 3.

*-&11O 62 5 3±

*-&1> 62 6 5 3.

*>&

*>&,/ 4 == 5 0 $6 6 3±

*>&,% AB 5 0 $6 6 3:

*>&,- AB 5 0 $6 6 3:

*>&,7 A 5 0 $6 6 3R

B

*>&1/ 4 == 6 5 3R

*>&1> 62 6 5 3.

*>&17 A 6 5 3:

B

*>&/7 A 5 $6 0 0 3:

B

Page 102: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 91

HA # !"4$1%-& "

HH3:"3.

O* *-&11

( %,

. 5 *-&,& *-&,, *-&,1 *-&,8 *-&1& *-&11 *-&1>

"

J ( 0

*>&,7 *>&1> ,- &>% &8 &1 &8 &&7

*>&,/ *>&,%

*>&,- *>&1/ ,1% &? &8 &1 &8 &&7

*>&17 *>&/7

535"

*>&,7 *>&1>2 ,>%2

2 2 ,%2

4$1%-&""

"

G

%," 25

2 9

-..:

*-&,&

" "5

"" "

" 2 8&D

" 2 2

" !

#

" "

! "

"2 +

-.: "

*-&,,

*-&,& (3( "

*-&,&

) *-&,&

"

4*-&,& "

U

V||

W||

Page 103: Welding Science and Technology_8122420737

92 Welding Science and Technology

! 6

-. :

*-&,1

" " 2 8%D

"

"

5 "2

"+ "2

" +

*-&,1

#"#

-.': "

*-&,8 "*-&,1 "

" *-&,1

*-&,8 #6"

*-&,1

"("*-&,8

"*-&,8 *-&,1

!

4

2 *-&,1"

0.: "<

*>&,/ "*-&,1*-&,8

" #

*>&1/

*-&,1*-&,8

*>&,/

)2

*-&,1 ""

"2"4

"

0.,:+

*>&,% "

*>&,% #

" #

*>&,%

Page 104: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 93

" " "2

*>&,% /+A

"+

*>&,% *-&,&

*>&,% # F

"

0.-:+"

*>&,- " *>&,%

( ""*>&,% 2

"

( *>&,% !

*>&,-

0.8:+" < "

*>&,7 "*>&,% "2

" #

*>&,%*>&,- "

1%/&D "*>&,7

(3( " *>&,%

4 *>&,7

""

+ "2

! " !

"* *>&,7,"

*>&,7 2

!

"*>&,7

0.8:+" < "

* *>&/7 "

*>&,7 2 *>&/7

2 "

-. .+-. :

*-&1& "2 " "

+"(3(

"

" "

6"

*-&1&

*-&1&

" 2

2 "2"

Page 105: Welding Science and Technology_8122420737

94 Welding Science and Technology

5

" " " 4

*-&1& +

= ! "

"

* *-&11

+

"2

0. : "<

*>&1/ "

*-&,1*-&,8 " *>&1/

""%&D

*>&1/ # "2

" 2

! "

"* (3(

-. 0: < "

*-&1> "

*-&1& "*-&1>

""%&D *-&1>

" (3(

" + (3(

*-&1> " "

)" "

"

*-&1> " " "

*-&1& 6

"

"

0. 0: < "

*>&1> " *-&1>

2 !

*-&1> 4 "

*-&1> *>&1>

0. 8:+" < "

*>&17 " #*>&,7 9

*>&17 *>&,- *>&,7

*>&17 +

*>&,7 *>&17 " #

#2%&D *>&17

Page 106: Welding Science and Technology_8122420737

Shielded Metal Arc (SMA) Welding 95

2 %&D " (!

+ *>&17 "

*>&,7 "+

4.5.6 Testing of Electrodes

2

" ""

4

"

" !

" /,-

-(!

721< :<=> #?>?= ;3?A!3?1 1?

" S

" S S

3 S$ S S

3 S S S

( S S S S

S S S S

5 S S S S

3 S S S S

4 97,% 4 97,/ "

6

4$1/&,

4$8-?&

34J7%>1

Page 107: Welding Science and Technology_8122420737

96 Welding Science and Technology

+#

/, TB

(" T6

/1 T$#

6

T

/8 6

2T6

// B 2 "

T

/% 2 "6

""

42

T

/- T TB 4

$

64

/> 3 " "

T

Page 108: Welding Science and Technology_8122420737

97

!"##

#

! ##

$""%

!"&$'

!

( %

5.1.1 Structure of Metals

( )*+ ,

(

%

-

)..#/..#.!)*0(

" (

%# (

%

Page 109: Welding Science and Technology_8122420737

98 Welding Science and Technology

Liquid Liquid

Initial crystals Solid grains Solid grains withgrain boundaries

(a) Initial crystal formation (b) Continued solidification (c) Complete solidification

Fig. 5.1 Pattern of solidification of metals

Fig. 5.2 The three most common crystal structures in metals and alloys. Left: facecentred cubic (FCC) Centre: Body centred cubic (BCC) and right: hexagonal closepacked (HCP).

"

&%

)*1( "

% "

2 %

&)*1-'

%

(a) (b)

Fig. 5.3 Solution. Left: interstitial alloying; Right: Substitutional solid solution

Page 110: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 99

2#"

" ( " "

'%

% %"

#% (

& #

% #" " #

"

( %

"

% ( #%

% %

3

5.1.2 Phase Tranformation

'! 2

2##%

5.1.3 Iron Carbon Phase Diagram

2% ) *4&

%5 %"2

(

%

""

• 2 #

• . +#

0

1

1

0

+

( )

6

.6 .

6 7

( # +6 %+

+6

Page 111: Welding Science and Technology_8122420737

100 Welding Science and Technology

1600

1400

1200

1000

800

600

400

200

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Percent carbon

Sub-zero temperature range

Preheat

ing

rang

efo

r welding

Below A1

B.C.C. latticeferrite ( )magnetic steel

a

Bla

ckhe

atra

nge

Nitriding range

Stress relieving range

A lower transformation temp.1

Red

heat

rang

e

A magnetic point2

Annealing and normalising range

A u3 pper transform. temp.Transformation range

Carburising range

Above A3

F.C.C. latticeaustenite ( )non-magnetic steel

g

Whi

tehe

atr a

nge

Hot working range

Max. hot working temp.

°C

Liquid

Liquid + austenite (solid)

dLiq + dd + g

Burning range

Fig. 5.4 Iron-carbon phase diagram

Page 112: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 101

5.1.4 Critical Range

2 &-+818

%% 901:.#

" % ;

'

+ ' %

1

<+1:. # '

'

$ %1 %(

1 %

5.1.5 Micro-structural Changes

$ &-+818' #

. %#

%$ # +

#%" %

( # #( %

$ 1 , #

# %( % %

%

5.1.6 Carbon Steels

(%*+ % %

22 881 ' = -'

>% 8+* ' $ -'

# #

& 8+*818 & # -'

%

% 818*8 )

,,

% 8*+88 & ## !

5.1.7 Low Alloy Steels

( 80*?%, 8+*?

%@#.#& " #

Page 113: Welding Science and Technology_8122420737

102 Welding Science and Technology

" # "

( # %!

" % 5

& " AB8!+88#888

% !%

( "

%##

5.1.8 High Alloy Steels

• ( ,' " #

'" (

#

• %

" " ( +0?.

"%C

( % #

& %

• (

%, %(

% %" !

"

• ( +009?.

(

" ( %

• %

@ , " %5"

# % % ( #

( # #

"'%.%%" %

%

5.1.9 Isothermal Transformation and Time Temperature Transformation Diagrams.

2%,%#%#"

,%2

",

(( ((((=2

, #%

" )**

8< %" (((

( 8<?%

<4*:. " %

98*:. ( %%

Page 114: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 103

"%#

%

,'

°C °F

800

700

600

500

400

300

200

100

1400

1200

1000

800

600

400

200

11

32

38

40

40

41

43

50

55

57

66

66

Time of transformation

Seconds Minutes Hours

1 2 4 8 15 30 –1 2 4 8 15 30 1 2 4 8 15

M temperaturef

Martensite

Martensite formsinstantly from austeniteon cooling

Martensite formsinstantly from austeniteon cooling

M temperatures

Austenite

Bainite forming from austenite

Bainite forming from austenite

Featherybainite

Fine pearlite

Nose

Austenite

A temperature1Starts Ends

Transformationat 705 °C(1300 °F)

Austenite

Coarse pearlite

Pearlite

Bainite

Pearlite formingfrom austenite

Acicularbainite

Roc

kwel

lCha

rdne

ssof

tran

sfor

mat

ion

Tran

sfor

mat

ion

tem

pera

ture

Fig. 5.5. The TTT diagram for the transformation of austenitein a euctectoid (0.8% carbon) plain carbon steel.

Ms = Martensite start temperature

Mf = Martensite finish temperature

( 98*:.%%<

%A8 (

7+*

( , *A*:.2

*(

# # "*A*:.8<?. %(

% 74+ #

Page 115: Welding Science and Technology_8122420737

104 Welding Science and Technology

%(

5 "

%

2018:. +08:.8<?.

2 %# " (

#..( "%"

( " % +88?

"(

"5 ..(

%# (((..(" #(

& "

%% "

( '

!"

. "

( "

% "

%

)*A "

$ D)*AE

Distance fromheat source

Tem

pera

ture

Time

Fig. 5.6 (a) Temperature variation with time at

various distances from heat source

Page 116: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 105

Heat-affected zones

Weld

HeatHeat HeatHeatHeatHeat

Meltingpoint

°C

Hea

ting

Cooling

°C

Hea

ting

Cooling

Time Time

Lowest temperaturefor metallurgicalchange

(b) Fusion boundary (c) Outer boundaryof heat-affectedzone

Fig. 5.6 Variation of temperature with time at different distancesfrom the heat source (b) fusion boundary (c) outer boundary of HAZ

5.2.1 Weld-Metal and Solidification

$5# 2

"'% 2

%% %

,"

5% ( "

" # , '

>

2

( ,# % "

(

%&

# , "

)*9

2 #

(

2 (

%%5 5

Page 117: Welding Science and Technology_8122420737

106 Welding Science and Technology

( , % (

#

Fig. 5.7 Columnar structure of welds Left: Shallow weld;Right: Deep pear-shaped weld.

$ ' #" #

5 ,

& % %

'"-'

)*<

Gro

wth

dire

ctio

n

Gro

wth

dire

ctio

n

X X Y Y

Cel

l

Cel

l

Cel

l

Cel

l

Cel

l

Cel

l

Liquidsolid-liquid interface

Liquidsolid-liquid interface

LiquidLiquid

Con

cent

ratio

nof

Y-Y

Con

cent

ratio

nof

X-X

Location Location

Cellular growth Dendritic growth

Cmax

Cmax

Co

Distancebetweensolute richregions

Note greaterdistancebetween soluterich, regions

Co

Fig. 5.8 Schematic of solute distribution for cellular and dendritic growth patterns.

5.2.2 Gas-Metal reaction

( %

% (

2 %5" ,2 #

, % 2

%% 5

%

2 ' "

'"

Page 118: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 107

$ " , # ""

% 3%%2 %% #

% ,( '

%% #%"% %'

$ #

%,( %

5

5.2.3 Liquid-Metal Reactions

=# ,

( %% '&$#&$#( %

( '&$&$ %%'

(

#%

, #

( ,# # %

% (

, (

% # #

5.2.4 Solid State Reactions

#

( %

(

( # "

(

)..# ,

%C #

%2 %

" %988:.#" # %

5 "

% "

%

%488:. #

% %2 % (

" ( "%

Page 119: Welding Science and Technology_8122420737

108 Welding Science and Technology

5.2.5 Macro and Microstructure of Weld, Heat–Affected Zone (HAZ) and Parent Metal

(

,( " "##

#

$ '

> # "

% (

"##

%# # # $

# % #

2 # %

$ %# %

)*B

Originalworkpiece edge

Melt boundary

CoarseFine Recrystallized

grains

Original coldworked metal

Liquid

Solidqm

Heat affected zone

Ductility

Strength

Fig. 5.9 Characteristics of welded joints in pure metals.

> "

2 # %/#

5 # ,

% ( " (

% " %

# " 5

)*+8

Page 120: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 109

Precipitation hardened Overaged

Original precipitationhardened metal

Liquid

Strength

Ductility

Heat affectedzone

Fig. 5.10 Characteristics of welded joints in precipitation hardened alloy

( ' " "

%# '(

"% ,% #%

#

%"#% % 5

#$!$"%&!'

F

( # # #

(

5.3.1 Reasons for Treatment

• ( % %

• (

• (" %#

• ( ' %,

• 2 "%' "%

• (G H%

• ( "

5.3.2 Code Requirements

&,%

&-/!F.#

Page 121: Welding Science and Technology_8122420737

110 Welding Science and Technology

( % '"

( ,( %

% '

,& "%'

+ &-/!F.#&2#222#F222="+0

@I&-

0 . !! #/1++/1+< @I

@&2

1 )%$2 #.2 7 #

! !F& ;&@"#2>&(=09<&

$ =.@"=

4 3& ;&@"# *B+

$ =.@"=

* 7 /.&F @I

/&

A &$.$&=++"$

&

9 ;&.3-7# .3

++*$ =.;&.3

"# "%" %%

5.3.3 Common Thermal Treatments

! %0A:.A*8:.

1+*:. %2

%( %

• ! ""%

!"

