Weakest Link ZfM 071018

download Weakest Link ZfM 071018

of 65

Transcript of Weakest Link ZfM 071018

  • 8/12/2019 Weakest Link ZfM 071018

    1/65

    1

    Fatigue assessment based onFatigue assessment based onweakestweakest --link theorylink theory

    ETH Zrich, 18 Oktober 2007Gunnar Hrkegrd, NTNU, Trondheim

    und Zentrum fr Mechanik, ETH

    Vortrag im Rahmen desKOLLOQUIUMS FUER TECHNISCHE WISSENSHAFTEN

    und desSEMINARS IN MECHANIK

  • 8/12/2019 Weakest Link ZfM 071018

    2/65

    2

    NorwegischeNorwegische TechnischTechnisch --NaturwissenschaftlicheNaturwissenschaftliche

    UniversitUniversit tt NTNU, TrondheimNTNU, Trondheim

  • 8/12/2019 Weakest Link ZfM 071018

    3/65

    3

    Over 150 years of fatigue failuresOver 150 years of fatigue failures

    a nevera never --ending story?ending story?

  • 8/12/2019 Weakest Link ZfM 071018

    4/65

    4

    A nonA non --local fatigue assessment method based onlocal fatigue assessment method based onweakestweakest --link theory and statistics of extremeslink theory and statistics of extremes

    and its application to componentand its application to component --like specimenslike specimens

  • 8/12/2019 Weakest Link ZfM 071018

    5/65

    5

    AcknowledgementAcknowledgementThis presentation is largely based on work carried

    out at the Department of Engineering Design andMaterials, NTNU, byAnders Wormsen funded by GE Energy(defending his PhD thesis 26/11)Arne Fjeldstad funded through the NorLightprogram (defending his PhD thesis 30/11)

    Thanks are also due to Bjrn Sjdin, SiemensTurbomachinery, Sweden, who provided the first

    version of the weakest-link program

  • 8/12/2019 Weakest Link ZfM 071018

    6/65

    6

    ContentsContents

    BackgroundLocal-stress approachWeakest-link approach

    Elementary model of chainMaterial defects and extreme value distributionsWeibull distributed fatigue strength

    Experimental investigationsConclusions, outlook

  • 8/12/2019 Weakest Link ZfM 071018

    7/65

    7

    BACKGROUNDBACKGROUND

  • 8/12/2019 Weakest Link ZfM 071018

    8/65

    8

    Traupel on methods for the assessment ofTraupel on methods for the assessment ofmechanical integritymechanical integrity

    Der Kontrast zwischen der Geschlossen-heit und Strenge der Theorien, die uns

    zur Berechnung von Spannungs- zustnden dienen, und der Lcken-

    haftigkeit, scheinbaren Inkohrenz undUndurchsichtigkeit, die wir zu deren

    Beurteilung heranziehen, ist fr jeden

    wissenschaftlich denkenden Ingenieurtief unbefriedigend .Walter Traupel, Professor fr

    Thermische Turbomaschinen an derETH 1954-1983

  • 8/12/2019 Weakest Link ZfM 071018

    9/65

    9

    What requirements should be fulfilledWhat requirements should be fulfilledby a modern fatigue life predictor?by a modern fatigue life predictor?

    Should have a sound physical basisCracks are initiated at randomly distributed metallurgical defectsCracks grow from these defects

    Should handle all geometries and loading casesin a consistent manner

    Smooth and notched componentsSmall and large components

    Push-pull, rotating bending, alternating torsionShould offer a consistent model to account forthe scatter in fatigue properties

    Should be fully compatible with FEA

  • 8/12/2019 Weakest Link ZfM 071018

    10/65

    10

    Scatter in fatigue testingScatter in fatigue testing

  • 8/12/2019 Weakest Link ZfM 071018

    11/65

    11

    Different approaches to fatigue analysisDifferent approaches to fatigue analysis

    Material properties

    Crack Growth

    Deterministic Probabilistic

    Implicit FCG analysis S-N -curve ( a > 1 mm),crack initiation

    Local Stress Weakest Link

    Explicit FCG analysisda /d n = f( , a ; R ),

    Single Defect Random Defect

  • 8/12/2019 Weakest Link ZfM 071018

    12/65

    12

    Comprises all four approaches to fatiguedesignWritten in standard FORTRANCan be operated under Windows and