• "

"*B**8?" (

"%#

%

• $ %"#

( % #

-

( % "

2 ##$%&$%'% %

# 5

Page 122: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 111

5.3.4 Postweld Thermal Treatment

• &

% # #

%"

• & %

• (

( " )*++

1 Time at stress relieving temp. = 1h2 = 4h3 = 6h

2

13

30

40

50

60

70

80

90

100

%R

elie

fofi

nitia

l str

ess

(avg

.)

315 370 430 480 540 595 650 705Stress relieving temperature, °C

1

2

3

1 70000 psi yield strength steel2 500003 30000

70000

60000

50000

40000

30000

20000

10000

038 150 260 370 480 595 705

Ave

rage

stre

ssre

mai

ning

afte

r4h

athe

at, p

si

Stress relieving temperature, °C (time at temp., 4h)

Fig. 5.11. Effect of temperature and time or stress-relief

• ( "

"( "

• # "%

( % "

% " '(%

*0

• . %

% %"(

Page 123: Welding Science and Technology_8122420737

112 Welding Science and Technology

% +9*:08*:. "(

' %

% $ # %

$

% "

(

.% *B*A<8 ++88+0*8

.%J? *B*908 ++88+10*

J?.J? *B*908 ++88+10*

+?.J? A08918 ++*8+1*8

+K?.J? 98*9A8 +188+488

0?.J? 98*9A8 +188+488

0K?.+? 98*998 +188+40*

*?.J?

( *80 98*998 +188+40*

9?.J? 98*9A8 +188+488

B?.+? 98*9A8 +188+488

+0?.( 4+8 9A8<+* +488+*88

+A?.( 418 9A8<+* +488+*88

+K?J?@ A8*A<8 ++0*+088

>.@ *B*A<8 ++88+0*8

0*?@ *B*A*8 ++88+088

B?@ **8*<* +80*+8<*

L M *48**8 +888+80*

5.3.5 Peening

! %% "1*#% ,

" "%%

% %

F ,

%

( %%/& '

% @"7 >% , %

2 # %

+$ % 2&2188""

0 %

Page 124: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 113

12&2488 ""

; %'

4( "" %

%

!, % ( # #

% "%" '"

#% " ""%

('"! '''!!"'%"%"!'

# 5

%%" %

2 %#

# #

# %

( , " %

2 %%,"

% % %%""

5.4.1 Thermal Expansion and Contraction

(

(

>,,,

& ,

&

))*+0 #

,

(

• ( % "

%# "

"#

#

5.4.2 Contraction of Solid Metal

."2%

>"%

+6

8+α ∆ θ6

8

8α ∆ θ

86 #α6' 6+41N+8AO:.

+6 ∆θ

Page 125: Welding Science and Technology_8122420737

114 Welding Science and Technology

)+ #

8α ∆ θ6+888N+41N+8AO:.N+*8808:.

6+888N+41N+8AN+4<8

60+0O

( "0+0%α "

#% %

2 #

• ( %" +O( % "%

5

• $ ##

• ( "

%)*+1

• 2 # 5%

( " % '

(

" 5 +O

,%" "%+*8+98@O0,

" "%+O

Surface when poolis molten

Surface whenpool hassolidified

Fig. 5.12 Shrinkage during solidification

Weld (hot)

On cooling,

tries to go to this

Plates(cold)

Compressive Compressive

Tensile

Weld is stretched by plates.Tensile stresses in weld.Compressive stresses in plateon either side of weld.

Fig. 5.13 Deformation of a weld metal element during cooling.

Page 126: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 115

3 mm

cb

a

5 mm

45°

Direction oftransverseshrinkage

t = 12 mm

Fig. 5.14 Estimation of transverse shrinkage in ‘T’ butt joint

w

Single-V Double-V

Averagewidth

Fig. 5.15 Transverse shrinkage in ‘V ’ butt welds.

5.4.3 Transvers Shrinkage

& #

5 5

" " #%

# %#

# "%,#

"

&# "

"#%P#" # "

" 5

&#' #

# 2 %

" 6

6 "%8+++9

6

6

( % %5)

*+4 %" %"2

F%5 % # O, "

(" 6N"

2 % %F " % "

Page 127: Welding Science and Technology_8122420737

116 Welding Science and Technology

)"*+,&-.'

(" 68+N

6+

0N*N+0Q1Q1N+0Q+O0N+0N+0

6+4**0

(" 68+N+4**O+06+0+

)"*/+&-'

# 6+

0N!N

(" 68+N

68+N

+

0× ×!

68+N!O0

68+N"

5.4.4 Angular Distortion and Longitudinal Bowing

(% " #% %%"

%5 % )*A2

# "# # %

%% '

"#

Afterwelding

Original

(a) Changes in shape resulting fromshrinkage which is uniform throughout the thickness

(b) Asymmetrical shrinkage tends toproduce distortion.

Fig. 5.16 Change in shape and dimensions in butt-welded plate.

2 % A8: #

5 %

Page 128: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 117

& #

2 "# % #

( ")

*+A % % 5%

% % %# #

. % "

5#% , % %

"% %

% '2# %% 5

"

)*+9

2 # %

)*+<( " %

5#% "%

%%#)*+B$% 5 %

#%% %%

%%"5

)*08*0+##

Original preparation

Neutralaxis

(a)

Original preparation

2t/32ndside

1stsidet/3

t(b)

(c)

10° 10°

Fig. 5.17 Edge preparation designed to reduce angular distortion

(a) Double-V joints balance the shrinkage so that more or less equal amounts of contractionoccur on each side of the neutral axis. This gives less angular distortion than a single ‘V’.

(b) It is difficult to get a completely flat joint with a symmetrical double ‘V’ as the first weld runalways produces more angular rotation than subsequent runs; hence an asymmetrical prepa-ration is used so that the larger amount of weld metal on the second side pulls back thedistortion which occurred when the first side was welded.

(c) Alternatively, a single-U preparation with nearly parallel sides can be used. This gives anapproach to a uniform weld width through the section.

Page 129: Welding Science and Technology_8122420737

118 Welding Science and Technology

Direction of welding

Longitudinaldistortion

Fig. 5.18 Longitudinal bowing or distortion in a butt joint

12

34

56

25

36

41

Fig. 5.19 Sequences for welding short lengths of joint to reduce longitudinal bowing

Longitudinla distortio

n

Fig. 5.20 Longitudinal bowing in a fillet-welded ‘T’ joint

(a) Distortion causedby fillet weld

(b) Use of presetting to correctdistortion in fillet welded 'T' joint

1st weld2ndweld

1 3 2

(c) Distortion offlange

1 = plate centre-line beforewelding

2 = plate centre-line afterfirst weld

3 = plate centre-line aftersecond weld

Fig. 5.21 Distortion in fillet welding of ‘T’ joints

Page 130: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 119

%# #

5# % %#

%$ ' # 5% %

B8: %

-"# %

5.4.5 Effect of Heat Distribution

)#

". 01#

5 %(

%" # %"

% " (

%

%%

( % 5

%2

" 2

" 5#

( % % #0

# ( 3# "#

" % '#

% "# #3#&$#3(

'

5.4.6 Residual Stresses

&" %

% "

%

5 %"

" # # %

""( /#

% 5#

%#" #

," $" 5

% %

( 5)

#% %%

" 2 #

% ")*00"

# /

"

2% "%%5

# "5 5

!" %

Page 131: Welding Science and Technology_8122420737

120 Welding Science and Technology

% " "" #

" # %

( ' "

"% " 5#%#

#, "' 5%

WeldYieldstress

Tensilestress

Compressivestress

0

Distance fromweld centre-line

Fig. 5.22 Distribution of residual stresses in a butt-welded joint

2 ", %#

( % # %

%(

% "

%' R

&# %5

" ' # %# " , #

'%

( # "# "

5$ "#%

%%#",#

" #

2 #5

'"R 5")#

#" 5% %

% "

( %%

" "%

Page 132: Welding Science and Technology_8122420737

Thermal and Metallurgical Considerations in Welding 121

5.4.7 Stress Relieving

F "% " 5

#"#"%%#%

% # # ( ,

2

5 ##A88:.# # ,"

#' A88:.>

# #

" ,% #

,%

2" #

" % (

%# %

% # /&

**88+B9A " "(%*1

01

"#$ $$%& '(

>% *<8A08

.% A88A*8

.%+O0?% A08AA8

+? +O0?% A08AA8

0K?+?% AA8988

*? +O0?% 988948

1J? *88A08

2 " "#

' #

% ( %

# ,

" "% 2

% # %"

> #

5 # 2

# %&" %

% %# % % %

> 5# #%

# " %( "

% 5

' )*01

Page 133: Welding Science and Technology_8122420737

122 Welding Science and Technology

t

R

Heated band

Tem

pera

ture

q

q2

5 Rt2

5 Rt2

Weldcentre-line

0

Heated-band width 5 RtR =t =

=q

radius of pipewall thicknessstress relievingtemperature

Fig. 5.23 Typical specification for temperature distribution duringlocal stress relief of welded butt joints in pipe

) '"%'

*+ $ S$ %%

S$ %S

*0 / #(( (

$ %S=# #

#,#

*1 $ S$ S

*4 = $

%,S$

** / T. 2P#

Page 134: Welding Science and Technology_8122420737

123

! !

"

#

$ #

#

#%

&'

() !

*+

,-

.$#

$

/0- 12&3

4

1$ 03

/0 12(3

Page 135: Welding Science and Technology_8122420737

124 Welding Science and Technology

. $

&

$

5

&/0 12*3

(

5

& (12,3

(5 #

6

+

(77 (78$ 90(7(

#&7/0*7:9

85(7;95&77*0

#5&77;&75&777

(5&777 &777

7 :9 (7 (77& =

× ×57(<,&5(<,&=

! ""#"! $%

%

5

( & (=

5

& /0

5 #

/0*

5 $ $

5

5 0

5 1

>

3(

5

5

& (

5 1

>

3

&5

(5

5 #

6

5 6 $

1/03

ArAr

AmAm

H AZ

?? 0@? 7:A722

- ) 7<A7<<

@ ) 7(&A7,:

Page 136: Welding Science and Technology_8122420737

Analytical and Mathematical Analysis 125

!0

"#

"$ /%*

&"

51 31 31 31 3

1 31 3

7 < 7 * (7 (77

9 &75

&

BC#$BCBC$42&

D

#12&312(3 $

60°

60°

A B60°60°

h

Fig. 6.1 Plate geometry for calculating the heat input rate

#

α5$1(03

'5$1)0E+3

'13

5,*2)0AE+ α

5&(;&7A9(05'

()

(5)5

θ5?'

4

5:F θ

&

9 ,+F

HGIKJ

α12&3

59

,π ω'θ

(

9 ,+F

HGIKJ

α 12(3

$#BBνω/αCC ""

& 1# >3

(

$

-$# $

5 13

5 13

5 103

θ5 ?'5&9*7E+

θ75

5 *7E+13

ρ5 777,,

Page 137: Welding Science and Technology_8122420737

126 Welding Science and Technology

$

5) 1*3

5 $5

)5

13 $#1*3

151)3G$

#1&31(3

(9F8

( *27E

"

:9=$

$

5)

57:9;(9;&7*5(&(;&7*

5*5( * 5( * ;&7A*

θ51&9*7A*735&977E+ 5*;&7A*

#1&3

5:;Fθ

&

9 ,+F

HGIKJ

α

(&(;&7*5:;,*2;&977;*&

9 ,+F

HGIKJ

α ;&7A*

7 (,

+FHG

IKJ

α 5&*9

5&&9 , × α

5( * ;&7A*

5&&9 , &( &7

( * &7

9

*

× × ××

577&9:577&2057<90

'( ) "*!!!

+"

Page 138: Welding Science and Technology_8122420737

Analytical and Mathematical Analysis 127

Travel speed v

Solidified weld bead

WHeat source

H

Y Z

2B

Moving co-ordinate (W, Y, Z).

Fig. 6.2

' #

&

1 37 7, ,

-

, , −= +

−( &π ρ

1&3

55(H&:(:&(:

(π 5 ( * &, ( H&:(&:(:× × 5,&*

ρ5777,,

4

' ,( !

& &

7 7, ,

).

, , −= +

−, &* ρ

1(3

$#1&3

,(5 E+.

1# 3

5

,75 E+

,5

ρ5 777,,

& " !

( I !

* I !

/ / !%/, !0),

! 0)

ρ) " 112%$"0) !

"#

3 2%"

Page 139: Welding Science and Technology_8122420737

128 Welding Science and Technology

) 4"!$"

5-"

13 .5&9

&

(9 H(7

&

&9&7 (9, −= +

−, &* 7 77,, 9 &9 1 3 1 3

,(5 !" 6.57 ,

(,

13 .5*7

&

(9 H(7

&

&9&7 (9, −= +

−, &* 77,, 9 * 1 3 1 3

,(5#$!"

+ (((!,

4 !

4

1 $ 3

H*7E+

6 .+,

(5H*7E+

&

H*7 (9

&

&9&7 (9−= +

−,&* 1777,,3 9

H(7

.+

.659<

9<

""/

(77E+ !

,*7E+ $,*7E+ 6,(

,*7E

&

,*7 (77

&

&9&7 (77−= +

−,&* 1777,,3 93

H(7

1 .+

.65(:,

)

&

,*7 (9

&

&9&7 (91 3

1

−= +

−,&* 1777,,3 93

H(7

.+5

!

4 97=;&9;H(75&7:7/0

&

,*7 (9

&

&9&7 (9−= +

−,&* 1777,,3 93

&7:7

1 .+

.+5%

97=

Page 140: Welding Science and Technology_8122420737

Analytical and Mathematical Analysis 129

! $"

+ #

$ ?

,)

!

BBCC

$,)5997#

4 #$ 13

1 37$%

75( 1 37

(

π ' , ,

)

75 E+0

,)

'5 $/0E+

,)5

,75 E+

$#$

#

! # %

75(π'ρ)

, ,)

7*1 3

FHG

IKJ −(

1(3

5

ρ5 0*

)5 /0E+

#1#(3

J$ τ

τ5ρ+ 7

1 3, ,

) −

τ≤7H9 #$τ≥7H9 #$

Page 141: Welding Science and Technology_8122420737

130 Welding Science and Technology

Three dimensional heat flow > 0.9t

Intermediate condition 0.6 < < 0.9t

Two dimensional heat flow < 0.6t

Fig. 6.3 Relative plate thickness factor τ for cooling rate calculations

8559

5 $ 0) !

$ ", - "#5 9 #0",

-90)%!! 0)"

@$,75*7E+,

)5997E+'577(:/0E+

752E+05(985*77 52&57<ρ

)5777,,/0*E+

& $ <0

55

& 7 < (9 *77

<= × ×

5H97/0

τ5ρ+ 7

1 3, ,

) −= −2

77,, 997 *7

H97

1 357**&,

72

#

75(π'ρ)

, ,)

(

7*1 3

FHG

IKJ −

5(π;77(:;777,,2

H97997 *7

(*F

HGIKJ −1 3 52<29<E+0

$#$

:0

2K+01$3

997E+%)$ &%

5:0

57 < (9 *77

:

× ×5:,*H9/0

%

τ5ρ) ), ,

1 37

−= −2

7 77,, 997 *7

:,* H9

1 3

57*&(

Page 142: Welding Science and Technology_8122420737

Analytical and Mathematical Analysis 131

72 L #

75(π'ρ)

, ,

(

7*1 3

FHG

IKJ −

5(π;77(:;777,,2

:,* H9997 *7

(*

1 3

FHG

IKJ − 5997,E+0

:0

# #

$

- ! !#""!" !

13

153J

J

75ρ1(A

&30

ρ5 $1(A

&35

5 &

( $

5 1 31 3( (((

&(π π 5(π

&(

675ρ

π1 3

( &

& ((

−5

ρπ( &

(MM

&

7 0

75&

&

ρπ

5ρπ &

&9=

757:9ρ0π

&

$5(07)

$$1≈77&3 &

&7

$"

!

*!%

* "" "

r2

r1

Fig. 6.4

Page 143: Welding Science and Technology_8122420737

132 Welding Science and Technology

-ρ: ;!&"

7)57 :9 7 :9 ( &7

(9 * &, 7 7&&

9

ρπ

= × ×× ×

57777(((

J0

5

7)

(

= ×9 9

777(()0(

5&&*2;&79)0(

Examples for Revision

, 5"

/!5% 5 "",

! 5% 5"<

50

"

$

7)

(

7)57 :9

&

ρπ

"J0

5

7

)

&(

&

&

= × × ×( (9

7 :9

πρ

"J0

5

7

)

((

(

(

= × × ×( 97

7 :9

πρ

4#

& (( ((9

7 :9

97

7 :9

× × ×=

× × ×πρ

πρ

&

(

(FHG

IKJ = (

&

(5

, & 5-

= >1? "

&"<@

-519"5

1! ;!! "/

ρ5 $5 $

75

5 0(

5 1$3

Page 144: Welding Science and Technology_8122420737

Analytical and Mathematical Analysis 133

"+ $5(7>,&

$,2

,97997 1&77 3

4 $$$%

5(7>,;,5*28

(7>,;25,,8

80 V

V

8 V

100 A

1000 AI

Fig. 6.5

1,97A9973N− &77

- 5:

&77577:

)A)A:7

&77

*25);:7

&77;997

)5:75:7A77:

5)A7:

5:7A77:

)57

5:7

7:5&777

- 5'''

O $ 5'(

UVW (

Page 145: Welding Science and Technology_8122420737

134 Welding Science and Technology

%<@ & 55

&=>1? ",

FHG

IKJ +

FHG

IKJ5

"5

#

"A5 $

! $ 1 "

L$

*7

<7(

(FHG

IKJ + F

HGIKJ

&7775&

&5

:

< (&777

×× 5

,7

<7(

(FHG

IKJ + F

HGIKJ

&7775&

(5 &

&2

:&

&

(−F

HGIKJ × ;&7775 ''

$,,,,, ,772&

$*7,7$ $

)" "

2& .

P

2( .$8

$13

2* P. $

Page 146: Welding Science and Technology_8122420737

135

!"# $

7.1.1 Composition of Cast Irons

% &'( ' '

'( )*' '&

+ ) ') )')* )')(

) ) ))

, )& )& ))(

7.1.2 Oxy-Acetylene Welding of Gray and Nodular Cast Irons

• -..

## "

• /! #.#

0

1$&'&1!

-, ".

"

Page 147: Welding Science and Technology_8122420737

136 Welding Science and Technology

• 2*)'3)4"

• ..

• 5 ))'*&)% "

#0"

• !""

.

• 6"

,

• 60##

#0#

• 7.

• 25

• +""5

• %" )*)

2"

0

0

• !

• 2 #"#

0

• !6089

• 2 #"

• , " 0 6

.*&):%&.

*):% (:%

!!"

• ;<%"8=9"+!- 2%

!- 2

• !2%8!-9 # ="0

'"#

="

• >"

89/77!-?+!-

89%#

89.

• #0 82$

Page 148: Welding Science and Technology_8122420737

Welding of Materials 137

• +!-

;( ))12

('@& @&12=&1

"@& &12=@&1

0"2%

# $%"&&

2""8$

0 19

%AB%=8+=9?*=8/=%9?&=8%=+=49?&

C ) &1

D

B &)/?;B&)/?#

!E&)F' *:%

2GHI%8&)4/9

C # $

.2G

/""#"

!J$*&J@) #8%AB)9#H)) 1

".# 2G

%, ."8 19

,B%=

)=8+=%=%9?)=/?*)=+?&=4?)=&>

&!%A,"

J*&J@)%AH) 1,H)&12G

"H&)4/

*A%A;J*& 6@8989

@,2GC 6@

,B

Page 149: Welding Science and Technology_8122420737

138 Welding Science and Technology

800

700

600

500

400

3000.3 0.4 0.5 0.6

Carbon equivalent %

Ulti

mat

ete

nsile

stre

ngth

, MP

a

Normalised andtempered

Water quenchedand tempered

API X65

Fig. 7.1 (a) Effect of carbon equivalent on UTS of X65 pipe steel.(R.G. Baker, Proc. Rosenhain Centinary Conf., Royal Society, 1975)

700

600

500

400

300

2000.3 0.4 0.5 0.6

Carbon equivalent %

Normalised andtempered

API X65

Water quenchedand tempered

Yie

ldst

reng

th,M

Pa

Fig. 7.1 (b) Effect of carbon equivalent on YS of X65 pipe steel.(R.G. Baker, Proc. Rosenhain Centinary Conf., Royal Society, 1975)

Page 150: Welding Science and Technology_8122420737

Welding of Materials 139

340

320

300

280

260

240

2200.1 0.15 0.2

Pcm

HA

Zha

rdne

ss

X with Bo without B

C = 0.010.04

Fig. 7.2 Effect of Pcm on HAZ hardness for low carbon pipe steel

'

0

89 89 89

89 890

9

5)1

+3:%

!"#

.0

$%&' "$

#

(

*'*1

*'1/.

) C*C 8%≤))19+*"

@78%%*9$

# /

%/%

&)) / +/

Page 151: Welding Science and Technology_8122420737

140 Welding Science and Technology

*2809

@ )')1 #

"A0 #

#.

# "A0

#0#

(%

• % .#

• ! "#. #$

• %#7.2G

3"

) @'(@)%

#

6"

! 2G

7D

89 I @:'(@):%

89

89 2##% "

"

2 $ "

/$%

2

%$3)1%.0

,

7

%D

• ;# "

%0"

• I #

.

• C0))1"

• ,$

.

2 7/=

"

Page 152: Welding Science and Technology_8122420737

Welding of Materials 141

+2 2".

0" D

• A)($*''82%<%I,9

• C"8<%I,9'A)($&$

• 6"2

• 6!-0

• 6

)#

!. $

. . ))1

0

$

"#.# "$

&86/96

K2" 6@

.

/"D

• !8"9

• !"

AusteniteAustenite

A+MA+M

MartensiteMartensite

M+FM+F4+M+F4+M+F

4+F4+F

No ferrite

No ferrite 5%

ferrite

5%ferri

te

10%ferrit

e

10%ferrit

e

20%ferrit

e

20%ferrit

e

40% ferrite

40% ferrite

80% ferrite

80% ferrite

100% ferrite100% ferrite

FerriiteFerriiteM

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

3028262422201816141210

86420

Chromium equivalent=% Cr+%Mo+1.5×%Si+0.5×%Cb+5×%V+3×%AlNie

quiv

alen

t=%

Ni+

30×

%C

+0.

87f o

rM

n+0.

33×

%C

u+

(%N

–0.0

45)×

30w

hen

N0.

0/0.

20or

×22

whe

nN

0.21

/0.2

5or

×20

whe

nN

0.26

/0.3

5

Fig. 7.3 Schaeffler diagram

Page 153: Welding Science and Technology_8122420737

142 Welding Science and Technology

AusteniteAustenite

SchaefflerA+M line

SchaefflerA+M line

WRC

Ferrite

number 0

WRC

Ferrite

number 022

44 5566

881010

12121414

16161818

0%ferri

te

0%ferri

te

2%ferri

te

2%ferri

te

4%ferri

te

4%ferri

te

5%ferri

te

5%ferri

te

6%ferri

te

6%ferri

te

7.6%ferri

te

7.6%ferri

te

9.2%ferri

te

9.2%ferri

te

10.7%ferri

te

10.7%ferri

te

12.3%ferri

te

12.3%ferri

te

13.8%ferri

te

13.8%ferri

te

Austenite+ferriteAustenite+ferrite

16 17 18 19 20Chromium equivalent = % Cr+%Mo+1.5×%Si+0.5×%Nb

21 22 23 24 25 26 27

21

20

19

18

17

16

15

14

13

12

11

10

Nic

kele

quiv

alen

t =%

Ni+

30×

%C

+30

×%

N+

0.5×

%M

n

Fig. 7.4 De Long diagram

"

• +/# "0

• /

0 "

%

• 4

• 4.

(

<

5< D

<

<

6

5#

7.5.1 Guidelines for Welding Dissimilar Metals

! D

+

Page 154: Welding Science and Technology_8122420737

Welding of Materials 143

%

I "

!-+2

<7

5

&!

! $#

!$#

89 .2G

7.5.2 Tips for Joining Certain Combinations

*#+

F&%'+ %')&+)&+

*#,-. (

6"

7"#

.7

$*##(/

$

83%L3/9 " "

.! 8)9

"

0*#"

, .)38&%'/9

!-++2 !"##$

0C

$0>

# "$

775

5"

1#

"

5!-

Page 155: Welding Science and Technology_8122420737

144 Welding Science and Technology

"

."

&( #

% "

"

75

)%!

(2+#

. $

.

"

A # "

22&'3@)!- #

#

2 &)L()89 + D

? RST

>%

&) L ()()L )

8 9>. # # #

RST

< *))'*&89 + ? # #

# # RST

"2#>#%<"$

&

>"

.%+.".#

C #

*

0#$

Page 156: Welding Science and Technology_8122420737

Welding of Materials 145

@

8928%#/#+9D2"

+

89%0890+

8989

3+ " $

$

)1%B)')1%B&'19#

#

#"

4(/ $ +$

"

("

, "

2"

# .

#

8 "

.9

!

M0$ #%. $$

++2 %-"

!- I$##%

#/$#%%$

2$+

+!- M$/"

7

"

& 2 - <%I, $

<%,"

.

5$#

)&,

."D

8989 89

"

5#

%##"!

"#"

Page 157: Welding Science and Technology_8122420737

146 Welding Science and Technology

%

"

#6

2 +2

0#K $

8'&?9

,% #

.# #

260"#

"

D

2

!

/.$.

1. SAW2. Plasma cladding

Powersource

DC+ –

Plasmatorch

Wirefeed unit

AC.

Hot wirepower source

+ +

Fig. 7.5 Gas metal plasma hot wire process

$##

"

""#

')1".<.

2+2A)38%'/9"

%.0""

.%D

' ?#7####

Page 158: Welding Science and Technology_8122420737

Welding of Materials 147

' .

' 77

' 89

' "

' .#

"

.

')6 "

A

.

Page 159: Welding Science and Technology_8122420737

148

!

"

#

$!% &

"

#

'

(

) !

*

" *

# *

+

, *

-

. *

/ 0

Page 160: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 149

1 2

3 2 +

) )

4

" * 5

# 4

% &

%&

, 6 %

& % &%

)+

+

( +

7

+ 8

9 0

:)$ #)

;)#11%6((&)

" ()' ,,")

# ()/"%1-&)

; ()' :)

(:)

<%=&

" ;

# 4

, )

- 7

. 0

/ )

0

7/

Page 161: Welding Science and Technology_8122420737

150 Welding Science and Technology

Finish symbol

Contour symbol

Root opening; depth of fillingfor plug and slot welds

Effective throat

F

A

R

Groove angle; includedangle of countersinkfor plug welds

Length of weld

Field weld symbol

Pitch (center-to-centerspacing) of welds

Arrow connecting ref-erence line to arrowside member of joint

Weld-all-around symbol

Reference line

Number of spot orprojection welds

Elements in thisarea remain asshown when tailand arrow arereversed

Depth of preparation size orstrength for certain welds

(Tail omittedwhen referenceis not used)

TailT

S (E)

Specification, process,or other reference

Basic weld symbolor detail reference

(N)(Bot

hsi

des)

Oth

ersi

de(

)A

rrow

side

() L – P

Fig. 8.1 Standard location of elements on the welding symbol

0

(*) *>

()' %&0

14

938

8

Size of filletin inches

Depth ofpreparation in inches

Field weldpoints to tail

Length and pitchin inches

2 to 4

Fig. 8.2 Size location, field weld length, and pitch

Fig. 8.3 Arrow side, other side reflection

Page 162: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 151

Fig. 8.4 Straight line always on left

!"#

( +

7

0

% ?