    UNIX/LINUXCompatible with standard finite element

    codes such as ABAQUS, ANSYS and I-DEAS

    P FAT Probabilistic FatigueAssessment Tool developed at

    NTNU/IPM 2003-2007

  • 8/12/2019 Weakest Link ZfM 071018

    13/65

    13

    LOCALLOCAL --STRESS APPROACHSTRESS APPROACH

  • 8/12/2019 Weakest Link ZfM 071018

    14/65

    14

    Assumed equivalenceAssumed equivalencebetween a component and abetween a component and a

    reference specimenreference specimen

    ( ) =t a m _

    ( ) =t a m _

    ( ) =t _ max m,max a,max

  • 8/12/2019 Weakest Link ZfM 071018

    15/65

    15

    FEA of Francis turbine runnerFEA of Francis turbine runner

  • 8/12/2019 Weakest Link ZfM 071018

    16/65

    16

    CastCast 13Cr4Ni steel fatigue test specimen13Cr4Ni steel fatigue test specimen

  • 8/12/2019 Weakest Link ZfM 071018

    17/65

    17

    Octant of fatigue test specimen modelledOctant of fatigue test specimen modelledwith twentywith twenty --node hex elementsnode hex elements

    net net

    y y

    x

    80

    b =/2 40

    l

    =

    / 2

    4 0

    z

    r =

    5

    R =

    1 0 R

    = 1 0

    x

    72.5 4 0

    9 0

    z

    5

    a) b)

  • 8/12/2019 Weakest Link ZfM 071018

    18/65

    18

    Local stress approachLocal stress approach

    200

    250

    150

    300

    350

    400

    450

    500

    550

    s a

    2

    N / m m

    101010 10 10 10543 6 7 8

    N

  • 8/12/2019 Weakest Link ZfM 071018

    19/65

    19

    LocalLocal --stress approachstress approach

  • 8/12/2019 Weakest Link ZfM 071018

    20/65

    20

    Why isWhy is local stresslocal stress unsatisfactory?unsatisfactory?

    Like other physical processes, fatigue damagerequires a finite volume to developThe maximum stress amplitude is unlikely to

    coincide with the largest defectThe use of local stress overestimates thecrack growth rate, when the crack is growinginto a decreasing stress fieldIt does not offer a consistent model to accountfor the scatter in fatigue properties

  • 8/12/2019 Weakest Link ZfM 071018

    21/65

    21

    WEAKESTWEAKEST --LINK APPROACHLINK APPROACH

  • 8/12/2019 Weakest Link ZfM 071018

    22/65

    22

    Elementary weakestElementary weakest --link link model of a chainmodel of a chain

  • 8/12/2019 Weakest Link ZfM 071018

    23/65

    23

    s, link *

    s, chain s, link *

    Weibull distribution of link strength:

    exp

    Ditto of chain composed of links:

    exp

    b

    b

    n

    P

    n

    P P n

    =

    = =

  • 8/12/2019 Weakest Link ZfM 071018

    24/65

    24

    Weibull distribut ion for the probability of surv ivalof a single link

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    0 0,5 1 1,5 2

    P r o

    b a

    b i l i t y

    o f s u r v

    i v a

    l

    b = 3b = 10

    b = 30b = 100

  • 8/12/2019 Weakest Link ZfM 071018

    25/65

    25

    Weibull distribution fo r the probability of surv ivalof a chain of n = 100 links

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

    P r o

    b a

    b i l i t y

    o f s u r v

    i v a

    l

    b = 3b = 10

    b = 30b = 100

  • 8/12/2019 Weakest Link ZfM 071018

    26/65

    26

    Material defects and extreme valueMaterial defects and extreme valuedistributionsdistributions

    i k l b l i l i fF i k l b l i l i f

  • 8/12/2019 Weakest Link ZfM 071018

    27/65

    27

    Fatigue cracks at globular inclusions ofFatigue cracks at globular inclusions ofcalcium aluminate in a lowcalcium aluminate in a low --alloyalloy

    carburising steel (carburising steel ( JuvonenJuvonen ))

    InclusionInclusion cutcut byby freefree surfacesurface SubSub --surfacesurface inclusioninclusion

    i k i l ldF i k i l ld

  • 8/12/2019 Weakest Link ZfM 071018

    28/65

    28

    Fatigue cracks at pores in steel weldFatigue cracks at pores in steel weld(Berge)(Berge)