Significance

Significance

Significance

Significance

Fig. 8.5 Welding symbols-significance

Significance

Fig. 8.6 Arrow/side-other/side significance

Page 163: Welding Science and Technology_8122420737

152 Welding Science and Technology

516

516

516

Fig. 8.7 Size of fillet welds

8.2.1 Steps in Preparing Welding Procedure Sheets

0 6

7 6

) @

) 2A%B&

C C

* D

7+2

E 6 E ;

E < E 2

E 7

E 6

"

+! :

! 0

F

+

$ !

$ :

$ 7

! 0 !

$ :

$

Page 164: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 153

$

$ ;"3G",G

$ D *

$ ' , !

$ 4

(

7

6

0

C

%&#''#((!

0

0

%&

%&

%& !

%&

%&

%&

%&

0 4

8.4.1 Type of Welds

0 879 8;9 7 !

(

0

+ 7//

Page 165: Welding Science and Technology_8122420737

154 Welding Science and Technology

8.4.2 Joint Preparations for Different Types of Welds

D 7/1/1

8.4.3 Fatigue as a Joint Preparation Factor

7 7 /3)

Fillet welds Butt welds

Lap Butt

Tee fillet Tee butt

Corner fillet Corner butt

7

MMA welds

P

t

g

ga

Fig. 8.9 Manual metal arc welds

Page 166: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 155

t

!!"

)H*<;*006<6<0('@)

2)!;

$ 0 ,"

$ :

$ @

')!;

$ 0≤-

$ :

$ @

$ I,"

")!;(;

$ 0I" ,

$ @

$ I"/

!#$

• A

• )

• *

)

g

g

Low strength

Better strength

Fig. 8.10 Factors affecting joint preparation (contd.)

Incomplete fusion(superiority is lost)

defect

Page 167: Welding Science and Technology_8122420737

156 Welding Science and Technology

Distortion

Distortion

Penetration

Backing bars in areasunaccessible for gouging

Backing strip

Backing providedby the part. Italso alligns.

Constraineddistortion canlead to cracks

Fig. 8.10 Factors affecting joint preparation

Page 168: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 157

"#% & !!

0≤1

)C

αI-3GI,$"

I,$"

& ' ()*+% (%! "

< I3

γC

+

C

=

αI,,G βI3$,G

β I#3$#,G

I3$,

I,$"

0

αI#,GI-

αI"3GI-

αI 3GI1,

Fig. 8.11 Single V preparations

a

g

s

g

g

g

g a

b2

b1

s2

s1

a

a

g

Page 169: Welding Science and Technology_8122420737

158 Welding Science and Technology

,-"&.)/

• 0

01"#% ) & % !!

0≤1

αI,3GI-$"

I-$"

2

=

(

0-")2.)/

αG

#, -"

", /

, 1,

a

g

a

gs

g

a

n

g

a

g

a°453020

‘g’ mm66

9.5

Fig. 8.12 Single bevel preparation

Page 170: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 159

31"#% $ !!

0

C

7

α0

41"#% !!

0

0

J1A

!*

I#3G

%α I 3G&?I

1$"/αI 3GII-$" γI1,$

Fig. 8.13 Single U preparation and single J-preparation

Suitable only forout-side corner

b2

b1

25 – 20°

5 – 10°

a2

a1

Asymmetric prep. forhorizontal-verticalwelding

Access and economyin deep groovesIncrease = 30 – 40°

remains 20°1

2

a

g

g s

Thickness t

ag

= 19.5 – 38 mm= 20, s = g = 1.6 – 3.2 mm= 6.3 to 9.5 mm

g

s

a

g

Page 171: Welding Science and Technology_8122420737

160 Welding Science and Technology

a = 20 – 25°

Fig. 8.14 Single J preparation

51($)% & !!

P

P s

g

g

at = 12 50 mm= 60° s = 0 – 1.6 g = 1.6 – 6.3 mma

b1 = 10 – 15°

b2 = 45 – 40° b2

b1

a

a

sd2

d1

Unequal preparation for jointsfixed in flat position reducingoverhead welding volume.

Asymmetric preparationfor horizontal-verticalposition welding

Requires less weld metalBalanced welding sequenceControlled distortionLarge solid angleBack gouging needed forefficient high quality joint

g

Fig. 8.15 Double V preparation

)

=

2*

Page 172: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 161

61($)% ) & % !!

0I1,

αI,3$,,GI3-

I--"

6

!C

2

C=

Fig. 8.16 (a) Double bevel preparation

Fig. 8.16 (b) Double bevel preparation

1($)% $ !!

a

g

s

g

a

gs

d2

d1

b2

b1

b1 = 5 to 10°b2 = 25 to 20°

t

s

g

38 mm= 20°= 1.6 to 3.2 mm= 1.6 to 3.2 mm= 6.3 to 9.5 mm

³a

g

Fig. 8.17 Double U preparation

s g

g

a

( )a

sd2

d1

a

a

(b)

Page 173: Welding Science and Technology_8122420737

162 Welding Science and Technology

71($)% !!

2 D

≥"/

αI, ,GII-"

γI1,

Fig. 8.18 Double J preparation

-1'8 ( !!"

@* 7 *

) C

Combination of V and bevel where welding

can be done easily from both sides.

Fig. 8.19 Mixed preparations

)#

0 7 =

07/ 30

0

4 0

K 5 K 5:

=(7/

s

g

g

a

Page 174: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 163

Flat FlatHorizontal Vertical

Vertical Overhead Overhead Horizontal

Fig. 8.20 Welding positions for butt and fillet welds

Line of root

SlopeSlope

Fig. 8.21 Diagram to illustrate weld slope

:

! (

7/

Rotation of weld 0°

Rotation of weld 150°

150°150°

90°90°

Rotation of weld 90°Rotation of weld 45°

45°45°

180°180°

Rotation of weld 180°

Fig. 8.22 Diagrams to show weld rotation

0

$ (.9 + 3G

+ 3G

Page 175: Welding Science and Technology_8122420737

164 Welding Science and Technology

$ 9 + 3G#,G

+ 13G

$ :;<&9 + 3G

3G + 13G

$ &9 + #,G

13G

$ 29 + #,G

13G

*!' "'#

!-,

0

+ !"#

:)

(

!

6

7+)F !

!

0 !

!

0

0

( 5

0

!0!

)(

!

!

Page 176: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 165

"$''!*+:!9

0

Materialthickness Manual metal arc Manual CO

DIP transfer2 Manual CO

spray transfer2 Mechanised CO2 Submerged arc

Process

20 S.W.G.

16 S.W.G.1/32 in.

1/8 in.1/16 in.

3/16 in.60°60°

1/16 in.

1/16 in.

1/4 in.60°60°

1/16 in.

1/16 in.

1/32 in.

3/8 in.60°

60°-70°

1/16 in.

1/16 in.

1/16 in.

40°-50°

1/16 in.

40°

1/16 in.

40°

1/16 in.

1/2 in.60°

60°-70°

3/32 in.

3/32 in.

40°-50°

1/16 in.

40°

1/16 in.

40°

1/16 in.1/16 in.

3/4 in.

60°60°-70°

1/8 in.

1/8 in.

50°

1/16 in. 50°

1/8 in.

40°

40°

1/4 in.

40°

40°

1/4 in.

1 in.

60°-70°

1/8 in.

50°

50°

1/8 in.

60°-70°

60°

1/16 in.

60°

40°

40°

1/4 in.40°

40°

1/4 in.

1½ in.

60°-70°

1/8 in.

50°

50°

1/8 in.

60°-70°

60°

60°

1/2 in.

60°

60°

1/16 in.

40°

40°

1/4 in.

3 in.

20°

1/8 in.

50°

50°

1/8 in.

60°

1/16 in.20°

1/4 in. r

60°

30°

1/2 in.

30°

1/4 in. r

30°

1/4 in.

30°

1/4 in. r

1/16 in.

Page 177: Welding Science and Technology_8122420737

166 Welding Science and Technology

%& :

%& < B

%& F L

%& F

%& 0

%& 6

%&

%& < %& <

%& 2

%& )% &

%& 6

%& :

%& F

%&

%& )=

%& A

%& 2

%& '

%&

%& 6

%& 0

%& @

%& : !

%& 0!

%& F

%& F

%& 6

% & 6

8.7.1 Type of Joints

0+ 0

7/ "

+

4

%& F

%& : L

Page 178: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 167

%& :

%& D

+

%& L !

%& 2

(A) (B)

(D) (C)

(E) (F)

Fig. 8.23 Major types of joints: (A) Square butt weld (B) Square tee-joint and fillet welds(C) Cruciform joint with four fillet welds (D) Lap joint with single fillet weld (E) Full open corner joint with fillet welds (F) Edge joint with edge weld.

C 7.1$.1

%2.&

8.7.2 Welding Parameters

0

=

!0

%& ! =

*

Page 179: Welding Science and Technology_8122420737

168 Welding Science and Technology

!A

=

A=!

Included angle

Angle of bevel

Root face

GapGap

Root radiusIncluded angle

Angle of bevel

Root face

GapGap

Included angle

Angle of bevel

Root face

GapGapRoot radius

Land

Fig. 8.24 Terms pertaining to typical weld preparations

7

=

0=

# %-3"& ",

%.3/&

, -3"

.3/

0 =

(C+

= (

0 %-/&

Page 180: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 169

Weld width

Weld face

ToesToes

Toes

Weld face

Toes

Leg (length)

Weld width

Weld face

Toes

Leg

(Length)

Fig. 8.25 Term pertaining to welds

Design throat thickness

Actual throat thickness

Design throat thickness

Fig. 8.26 Actual and design throat thicknesses of welds

( =

%&(

!

=

%&"#0

242 42+ ## 2

: 2%0#"..&

Page 181: Welding Science and Technology_8122420737

170 Welding Science and Technology

:+

5 42

%&$; 7

=

0

(

+(

0

0

0 +

7

! =

:

=(

!

%&% !

2 !

A !+

%& %

:

+

$

: .

!' !"#

):

0 =

7/ .

@

+

( ):

(FF:

(

):

F +

Page 182: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 171

+(

Fig. 8.27 Joint and positions suitable for SAW

Second pass

Backing pass

Second pass

Backing pass

Fig. 8.28 Base metal backing for SAW

)):

!%+&(

): !

(): =

0

0

0!

8.8.1 Weld Backing Techniques

0 !%&;L

% &)L%"&: L%#&;L%,&2L%-&7+

L%.&;

-)=/07/ /

0 ! !

2

0

Page 183: Welding Science and Technology_8122420737

172 Welding Science and Technology

,"=/(

7/ 1(

0

Fig. 8.29 Structure backing for SAW

Fig. 8.30 Weld backing for SAW

0>=/0

2' + %7/"3&

(

0 !(

+

0

3)/0

0

7/"( (

)

(- #/

(

L

4+=/2 7/" (

+

?

0L

(

7

0

(

(

2+

Page 184: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 173

5 =/7/"" )+

+0

+0!

): D

Backing strip

Fig. 8.31 Backing strip for SWA

(A) (B)

Fig. 8.32 Copper backing for SAW: (A) V-groove butt; (B) Square butt

6)/ 2

*)0+

A3,

30

0(MF(M

;

0 +

+

8.8.2 Butt Welds

0

0

:! 0

0/

=-("!=..=/

! "

&

!' & B

- # ",3 " ,3

3 # #33 # #

# " ,33 "3 #3

"- " -,3 " "3

Page 185: Welding Science and Technology_8122420737

174 Welding Science and Technology

D7/"#

0 0/

6 . !

(

6 0/

Fluxbacking

Flexiblesheetmaterial

Inflatedhose

Trough

Paperinsert(Optional)

Plate

Fig. 8.33 A method of producing flux backing for SAW

g

t

Steel back-upSteel back-up

Fig. 8.34 Joint fit-up for butt welds in sheet metal

=,("!=..=/

( ! " &

&

B

!' B

- 3$3/ " #,3 , #,

3 3$3/ " ,33 . ""

# 3$- " ,,3 . ,

"- 3$- " -,3 / 3

#/ - ,3 /,3 " ,

-# " ,3 133 ""

1, " ,- 1,3 "" 3

. #/ ,- 333 "# /

Page 186: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 175

6 -#$,1 !

7/",0 (

6 0/"

tSecond pass

Backing pass

Close fit-up

Fig. 8.35 Square butt weld in two passes, one from each side

9.5 MM

3.2 MM

19 MM

2ndpass

1st pass1st pass

2nd pass

25.4 MM

9.5 MM

9.5 MM

Fig. 8.36 Parameters for two-pass 19 mm and 25.4 mm t butt welds

=0(.?@=.