  • 8/12/2019 Weakest Link ZfM 071018

    29/65

    29

    Fatigue cracks at pores in cast 13Cr4NiFatigue cracks at pores in cast 13Cr4Nisteel (steel ( HuthHuth ))

    10 mm

  • 8/12/2019 Weakest Link ZfM 071018

    30/65

  • 8/12/2019 Weakest Link ZfM 071018

    31/65

    31

    Probability of survival of a (homogeneouslystressed) volume element V >> V 0:Pr( A > a) = P s, V =

    (1 - z 1 V )V / V exp(- z 1V )

    By applying this formula to a volumeelement, V i , subjected to a nearly homo-geneous stress amplitude, a i , one obtains

    P s, V i = exp(- z 1( a i ) V i )

  • 8/12/2019 Weakest Link ZfM 071018

    32/65

  • 8/12/2019 Weakest Link ZfM 071018

    33/65

    33

  • 8/12/2019 Weakest Link ZfM 071018

    34/65

    34

    Methods based on the statistics of extremesMethods based on the statistics of extremes

    for estimating the size of the maximum defectfor estimating the size of the maximum defectin a block of materialin a block of material

    Block maximumdetermine the size of the largest defect in each ofk equally sized polished cross-sections

    generalised extreme value distribution, GEVPeak over threshold

    determine the size of all defects > a suitablychosen threshold in each of k equally sizedpolished cross-sectionsgeneralised Pareto distribution

    GEV distribution

  • 8/12/2019 Weakest Link ZfM 071018

    35/65

    35

    The probability that a defect of size A max a max islocated within a volume element V is given by:

    GEV distribution

    = 0, > 0 and < 0 correspond to the Gumbel,Frchet and reversed Weibull or the Type I, II andIII extreme value distributions, respectively.

  • 8/12/2019 Weakest Link ZfM 071018

    36/65

    36

    Weibull distributed fatigue strength

  • 8/12/2019 Weakest Link ZfM 071018

    37/65

    37

    Under certain simplifying assumptions, i. a., 0, the no. of

    defects per unit volume > a crit may be written as:

    Further assuming > 0 (Frchet distribution) and (K-T)

    yields a two-parameter Weibull distribution for theprobability of survival in terms of the stress amplitude:

  • 8/12/2019 Weakest Link ZfM 071018

    38/65

    Piecewise powerPiecewise power law approximation oflaw approximation of

  • 8/12/2019 Weakest Link ZfM 071018

    39/65

    39

    Piecewise powerPiecewise power --law approximation oflaw approximation of

    KitagawaKitagawa

    --Takahashi diagramTakahashi diagram

    survival

    failure

    -1 -1

    3 2

    W ib ll t lit d

    a a,max =

  • 8/12/2019 Weakest Link ZfM 071018

    40/65

    40

    A homogeneously stressed reference specimen of volumeV 0 has the same probability of survival as an arbitrarycomponent, if the stress amplitude of the reference specimen

    is chosen such that

    Weibull stress amplitude

    For b = , i.e., for a material without scatter,

    a a,max =

    a a,max =

    and the weakest-link and local stress approaches becomeequivalent!

    W ib ll t lit d td

    a a,max =

  • 8/12/2019 Weakest Link ZfM 071018

    41/65

    41

    Based on a finite element stress analysis, the FEApost-processor PFAT computes the stress integral

    Weibull stress amplitude, contd

    as a sum of all element integrals. Higher orderintegration ( N Gauss 10) may be required:

  • 8/12/2019 Weakest Link ZfM 071018

    42/65

    42

    Experimental investigationsExperimental investigations

  • 8/12/2019 Weakest Link ZfM 071018

    43/65

    43

    (1) Weibull analysis of(1) Weibull analysis of S S -- N N data for adata for a

    total of > 2,000 fatigue test specimenstotal of > 2,000 fatigue test specimensfrom 12 different alloysfrom 12 different alloys