)

! " & ! " &

& B & B

-# #3 #., 1 3 #3 ,., " 3

1, #3 ,33 "" # #3 /,3 ", #

. ,3 .33 ", ,3 1,3 "-

,1 ,3 133 "- 1 ,3 1,3 "- 1

0 + 1 ,#

-3GC

7/"-6 0/#

Page 187: Welding Science and Technology_8122420737

176 Welding Science and Technology

=3(-7,43=.

*+ ,-.

7

, ,

2%42N& .33 /,3

CC ", ",

) B ,,

)

, ,

2%42N& 1,3 333

CC "- "-

) B - .

:C

7

/".0 " "/0/,

( +

0

0

! !

70°

60°

16 MM

9.5 MM

3rd pass

2nd pass

1st pass

32 MM

38 MM

1st pass

2nd pass

3rd pass

90°

70°

16 MM

12.7 MM

Fig. 8.37 Parameters for three-pass 32 mm and 38 mm t butt welds

Page 188: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 177

=4(0,0=.

/

! " & ! " &

& B & B

" , /,3 ", ,, , 333 "- ,

/" , 333 "- # , 333 "- #

! " &

& B

, /,3 ", #

, 1,3 "# "

7

! +

7- ,# "/+

7/"/7 #

:)

.B# ,,3 /C0)-

,# "/, -

)

60°

6.4 MM

3.2 MM

Fig. 8.38 Joint fit-up for multi-pass butt weld

, !(-

F(MB2'

0

7

!

:

)

Page 189: Welding Science and Technology_8122420737

178 Welding Science and Technology

!

!

0 !

5

(

0===

) ==

L

!

== != ' ===

0

=

(

+

==-# 1, (

==7+

+ "

== 7

0/-

=5#'#A+,.

%

) "-3"#C- )

4 ! L "/C

) O

=

,B

) 31C )

6 ! 3C

) O

=

,B

" )%&!

0

7 0/-

%&(

Page 190: Welding Science and Technology_8122420737

Welding Procedure and Process Planning 179

.!#

/ : A

/ :

()' :)

/" : P4

4

/# : P:+

48 9 8 9

/, ? P:

/- :8 9P:

P

/. 4 )

// ? P)

%& = %&2

%&: %&

%& %&:

/1 ; ):

: ):

/3 + ):

%&;

%&7+

/ ;+0(M F(M

Page 191: Welding Science and Technology_8122420737

180

(a) Undercut (b) Cracks

(c) Porosity (d) Slag inclusions

(e) Lack of fusion (f) Lack of penetration

Fig. 9.1 Typical weld defects

Page 192: Welding Science and Technology_8122420737

Weld Quality 181

!

"#$%% &%'()*

*%&!

!

!

+ "

, -

)

.

/

! 0

Crater cracks

Arc strike Toe crack

Underbead crack

Longitudinalcracks

Transversecracks

Toe crack

Fig. 9.2 Types of cracks in welded joints

Page 193: Welding Science and Technology_8122420737

182 Welding Science and Technology

*%1

!

!

" )

.

2

" )!

&3 +

1#

42

$5+ +

(

'3

67

!

!+

+ 8

" ##

!

Page 194: Welding Science and Technology_8122420737

Weld Quality 183

A B

Fig. 9.3 Types of lack of fusion

$ #

!

9

%# &#

5+ :

*%$*%(

!

0

")

")9

Reinforcement of buttsmore than 3.2 mm(1/8 in.) is excessive

Lack of filler metal

Fig. 9.4 Excessive reinforcement, Lack of filler metal

Page 195: Welding Science and Technology_8122420737

184 Welding Science and Technology

A B

C

D

Size Size

45°

Desirable fillet weld profiles

Convexity Cshall not exceed0.15 + 0.03 in.

SS

S S

C

Acceptable fillet weld profiles

Size Size Size Size Size

Insufficientthroat

Excessiveconvexity

Excessiveundercut

Overlap Insufficientleg

Defective fillet weld profiles

C

Fig. 9.5 Desirable, acceptable and defective fillet weld profiles

")

")

'#

: *%'

!

Page 196: Welding Science and Technology_8122420737

Weld Quality 185

a. No corrosion b. Uniform c. Galvanic d. Erosion e. Fretting f. Crevice

More noblemetal

Flowingcorrodent

Cyclicmovement

Load Metal ornon-metal

g. Pitting h. Exfoliation

i. Selective leaching j. Intergranular k. Stress cor-rosion cracking

l. Corrosionfatigue

Fig. 9.6 Types of corrosion commonly found in metals and alloys

9.8.1 Galvanic Corrosion

! + !

;

.

! *%6

Large cathodic regionsSmall

anodic region

Large anodic regionsSmall cathodic region

A A

Regions where attack may be serious

Fig. 9.7 Galvanic corrosion in a welded join

Top: weld Metal less noble than base metal

Bottom: Weld metal more noble than base metal

Page 197: Welding Science and Technology_8122420737

186 Welding Science and Technology

9.8.2 Crevice Corrosion

. 0

<+

+!

9

9.8.3 Intergranular Corrosion

!

.

+

'(=>.!

'(=>.

!

9.8.4 Stress Corrosion

<

+

. !

!

0

") #

") .

")

")

")

") 3 " ) !

+

")

< 0

Page 198: Welding Science and Technology_8122420737

Weld Quality 187

APPEARANCE TYPE OF CORROSIONWeld metal

Base metal

a. Uniform

b. Base metalcorrosion

c. Weld metalcorrosion

d. Base metalhigh-temp. HAZcorrosion

e. Base metallow-temp. HAZcorrosion

Fig. 9.8 Types of corrosion in a welded joint

!# (

"*%?)!

"*%?) "*%?)

@A:

@A

"*%?)

@A "*%?)

9.9.1 Factors Affecting Corrosion Resistance of Welded Joints

& <

1 !

4

$ "

(

' 9

Page 199: Welding Science and Technology_8122420737

188 Welding Science and Technology

!

+

B

B

B " )

B

B

B

B

! *%?%?%?**

%? %?

!

%& #+ :

%1

%4

%$ :

:

%( C 3

Page 200: Welding Science and Technology_8122420737

189

!

"

!

#

!$

10.1.1 Tension Tests for base metal

$

10.1.2 Weld Tension Test

"

%&'&

$ %&'&

%&'(

Page 201: Welding Science and Technology_8122420737

190 Welding Science and Technology

Longitudinal weldspecimen

Weld 8"

Gage length

1.5"2"

Both plate - typespecimens have iden-tical dimensions

18" min

t

Transverseweld specimenBase metalAll weld

metal

0.252 or 0.505"diam round specimensdepending on t

Fig. 10.1 Typical test specimens for evaluation of welded joints (dimensions in inch units)

T

f

f

W

6.4

6.4

W = 38.1 ± 0.3T = 8 mm. approx.

25.4 approx.

50.8

–50.

6R

6.46.4

Machined by milling

(a) Transverse-weld tension specimen

25.4 ± 1.6

25.4 8

38.1

76.2 63.5 76.2

25R

Machined by milling

(b) Longitudinal-weld tension specimen

Fig. 10.2 Tension test specimens with dimensions in mm

Page 202: Welding Science and Technology_8122420737

Testing and Inspection of Welds 191

76.231.8

25.4 0.13

4.6 R

9.5

6.4 ± 0.13 6.4

Specimenlocation

(c) All weld metal tension specimen

Fig. 10.2 Tension test specimens with dimension in mm

#

!

)

#

* #

*+

!

10.1.3 Tension-shear Test

$

,%&'-.

/

#

"

0 1"

Page 203: Welding Science and Technology_8122420737

192 Welding Science and Technology

A. B.

D. C.

After welding After machining

Fig. 10.3 Various types of tension-shear specimens

10.1.4 Tension Tests for Resistance Welds

#

%&'2

"

"

! ,%&'3.

4

!&,''2.

"

,.

! " 25,'&6 .

Page 204: Welding Science and Technology_8122420737

Testing and Inspection of Welds 193

"

Edges as sheared Direction ofrolling (preferred)

Spot-weld centeredas shown

Fig. 10.4 Test specimen for tension shear

a.

b.

Thickness up to 4.8 mm (0.19 in.)

Thickness over 4.8 mm (0.19 in.)

Fig. 10.5 Cross-tension test

0

Page 205: Welding Science and Technology_8122420737

194 Welding Science and Technology

Fig. 10.6 Test jig for cross-tension specimens

78 7!!$0&&

"

%&'3 "!

&,''2.

%&'1 "26%

&'9 "

Page 206: Welding Science and Technology_8122420737

Testing and Inspection of Welds 195

%&'9,.

"

*

"

(a) (b)

Fig. 10.7 Jig for cross-tension test (t > 4.8 mm)

: %&'5,.

Fig. 10.8 (a) Bend tests

Page 207: Welding Science and Technology_8122420737

196 Welding Science and Technology

Roller supportor greasedshoulders

A1"4 R

t

1"4A = 1 when t

1"2

A = 2" when t > 1"2

Initial bend for free-bend specimens

Final bend forfree-bendspecimens

Shoulder

Plunger

Roller (alternate)

Specimen

Die

Fig. 10.8 (b) Typical fixtures for free bend testing (top) and guided bend (bottom).(for SI equivalents U.S. customary values)

10.2.1 Procedures of Preparing Test Sample

8 ;

& 0 3'5

,%&'6.) "

$291

( $

- 091(,-.,%&'&'.)

" % $<!

2 =

Page 208: Welding Science and Technology_8122420737

Testing and Inspection of Welds 197

3 0"

,.)

,."

,.$

,.8

1 $

7 :

Cut

Cut5.08 cm(2 in.)

Fig. 10.9 Cutting test samples

Fig. 10.10 Sample cut into equal pieces

10.2.2 Guided Bend Tests

"$

>

$ ;

!$ ! $ $ ? !

8 ! 8@&'616

$<A $ < A 0 :

8 >

Page 209: Welding Science and Technology_8122420737

198 Welding Science and Technology

8# 8 #$ !8

7%

%&'&&

" " 9'-"4(,&' ''.

Tapped hole to suittesting machine

As required

118

14

34

34

378

2234

CC

99

712

514

412

R34

3 4

34

12 11

8

634

18

B D

Shoulders hardenedand greased

As required

Malemember

Femalemember

Hardened rollers

diameter

may be substitutedfor big shoulders

112

Materialyield strength–psi

–A–(inches)

–B–(inches)

–C–(inches)

–D–(inches)

50,000 and under

55,000 to 90,000

90,000 and over

2 1

112

34 23

81 316

278

1 716

212 11

4 338

11116

AA

Fig. 10.11 Typical bend test jig. (All dimensions are in inches)

10.2.3 Preparing the Sample for Bend Testing

/

,%

&'&(. ,%&'&-.%

,%&'&2.

"

-&9 ,%&'&3.

", .

Page 210: Welding Science and Technology_8122420737

Testing and Inspection of Welds 199

Discard bothend pieces

min38

1211

211211

21

124

124

10²10²

(A)

Fig. 10.12 Flat plate test. (All dimensions in inches)

Tack weld

Flat

Horizontal38 min.

2G4G

3G

1G

66 55 55

(B)

Fig. 10.13 Fixed box pipe all position test. 1G-1 Flat position root bend 1G-2 Flatposition face bend 2G-3 Horizontal position root bend 2G-4 Horizontal position facebend 3G-5 Vertical position root bend 3G-6 Vertical position face bend 4G-7 Over-head position root bend 4G-8 Overhead position face bend.

as welded

Fig. 10.14 Reinforcement removal

Page 211: Welding Science and Technology_8122420737

200 Welding Science and Technology

Center lineof weld

Length as perspecification

Grind scratches

Grind scratches

Radius cornersRadius corners

Fig. 10.15 Prepared specimen for bending

10.2.4 Root and Face Bend Specimens

% ,%&'&1

&'&9.* !$&'' B

$ #

-(, " ".

# -(

% 1= #

-(

Top of pipe for 5Gand 6G positions

Face bend

Root bend

45°

Root bend

Face bend

Pipe wall 3/8 in. and under

Discard bothends

RootbendRoot

bend

FacebendFace

bend

Fig. 10.16 (a) Pipe root and face. Plate root and face

Page 212: Welding Science and Technology_8122420737

Testing and Inspection of Welds 201

Root Bend

Face Bend

Side Bend

Face bendRoot bend

Side bend

Weld joint

Fig. 10.16 (b) Relative orientations of face, root, and side-bend tests from a welded plate

Fig. 10.17 Root bend and face bend on small-diameter pipe sample

!"#" $

C &'&

> @ <

7

10.3.1 Magnetic Particle Inspection

<

" "

# $

Page 213: Welding Science and Technology_8122420737

202 Welding Science and Technology

:

%&'('

Alternatingcurrentcoil

Shaft beingdemagnetized

Fig. 10.18 Alternating current coil

Magnetic fieldaround an electriccable

Magnetic field

Defect

Electric current

Fig. 10.19 Circular magnetization of a shaft

Page 214: Welding Science and Technology_8122420737

Testing and Inspection of Welds 203

Electric current

Magnetic field

Defect

Magnetic field

Electric coil

Defect

Fig. 10.20 Longitudinal magnetic inspection

10.3.2 Radiographic Inspection

7 B

B

=

D

"

D

"@

B

%&'((

"

Page 215: Welding Science and Technology_8122420737

204 Welding Science and Technology

Magnetizingcurrent

Magnetic linesof force

150 to 200 mm

Weld

Fig. 10.21 The prod method

TargetElectrons

Focusingcup

Filament

CathodeAnode

X-rays

Fig. 10.22 Operation of an X-ray device

/ " B

#

"

%&'(- B B

Glass envelope Electron stream filament

Cathode

Focusing cupWindow

X-raysTungsten

target

Anode

Fig. 10.23 Construction of an X-ray tube

Page 216: Welding Science and Technology_8122420737

Testing and Inspection of Welds 205

B

B

B

B

/

,B .

"

10.3.3 Ultrasonic Inspection

) #"

&3 '''

#

"

"

,07.

%&'(2

07 " %

&'(3

Time

Horizontalsweep

Back surfacereflection

Discontinuity

Initial pulse

Focusand acceleration

Horizontaldeflection plates

Elect

ron

beam

Electrongun

Verticaldeflection plates

Glass tube

Horizontal sweep line

Viewing screen

Fig. 10.24 Cathode ray tube Fig. 10.25 Cathode tube construction

1'&'''

07

Page 217: Welding Science and Technology_8122420737

206 Welding Science and Technology

%

"

"

" "

!

> # A @

$ " 8

@ $ " AC / "

"

C

< $ " 78 / "

" =

< 0

0

C

7 8 0 A

" = $

0 " = :

"

7

"

) > 8

7

"

A

Page 218: Welding Science and Technology_8122420737

Testing and Inspection of Welds 207

%!

&'& : !

E $

&'( ! E

!

E

&'- ! "

&'2 !"

&'3 !"

! E* E

&'1 A *

@

* E

&'9 C %

&'5 !" ;

,.<

,.7

,.)

Page 219: Welding Science and Technology_8122420737

208

!

" #

$

! %& "

'%&"()

$% *+ *

) & $,

"

%"-./ 0

1 )% '%( 2

03%"-.$$,"

%2 "

4

Page 220: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 209

'( 2 %)0& " ,567'5899(

'( 2 )0- " ,56:'5895(

'( *$" 0%2 % %

% ,56;'5896(

'( 2 - & ,56<'58<8(

'( $0%2 ,569'58<8(

0

"

! =%"-./ 1 )

#

0

0-$>)+?

@

4 )0- )0-

% & )

) 0

.9656.;65:

0

$)<

-$>)+?!)+

?

0

+,?66

0$

0"%$

6A6B

!58

966C9<6D) ?<

A6

,

#

% $

% $

#?<C<6+, 777

0 0

Page 221: Welding Science and Technology_8122420737

210 Welding Science and Technology

%0 0

' ("

3

5:?+, 59:

2 '65?B!(

0

.;6560%5.;6590%5.;65:0%5

"% - 0 !

)56

2!7?<D))0-

0 ;?6D))0-

766C<8AD)

0 0

0

0 !

!

0

0

555 --%

%2" &

0)<

C79 0 ! .;659C.;65:

C96 ??<B& .:65<C)5

C566 A<B& .:65<C)?

C589 8B& .&)C?

Page 222: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 211

2 55? A56

A68

! "

"

#$

5?) 65<! 55<C5A< ..*756 A?6CA;6 ;6<C;96

..*A56

..*A68 ?66CA?6 ;6<C;96

5?) 66:! 55<C5A< ..*756 5<6C?96 ;6<C;96

..*A56

..*A68 5<6C?96 ;6<C;96

5A) 65< 5?6C576 ..*756 A?6CA;6 ;6<C;96

..*7A6

..*A56 ?66CA?6 ;6<C;96

..*A68

!

;6<;86D)0

55A

"

! "

"

% #$

5?)%5 66:! 55<C 656C5 ..*7A6 & @

57< 6A6%5 ..*A56

..*A68 & *

59) 65?! 576C ..*A56 & *

5:6 ..*A68

?;) 6?6! ?A6C 6?< 779 <6C?66 .

?;6 !& ..*A56

..*A68 & *

##$ $

-$/

! # !

Page 223: Welding Science and Technology_8122420737

212 Welding Science and Technology

% 0

!96

?:6A66D)"% ?66D)@

% $

4

--%$-$/

) ,

!

&

0

$ ! --%$

-$

/

0 *

!

#) A6 ';64A6 ( !

--%$

$2

59

$ E

)

!"

566B %

&

0

&

>

0

Page 224: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 213

(a)

(b)

37 1°2 ± 2 1°

2

1/16"± 1/32"

TT

3/4"3/4"37 1°

2 ± 2 1°2

1/16" ± 1/32"

10° ± 1°

Radius1/8" min

Fig. 11.1 Edge preparations of pipe end for MMA welding

"

! 0#

0# 2

##

%

--%

< A? 0

?? '(

555 ?? '(

0

0 $

55? E 0 0

!

'!

(

0 #<6

!

55A

Page 225: Welding Science and Technology_8122420737

214 Welding Science and Technology

70 1/8"

Square butt (Flat land) V bevel

37½°

1/8" to 1/4"1/16"

Over 3/4"

10° 25°25°

3/32"3/32"3/4"3/4"

1/8"

Flat land bevel

U bevel 1/16"

3/16

" R20°

Flat land bevel

1/8"

25°1/4" to 3/4"

20°

3/16

" R

U bevel

1/16"

3/32"

Fig. 11.2 Joint fit-up using consumable insert for TIG welding

T1.25 to 1.5 T

1/32" – 1/16"clearance

1/16" clearance

Socket detail forwelding end valve

Welded sleeve coupling1/16" clearance

Fig. 11.3 Examples of fillet-welded joints

/ 0

--% 2 0

0 0 0

"

5570

Page 226: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 215

)

0$

/

37 1/2° ± 2 1°2

3/16" nominal

1/16" ± 1/32"

C DT3/4" (Bore) (Ring OD)

A B10°

t 7/32°min7/32°min

Break corners

For wall thickness (T) 9/16"to 1" inclusive and tapered

internal machining.

37 1/2° ± 2 1°2

3/16" nominal1/16" ± 1/32"

3/16"

DS(Ring OD)

C(Bore)

3/4"

t 30° max30° max1°2

A B

1/8–R min

Break corners

For wall thickness (T) 9/16"to 1" inclusive and straight

internal machining.

10° ± 1°

Rounded37 1/2° ± 2 1°

23/16" nominal

t

3/4

3/4

7/32"min7/32"min

10°BA

Break cornersC(Bore)

DT (Ring OD)

1 161" 32

±3" 4

For wall thickness (T) greater than 1"and tapered internal machining

For wall thickness (T) greater than 1"and straight internal machining

A B1/8" R Min. Break corners

C(Bore)

DS (Ring OD)3/4"

1/16" ± 1/32"

3/16"

3/16" nominal

37 1/2° ± 2 1/2°Rounded

10° ± 1°

t 3/4²

3/4²

30°30°1/2"1/2"maxmax

3/4²3/4²

Fig. 11.4 Edge preparation using flat or taper machined solid backing rings

2

55?$

$

--%0

E

4

Page 227: Welding Science and Technology_8122420737

216 Welding Science and Technology

'( # ! <$ '(

'(

'( 0

%

'5$?$(55<%<$

559

0

Flat position1 G

Horizontalposition

2 G

Verticalposition

3 G

Overheadposition

4 G

Plates and axisof pipe horizontal

Plates and axisof pipe vertical

Plates verticaland axis

of pipe vertical

Plates horizontal

Roll welding

Test positionhorizontal 2 G Horizontal fixed

5 GTest position

6 G

V

H

45°± 5°

Axis of pipe vertical

Pipe shall notbe turned or

rolled while welding

Gro

ove

wel

ds

Fig. 11.5 Standard symbols for designating welding position

Page 228: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 217

3/16"3/32"

1/16"

Fig. 11.6 Eccentric insertion of consumable insert ring for 5G position pipe welding

)

"

0

"! 55;-0

0## 0

!" #

0

!

!

4 '(! '(

'('(

!

0

0

0

,

0

Page 229: Welding Science and Technology_8122420737

218 Welding Science and Technology

$%%"

%& !

$-$

566 $$

A66

$ 4

A66-$

!0 557)4-

!0-$

?<D) C?<D) ?<B& 0

)01 7;FC96D) )+,

90° longradius elbow

90° shortradius elbow

45° elbow 180° return bend

Tee Reducing tee Tee reducing on run

Tee with concentric reducers Lateral straight run

Concentric reducer Eccentric reducer Cap

Fig. 11.7 Examples of standard manufactured commercial welding fittings

Page 230: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 219

'()

- %AAA$*9

* $

> -$

2 $

'D)( 566

'D)( A66

'( 7

2 '( 56;

F 1?GA6D

!

$ H9<66

2'( ?

2 '( 566

&$'$

-$ !0

2'( 5?

$ -!:6>?6'%>)+?(

$ '5>( 56

2 '( ?6< ?A6 ??< ??<

2 ?: ?: ?;< ?;<

20'>( ;:: ;:: ;:: ;::

2 '>( ?7< 589 ?A< ?A<

'( ?6 ?< ?5 ?5

F

3

1:1

12

43

&' ( )* +,

0

0 0 3

" "

0 0

Page 231: Welding Science and Technology_8122420737

220 Welding Science and Technology

## !

*0

+0 0

0 %

0

E"%

5A <66

866 9A5?; 4

5"! 0

?E0

A+00 0

9666

7

<)

9 00

; 0

0

: !

!!

! 4

'( !#

'(@!!#

'(

'(@ !

'(!

5A ?9 0

?6>A666

% 0

55: A;<

7<6 56

00

Page 232: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 221

0

! !

! 5:6D

0

0 %

! 0 !

9<6@

5?<5?<6

?<"0

! 56

Electrodewire reels

Boom heightadjustment handwheel

32 0²¢

15² dia

boom

SA welding head

Electrode nozzle tube

Flux hopper

Flood lamp

T.V. camera

PointerFlux flow

regulating valve

Flux recoverynozzle

Welding nozzle

Angle control sectorSupport rolls

Adjustablerockerhinge

Control panelfor welding headand roller bedsOperator's

control desk

T.V. cameracontrol panel

T.V. monitor14 screen²

2 6 min ht3 0 max ht

²

¢

¢

²

Fig. 11.8 Diagrammatic arrangement of boom and controls for internal pipe welding equipment

$

966;<6

866'?7A6A9( 57665<66

%3

Page 233: Welding Science and Technology_8122420737

222 Welding Science and Technology

0

-''

- !

558

A6DA;<D

1.6 mm

1.6 mm

30°30°30°30°

Fig. 11.9 Standard joint preparation for pipeline welding

0

- 0

A96D<$

' (

11.7.1 Stovepipe Technique

" $<

!

5?I

9I +

2!

0

Page 234: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 223

?

756:I '5556( 0

0

05582 %2"

.9656.;656

0 !

!0

!

!#

! 56B,) '

(

10 2

48

Side 2 Side 1

Fig. 11.10 Stovepipe technique; positions for stripper beads

'(

&

% 96D '

5555(

0'(

96D%

'555?(

>

Page 235: Welding Science and Technology_8122420737

224 Welding Science and Technology

Tangent Start60°

60°Tangent

Finish

Side 2 Side 1 Weldingdirection

Fig. 11.11 Stovepipe technique; electrode angle duringdeposition of the stringer and hot pass runs

Hot pass

Stringer bead

Directionof welding

Weave beadfor hot pass

Fig. 11.12 Stovepipe technique; electrode manipulation during deposition of the hot pass

96D86D

@7I ':I ? (

86D5A6D9I '

555A(

5?I 7I ':?(

7I

':I (9I

/

%

Page 236: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 225

86D

00 86D

!79:9I

5A6D

Tangent Start90°

130°Tangent

Finish

Side 2 Side 1 Weldingdirection

Fig. 11.13 Stovepipe technique; electrode angles for filler and capper beads.From positions* electrode angle changes from 90° to 130°

J58K592

#

! A?< 9A

7 7

7<

0!

.! ?6B

0

0 0

%0

0

'( 0 !

'(!

Page 237: Welding Science and Technology_8122420737

226 Welding Science and Technology

" '.965A (

/

11.7.2 LH Electrodes

0 !

"3G96"3G<? 0

@%H @.9656

C.;656 2

?A6CA66>

" 3@ "3G<?"3G96

2

?<

5<6>

.9656

3@ ?6B.9656

11.7.3 MIG/CO2 Process

--%

0

)+? >)+

?!

A96D 0

-

-$>)+?

%

86D !0

!

!

!

10!

10?6D

0 6:

Page 238: Welding Science and Technology_8122420737

Welding of Pipelines and Piping 227

;6BC?<B)+?0

0

0

"0

E"%).

11.7.4 Flux-cored Process

%

5:6D

86D

0 0 %

!0 ?&

!

<:D 59?<

11.7.5 Underwater Pipelines

--%

%

)3

0

%

11.7.6 Inspection and Testing

4

'(%"5567"2 *

'(%"-./ 1 )"=

'(%&"/A5:)$,

,

4'( 0'(

'( '((

'(( '((

Page 239: Welding Science and Technology_8122420737

228 Welding Science and Technology

%

=0 0"

=0 0

0

!0

!

"

5:6D% !

!!@!

0 +&,

E !

0

" 0

.*

555 2LIM2L

M2

M

55? '( 2 !

--%

'( 2 M2 !

2% !

55A 2 M/ !

@

M/ ! 00

557 /

55< /

0 0 M

559 2 M

Page 240: Welding Science and Technology_8122420737

229

!

"# $

%&$

$ ' $

(& $

) $

*

+

, )

, -

./

Page 241: Welding Science and Technology_8122420737

230 Welding Science and Technology

0 12340 0&"5

6 6&&&

0 71& 4 0&"(5

1$ 0&%5 0&%"

$')

& '

12.2.1 Fitness for Service (FFS)

&

8

$. / '

-

!" #$!"#%

& ' ))

+))

3 $

9

++1*:

!"" # $

;- ++1*:

8

) '

$& )

++1*:

++1*: <

1 $)

Page 242: Welding Science and Technology_8122420737

Life Prediction of Welded Structures 231

&

-

! 1 '

" 1 )

% &

12.3.1 Development of Expertise on FFS and RLA

&' '

'

$

# $

++1 *:)

$

12.3.2 Justification for FFS and RLA Studies

4 )

- (

=

>

> 8

! 3

" ,

(()!"#* )+,

& -

+

% $ "

& <

Page 243: Welding Science and Technology_8122420737

232 Welding Science and Technology

• ; • 0 $• ? .? $@4@, $).11,,/@? $.?&,/

• 1 $.1,,/• 2 @

@ 1

@ ,

@ ;

@ 1

• + • , • #

'

'

, ' -.(

! "# $$"%&&'

& ; 9 ) &

•0. /

•? $ A

•# A

•4 A

• 1 A

&& 0 :$ 788

&&& 4 . : +

$/ $

?&,1#?&,

11, A

+ A

? $.$ A

$/ A

&6 ,,+ * ,

+ $

6 ? 9 8

3

Page 244: Welding Science and Technology_8122420737

Life Prediction of Welded Structures 233

& '( )

4 $

$ '

= ' )

$

& '<

./

.#/

./)

./8 ' 8

#' #,*&'

< )

$

+

#

7

'

8

8

1231 B& 41)09%!C ,3;4*D%

20 )

)

! $

Page 245: Welding Science and Technology_8122420737

234 Welding Science and Technology

*

+ -

<./9 ./

& +

Failure 85–90% caused by fatigue

Indirect lossDirect loss

Damage to product

Repair cost

Cost of preventive measures

Production decline

Damage to image

Morate declineSafety

Compensation cost (Accidents)

Fig. 12.1. Weld failures types

Page 246: Welding Science and Technology_8122420737

235

!

"#$%&

"!'(& (

#

)

*+,- .*,-%

()*.* *./

Nozzle

Hot gas

Insulation

Heating elementwith thermostat

Air or otherconducting gas

240 V, 1AC supply

f

Fig. 13.1 Electrically heated plastic welding torch

Page 247: Welding Science and Technology_8122420737

236 Welding Science and Technology

Blow pipemovement

Hot

gas

60°60°90°90°

Rotateand press

Feed wire

Root fusionis necessary

60°

Filler wire end preparationto facilitate start ofweld. It also heats easily

Fig. 13.2 Manual hot-gas torch welding

SS

g

60°

S = g = 0.8 to 1.6 mm

Joint preparation for welding

/0 *

./ *1

01 .2

# ,2234!

/124 *40(

"& )

) "&

5

!

5 #$%

Page 248: Welding Science and Technology_8122420737

Welding of Plastics 237

!"##

#

)

#

#

!

6

!

5

7 8

#$%

9

" &

$%&

")*.*&:"#$%&

!

;;

"&

;;

Page 249: Welding Science and Technology_8122420737

238 Welding Science and Technology

78 78

! )*.*

!"#$"%&$'&( %)$(*'

) #$% !

#$%!

(

)*..

W1

3 phase, 440 V, 50 CPS

W2

Pressure coil

Compressorcylinder

Current coil

Motor

Compressor

Pressure gauge

Opening valve

Compressedair

Hose pipe Weldingstand

Supportingwire

Filler rodguide

Fillerrod

90°45°

Torch

Welding job

Fixture

Machine table

Two watt meter method formeasuring the power consumptionof compressor.

Electric wireleads to torch

Simmer-stat knob

Fout OFFON1

234

Mercury

Manometer

Red indicating bulb

SwitchAmmeter

Current coil

220 V, 50 CPSA.C. mains

L

Pressure coil

Control box

Socket for torch plug

Fig. 13.3 Block diagram of welding set-up

< #$% .

. !

")*..&=

*.*

+,,-5 ;;

5 <

>2-! >2-

;;0,-")*..&

!

Page 250: Welding Science and Technology_8122420737

Welding of Plastics 239

-,

)*.0

;;

Gap in m.m.

Tem

pera

ture

in°C

320

315

310

305

300

295

290

285

280

275

270

265

260

255

2500 1 2 3 4 5 6 7

60.563.576.2

89.0

101.5

114.2

127.0

Fig. 13.4 Gap distance between torch and the job versus temperature of hot air

., 6

"&'

"&:")*.?&

"?2-$ &

*22

!

)*./

!

(

,24

(

0,-

>2-$

Page 251: Welding Science and Technology_8122420737

240 Welding Science and Technology

'# !(#

: 0

:

)*.,

=

.,

/2

/ #$%

25.4

44.5

11.4 76.2

R

Joint

3

Fig. 13.5 Test specimen for butt joint

(

)*.?

25.4

33

3

11440

Fig. 13.6 Test specimen for double strap fillet joint (all dimension in mm)

Page 252: Welding Science and Technology_8122420737

241

!"

#$

%$

&$

'$

()

$ *

!)+, -

#

$.

,

-/

$ /

Page 253: Welding Science and Technology_8122420737

242 Welding Science and Technology

! "

)+

, .-0

".".

1) $

23

.

# $%$ ! "

)+

.

4.

.

0

5.6.

4

,78'7-

0. /

.

.*

&' " ! "

)

)

$$

,

-..

$ .

96.

1 $

1. 1

Page 254: Welding Science and Technology_8122420737

Welding Under the Influence of External Magnetic Field 243

: 1

$

1

)

; 96!<'<

5)= 1

96> 5?

$

96

!<(@

$

96

$

: $

96

; !<(( A)5B

'% '"!(! $ !$)* ( +! '' ! "

2

.

4

$

C

2

6.D9

#

$

Page 255: Welding Science and Technology_8122420737

244 Welding Science and Technology

) )

2. $

), .

// $

1$)45

$ 4

) $

D

$

;

$ 5

$

4

4 /

$

) , -

) $

$

/ $

%7E

, ! "!"

$ *

$.

.2

*. *$

*.

4.

#F8&FG>.

. !8#$

Page 256: Welding Science and Technology_8122420737

Welding Under the Influence of External Magnetic Field 245

.

., -

$ /

)/*

. 4

/

S N N S

Arc Solenoids

Lines of force

S N N S

Fig. 14.1 Magnetic impelled arc welding. Diagram does notshow platen clamps or arc supply circuit

$

4

. *

4

) *

'..

H

$

Page 257: Welding Science and Technology_8122420737

246

!

" #

$

"$

%!

&'

()

!"#" ! $

"$! %

*

+,

-,

$

."#/!#

&0 +121'

3/"

#4

5#

&4+6+'

Page 258: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 247

Waterproofpaint

Core wire

Flux coating

Barrel formation(Arc length)

Flux coatingcrushed byelectrode pressure

Fig. 15.1 Barrel formation during Wet-welding

6"

$

4+6-" "

$5

Water line

Welding generator

DC power supply

Atmospheric pressure

Air

Water

Gas bubbles

Pressure ofwater columnPressure ofwater column Insulated

holderConsumableelectrodeArc

Fig. 15.2 Underwater wet-welding

75!"

2(# !

8# #!"

#

9,

Page 259: Welding Science and Technology_8122420737

248 Welding Science and Technology

&"$! %"!"

:

!;

&':

4+6-

"

'#(" !"#""$! %

"::$

15.3.1 Dry Hyperbaric Chamber Process (See Fig. 15.3)

&' :

&' :

&' ,$< #

&' 4!

&' "

WaterWater

Operational Views ‘‘Habitat Welding’’

(a) Ship repairs

Fig. 15.3 Use of Hyperbaric chambers (Habitat welding)

Page 260: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 249

(b) Hot-tap welding of pipelines

Fig. 15.3 Use of Hyperbaric chambers (Habitat welding)

Page 261: Welding Science and Technology_8122420737

250 Welding Science and Technology

Umbilical gasand electricity cable

Dryhyperbaricchamber

Controlpanel

Weld-ball

Seal

Pipeline

Removable floor andwall sections

(c) Making Weld-ball pipeline joint

Fig. 15.3 Use of Hyperbaric chambers (Habitat Welding)

15.3.2 Local Chamber Welding (See Figs. 15.4, 15.5 (b) and 15.6)

&' :

&' :

&' ,$

&' 4!

&' $

Page 262: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 251

DC power supplyControlunit, gas +wire feed

Gas

Wire feedleads

Powerleads

–ve +ve

Air

Water

Gasleads

Localised environmentshield gas

Torch shield gas

Local dryenvironment

UMBILICAL[gas leadspower lead (welding)wire feed drive +control powerleads]

Traction drive

Motor Wirespool

Underwater wirefeed unit

Migtorch

Workpiece

Fig. 15.4 Schematic diagram of continuous wire MIG welding underwater using local dry environment

15.3.3 Portable Dry Spot (see Fig. 15.5)

&' : &##'

&' :

&' ,$*= $

&' >?/>

Page 263: Welding Science and Technology_8122420737

252 Welding Science and Technology

Gas exhaust tube

Welding guninserted here

Contour head Contour head gasket

Gas inletand diffuser

Portable dry spot (PDS)

"Dry spot" designTube to wire feed

Gas switch

Wire feed trigger control

(a) Portable dry spot (PDS) welding

(b) Example 1Repairing a damaged riser

A. Cut is made below the damaged area,noting location of riser clamps,and the stub and cleaned.

B. Damaged section is removed whilereplacement assembly is madeready on the surface.

C. New section is lowered over theriser stub and the upperconnection is made.

D. Transparent box is put in place,water avacuated, and the weldmade.

(b) Stages in the repair of damaged riser using Local Dry Environment ‘‘Hydrobox’’

Fig. 15.5 Underwater dry welding

Page 264: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 253

PlatformReplacementriser

Air

Water

Gasconnexions

Hydrobox

Weld collar

Fillet weldmade with Hydrobox

Old riser

Hydrobox in use for a Vertical Riser Repair

Fig. 15.5 (c) The Hydrobox Showing Schematic Arrangement for makinga Riser Repair (details) (Kirkley, Lythal, 1974)

Fig. 15.5 Underwater dry welding

15.3.4 Wet Welding

&' :#

&' :

&' @$

&' =!!

&' A

+:

-A

.5

3?!

6@$

;! BC!

"

Page 265: Welding Science and Technology_8122420737

254 Welding Science and Technology

A. Riser is connected toplatform and pipeline is laidor cut to within one pipediameter of riser end.

Example 2Use of universal assembly

B. Riser is rotated until it iswithin the misalignmenttolerance of 15°.

C. Ball half of the connectoris placed on the pipelineend.

D. Connector halves are movedtogether and a transparentbox placed to cover the weldareas at the joint and therear of the ball half.

Planview

061

Pipe

Weld-ball

Pipe

Welds

Fig. 15.6 Use of universal assembly being welded in adry chamber (transparent perspex) (Kirkley, Lythal, 1974)

) !"#" *"#+,"$! %"!"-"$," #

; &4+62'

= " !

!$*

+,

Page 266: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 255

-

.>

3D

6D

75

2,

"*

+"

-@

.=

3"

6" !

E: &+137'

#!

4+62"+6+

Stringerbead

Weave beads

Fig. 15.7 Type of bead manipulation

Page 267: Welding Science and Technology_8122420737

256 Welding Science and Technology

+ ( E A A

- @ @ @ @

. F A A A

3 () A F =

# #

6 : ; A A

7 @ / = =

2 4 A A A

!"-"$" # !"#""$! %

//

@ @@D 0G

15.5.1 Underwater Manual Metal Arc Welding

# " $

" :

4 #

Page 268: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 257

#"

15.5.2 Underwater Arc

#

(&1.H'

" !

"

4

#

" "# !

;

!

&

'"

+IH&+I'"

"

"+6+

15.5.3 Arc Shape

? !

5-?

"+6-

15.5.4 Arc Atmosphere

"8

+I!+6

7<1"

#+6

+6I>,<7I+. ,<7I-2,<

2I-33I 6I7I "!7-<9-

++!-3# 3!7# .

15.5.5 Arc Stability

;!

? # !

" 4

# I.

; @ ,!2I-3

Page 269: Welding Science and Technology_8122420737

258 Welding Science and Technology

!!"

! "#

! !

+I +II I-I- 93IIJ 1.II

+I -II I-I6 1-IIJ +I-II

+I .II I-+I 126I +I2II

+I 3II I-7I +I+6I +++II

+I 6II I.+2 +I76I ++6II

-I .II K +IIII ++III

3I .II K +I.II ++.II

7I .II K +I3II ++6II

9I .II K +I7II ++2II

+II .II K +I9II ++9II

J5-@!

!7IIIL0

#$%$

"

$"%&'

( )'

)'

" * *

;"J +- +7 -. 33

F JJ I+2II I+.I6 II626 II-63

I+72I II9I3 I++II I++II

E -+3 +I. +3+ +3+

.

5

5 -+9 +722 2.2 .-7

E E .1 3I .1 .1&@A'

5 -3I -6I -3I -3I

J;!"

JJF

Page 270: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 259

,!7I-2 ,!7I+.

"8%!

&76!++I 9.<11 '

15.5.6 Metal Transfer

= &'

;$%9I+II

? $33

" ! $

1IIIL0++IIL0+I'6IIIL07IIIL0

&"+3+'"

"

$

:

15.5.7 Electrodes Used

, !

"+3.,

!"

/"

#"

,!7I+I

,!7I++&

' /!

8

$D

@ (8

F,!7I+. @=

+16.

&'(#8

"+6.

Page 271: Welding Science and Technology_8122420737

260 Welding Science and Technology

)""

"! +% , - . +

/ %

/0' 1

/0'

+ % &' E 37I7 31I 96 3I!-9

$

0 &' D !! 3+76 3.7+ 66 ..7<-23

&' # !! .2-3 3.7+ +26 .33<..7

- ( &' # < -21. .92+ < <

G &' < .3.I .22I < <

5

. @ M &' D < 32I3 6697 +3. -.L5*+.7

(8 ,!7I+. IL5*17

<+6L5*9I

&' ( < 32I3 699I +7I -.L5*+1-

IL5*+-9

<+9L5*1.

,!2I-.

&' / < 6I17 7379 +.+ -.L5*-336

# IL5*+I73

,!7I-2 <+9L5*9.-

3 > ? < 6I17 699< 7+I 2IL4 .-9

7677 .IL4 -11-

,!7I+. IL4 -.-

<.IL4 +.7

6 ? / < .2-3< < < <

A 31I

7 ? D < < 6.1< +3< 79L4 .2-9

,!7I+. 2I67 +1. .-L4 -I39

<7IL4 11-

*+/+137 E;:

"

#!!

Page 272: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 261

? +17-

@ (8?

+123 ,!2I-3/!#,!7I-2

4,!7I+.!

,!2I-3,!7I-2

+6!-6,!7I+.,!2I+36I!+6I,!2I-3,!7I-2

"

&N'

/!#!?!# %

= ? $

," "

4 #

# !

/$!

. /#"#!""! "$"#!""#,"$! %

4#

$%

" A

!

#%

5 !!

!#

"

D !" $

/!# !

84

# !

$D(G

" D

Page 273: Welding Science and Technology_8122420737

262 Welding Science and Technology

-"

%#

5 8&!

'

8%

:

"

8&-'"

."

" &'"

!

(+1.3 A#

@= @ 5

:,+163

+16608E 0%

+17-E$#%

0+121

15.6.1 Special Electrodes

/# !

( +1.3 # &*

O#*$"@

"$

"(G

#" #

!

E:+137/A (

#

0$#(

,

A

%

,

Page 274: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 263

1$ #("#"

, 4

#II./

/?/>

8 ?

+17-

2"$!3"!/"/#"#

? +1716,A@6-

&'

!

(

.6I-II6II.II;

#

( >?+-.33.

-66II

/

88

@ +12+

3-63($!

!8#8(

D,&7I+.'

&,!2I-3,!7I-2'

/

?+12+3

+6I+9I"62>

+-I-+I .66

%+12+ >? .73-

-+-1$

(+12- #

4$ +23-

+9-."

Page 275: Welding Science and Technology_8122420737

264 Welding Science and Technology

4##" !"#""$!

=!$

8

&()' "()!

" 8

8!"

/

?!# +12+@ !

P

(): &I-<I7

'&I+'

>@+12-

?+12+3

+9I?# .II( &+' +

!83 >?+-I-7

3II(E &+'!87

( +12-3IIE(=

&-II' I6

.IIE(=&-II'"!8#

36

@+123

#&

' 8;

8&'

"

8

%+123# !

8,7I+.

,2I+3!

,!7I+. ,!2I-3 ,!

7I-2 ,!2I+3

#$F8

#

I68?#3II(0&+II'@A

6II!7II(0&+II'DA,!7I+.3

+I!+.GP1!++GP

Page 276: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 265

"!"-"$" #

?(&> /D/ G'?:&":!

/ G ' ::

G &

,,!(?'/

8 >

@

5-&?' > /!

D/"88

8888%#!

# +-

+.P %#:

/ G / ? !

$!%

!? +-

88 -IE"

.II/

7I!9IP

:@ +123

"

#8#

,

!

/

" ??!

.-

"+19-

+II"

@0 +19- ?>

+-+I+-

26H-6H5-#.A

"$$

@ :+19.$!

5G +19-"/>

" 6II""/>

& ' .I

#

Page 277: Welding Science and Technology_8122420737

266 Welding Science and Technology

& 2I '? /

"/>&- 6II'

5G+19.

/

8

; A"G +192:@;.7

"!

&(

"

*

+

-@!

. !

3"&'

$ "

!

6"

7"

2:!!!"

9/

:

1D !# # $

!

+I !"

++@

Page 278: Welding Science and Technology_8122420737

Fundamentals of Underwater Welding Art And Science 267

+-++IIIL0&+I' !

7IIIL0 $ 33 !

9I<+II<

+.: !

!8

'3$"#"!"-"$" #

: @ @@D 0

G $!

!

!4*

+"

% !

-;

"

./#

"

3( :

6@

#

7:

2@$

9@$

!

Page 279: Welding Science and Technology_8122420737

268

! "

#$%&

#$ #'($)

*+', #'-%.$/"'-%

-0. 1.%.-"0-$, 0234%.$10#"

1,

+'#,#1) 5 62

5% 70026422

,! 839:'; < #

) 08300364+3

,! 8+. ) $0)##

) -08+00+*4+37

!,-9;22$ "9-", )

-$ "$ "#$0 # 00++46

=#*2 # =" 0/" $( )

$ /"> 9 - #

,5 9 $- %,> $

! 6;" '#(/;0 %

(/-9643

, =$,!1;22/9-", )

# "$ #-$0 (#,)'?

19 > %&

1 /!8" -;0-0 '

##-1+2#! 5 22% 300+346+

1$22>1) # "$ #

-$(#,'?

Page 280: Welding Science and Technology_8122420737

References 269

> ";$=%%22 > 1 0

# "$ #-$#,)'?

5;*89 '##5 3% +2100

8843

9 2'# -$ '#

,/ " (006+4*+

9" "?=8*->@#

9" !###=> 2#-=

/"- $

9 87 0 # /" $ >

9)),> # -" 30@0 #@#A

/ 0/,237" /", /B

9 C6# , )$ = -

= +" ,=#!

!0#- $5 63;0 D3% D+002224+8472

2/" #" >'

# " ( (-

31. 0 ' # 3(

1. 0!05 30077*47+2

)"%-,1!#>.$++>#'

#! 5 3% 70064

?."E+6>#'#!

5 +% 600*48

("E=? F";? 22" >./

," #> "$ #-$0(#

("E=?22 " "#) "$ #-$0(#

?0=G-377*>/" $ ?)

; "23'#-/"H, B

5 2% *D20043

?=$ 1# *# 'A ) - #

, % 3+% 200473

?! 23/# "$ #

-$0(#

?$9 *> 000 ! "#$

,"0

?=$ 1# *# 'A ) - #

, 5 3+% 200473

Page 281: Welding Science and Technology_8122420737

270 Welding Science and Technology

?"( - 2- '# ! " (

>:5 *2% >20038843

?"( 2;H > '##

) 5

?"(-$ '# "1/"'.$

((/; =

?"( - ,90 8'##",

> @, #/" $1"( 0

32

?"(-9 2 ; #/" (

>; =-)@% 1200*24*8

?"(; 7% 00 "

($$@!7004+

?"(5G$?1. 0 # ; 5,

)$ /"H! ( >(5 *)00624

6

?"(,;31 )#/ ,=

/$ -# *"/1;, '.$ ; = (0

3

?"(8(. "> # #0

," '#! ( >(5 *8

>-"8003*4337

?"(8'#@#", > @,

#/" $1"( 032)8

?"(8(. "> #, "

/ " 0 '# @,

#/"1"( 03)8

?"(-$ ' (->, %

1" 0> 6100642

?"(?""7( .$ -)#

-0 0)$ "00 B , ,

>1 1. 0, >$01343700+4

?"(;)@C ,90-$-$ ">

> B, , 0 " 0 '-"

#(, /" $/" ? ( >

? 1343

?"(3-$ > -00 /.

,"9 $ " 0

'-#@# *" (, >1 ,

'.$ B>$013

Page 282: Welding Science and Technology_8122420737

References 271

?"(+, # (0 .-)@-

) , (>$ /0

!843+036+43*3

?"(+(. "> >B$00

" 0 '-"#@# (

, . /" $ /+1)3643

003438

! 86/" "$ # B '?

!87/"$ #E- I'

! 23 ( / (9#

"$ #-$23(#

.1#?=$3#', #

! 5 67% *00247

;2##/" $/9%1"

.%23-0 '/ "##5

*% 002+422

.% 2*/" 0 )) -9 "

'##5 8% 3003*43

. % (? =" $ ? = 2* " -0 J@;$ ,

" 0"$ "'## 5((% 034+

.%22>$," "'##

5 3% +0046

.%2-"0; "0 '## 5 *

% +004+

)"? 87$ #- <;-1 "

, HB %&

%;3776#1 , %

%;=377 C C0 " "+1

#/",$! "". 5 3% 200674

66

(-$ '#! !0#- %

67

%"!,22, / )> #

"$ #-$0(#,)

%" !, 8 /"1 . # 6" ( ,

(#,)

% !!= *# ;" ,"0I

%= .9%"=$.# )

Page 283: Welding Science and Technology_8122420737

272 Welding Science and Technology

0.=9% .2/ '

#"> ##5 3% 30074+

;$=%%' .?= 8"# )

;$=%% (1?5%= . 2250 E>

>$ # "$ #-$0 (#

-G=922 #/ "$ #

-$(#,)

-"? / 83#, 9;#

) !$@03*43

-.>/E-"#'"(

> #!5 *% 2

-"! 22," -" ,/ "$

#-$(#,)

-=# # 9;- 6 $-$

#;0 <+63D*8D6;;D-/D;672

-. # 8+" 0 ;.#)

!0036643*3

- =?28',#% 5 +3% +006646

-! 22> / "$ #

-$0(#,)

/!9#) 5 4+>. ),

/=%&=-=83'#00 9.%

=##) !$D0038433

'>;=!#*6# >!#$- %&

5# ,62, ##5 3*% *00++@+37

#"; >)*6'##!;

-005 ++% 700*+4*+6

#) =-4*#- $2

Page 284: Welding Science and Technology_8122420737

273

!

"

!

#!!

"

$

$%%

!

$

"%

%

& !

$

$

$

'(

'"(

'

'

'"!

'$)* )+

' !

' ,-.

'

/+

"

"!+

"+

"+

!

$%+% +

$

$

$

%!

!

!

0!

Page 285: Welding Science and Technology_8122420737

274 Welding Science and Technology

& +

+

$+

!

$!

"

!

"(

!

%

/+

(!

(

+

( +

)/1

2+%

2#

2$"

2

2

2 !

2

2

2

2

2$%!

2

2$"$"!

3$"

3$

3 !

3

3$+

3

3$ !

3*)0 +

3

3#

3

34!%

3

3

3"

3

3&

3

3$(567"

3$(587"

3#

9

9 :!

9 ;

9

9

9$

9

9 #

9 #"(

9 #$

9 #$(

9 #

9 #

9$

9

9 +

<

Page 286: Welding Science and Technology_8122420737

Index 275

<+

<

<

<!

<

<"

<"

<;

<

< "

< /!

=9 !

= !!

= $

=& +

=!

=;,=>.

=$

=$+

=$"

$$

$$

$$

=$& !

=$&

=$#

=$#%!

=$

=$

=$ $

*$$

*

* $+

*

*

*)0)

*

*#99)?@

+

*!

*"$

* +

%% !

*$

+

A!

A57$ !

A$$ !

A"!

A!

A$+

B$$&

@(

@(

@"'+

@

@=

@& +

@ +

@$"+

@

@+

$

$ %% !

$

@ +

/ %$C>

+

/+

/+

/$

Page 287: Welding Science and Technology_8122420737

276 Welding Science and Technology

/+

/

/$</1

/$)1

/$)/1

/<,/<.

/

/*<,/*<.

/!%

/!

/$ +

/$+

/!%

/ $+

/ !

/*<D0

/

/!!

!

/$ !!

/!!

/ $

4EF<0

4

4

4

4 $

4 +

0 ,08.

0

0#

0#

0#

0#;

0#;

0#

G

G

G 1

G%!

G$

G$

G

G!

G!%

G

G

G

G

G"

G"

G$

$ <6

!+

G$+

G$"

G

G(+

G

G

G

G &

G:

G:1+

G:+

G:+

G,/GG.

G $

!

G

G "6 +

G "

G +

?!

?$+

?$+

?

?+

? !

Page 288: Welding Science and Technology_8122420737

Index 277

?!

?

?

?

?

?

?"++

?

?

)

) "!%!!

)

)

): </!+

)$

)$

)$

)$ ,2.

)

)

)

)"$

)

)

)+

)

) !

)+

)

)

)

) "

)

)

)

)

) $

)$&

)

)

) "(

)

) "

) "

) "

)

)

6!

!

6$') , .2*4, .

6"

6

6$6

6

6:!+

6$

6$$+

6$#

6$"!

6$$ !

6$$

6

6:"!

6

6

6 !

6 !

6$(

666+

6 ,6*<.!

6E3$$$$

6:

6

6 #

6 !

6 $)/1

-+

-

-

Page 289: Welding Science and Technology_8122420737

278 Welding Science and Technology

-+

-

-

-

-// 51

7!

-

-

-

8 +

1"(

1"($&

1"$$

1

1+

1

1:+%

1

1 !

1 ,82.

1 %

1

1 !

1

1 !%%+!

1 !

1G8 $$&

1

1$

16*<%/*<//

!

1%+

1

1 !

1 !

1

1

1

1

1

1($$ "

1 $+

H "+!