  • 8/12/2019 Weakest Link ZfM 071018

    44/65

  • 8/12/2019 Weakest Link ZfM 071018

    45/65

    45

    0

    0

    as, *

    A0

    s, *0

    Weibull distribution of fatigue strength:

    exp

    Ditto of fatigue life:

    expn

    b

    V

    b

    V

    P

    nP N

    =

    =

    Probability distribution of WeibullProbability distribution of Weibull

  • 8/12/2019 Weakest Link ZfM 071018

    46/65

    46

    Probability distribution of Weibullobab ty d st but o o We buexponentexponent bb

    Forged steels (6)Forged steels (6) Cast steels (4)Cast steels (4)

  • 8/12/2019 Weakest Link ZfM 071018

    47/65

  • 8/12/2019 Weakest Link ZfM 071018

    48/65

    48

    (2) Fatigue testing and Weibull life(2) Fatigue testing and Weibull life

    prediction of hydroprediction of hydro --turbine blade modelturbine blade model

    C tC t 13C 4Ni l f i i (13C 4Ni t l f ti t t i ( H hH th ))

  • 8/12/2019 Weakest Link ZfM 071018

    49/65

    49

    CastCast 13Cr4Ni steel fatigue test specimen (13Cr4Ni steel fatigue test specimen ( HuthHuth ))

    Smooth fatigue specimen for axial loadingSmooth fatigue specimen for axial loading

  • 8/12/2019 Weakest Link ZfM 071018

    50/65

    50

    Smooth fatigue specimen for axial loadingSmooth fatigue specimen for axial loading

    ((FraunhoferFraunhofer LBF, Darmstadt)LBF, Darmstadt)

    LocalLocal --stress approachstress approach

  • 8/12/2019 Weakest Link ZfM 071018

    51/65

    51

    LocalLocal stress approachstress approach

    WeakestWeakest --link approachlink approach

  • 8/12/2019 Weakest Link ZfM 071018

    52/65

    52

    Weakest link approachpp

  • 8/12/2019 Weakest Link ZfM 071018

    53/65

    53

    (3) Fatigue testing and Weibull life(3) Fatigue testing and Weibull life

    prediction of notched rotating bendprediction of notched rotating bendspecimens from two lowspecimens from two low --alloy steelsalloy steels

    H glHourglass h d hshaped push ll i (16+20)pull specimen (16+20)

  • 8/12/2019 Weakest Link ZfM 071018

    54/65

    54

    HourglassHourglass --shaped pushshaped push --pull specimen (16+20)pull specimen (16+20)

    A

    A

    3 9

    2 6

    2 5

    110

    185

    20

    = 0.5, 1.5, 5K t = 3.3, 2.2, 1.4

    20 6

    110

    B - B21

    B

    B 9

    =

    3 0

    a)

    b)

    Notched rotating bend specimen (3+6)Notched rotating bend specimen (3+6)

    Stress distribution in rotating bendStress distribution in rotating bend

  • 8/12/2019 Weakest Link ZfM 071018

    55/65

    55

    g

    specimen withspecimen with K K tt = 1.4= 1.4

    (Ave. Crit.: 75%)S, Mises

    +3.010e-06+1.090e-01+2.180e-01+3.270e-01+4.360e-01+5.450e-01+6.540e-01+7.630e-01+8.720e-01+9.811e-01+1.090e+00+1.199e+00+1.308e+00

    1

    2

    3

    Weibull stress amplitude vs no of cyclesWeibull stress amplitude vs no of cycles

  • 8/12/2019 Weakest Link ZfM 071018

    56/65

    56

    Weibull stress amplitude vs. no. of cyclesWeibull stress amplitude vs. no. of cycles

    49MnVS3 steel49MnVS3 steel 42CrMo4 steel42CrMo4 steel

    Measured and predicted lives of Measured and predicted lives of

  • 8/12/2019 Weakest Link ZfM 071018

    57/65

    57

    notched rotating bend specimensnotched rotating bend specimens

  • 8/12/2019 Weakest Link ZfM 071018

    58/65

    58

    (4) Fatigue testing and Weibull(4) Fatigue testing and Weibullprediction of the fatigue limit forprediction of the fatigue limit for

    30CrNiMo8 steel30CrNiMo8 steel

    Smooth (8 shapes) and notched (18 shapes) specimensSmooth (8 shapes) and notched (18 shapes) specimensof 30CrNiMo8 steel for pushof 30CrNiMo8 steel for push --pull or rotating bendingpull or rotating bending

  • 8/12/2019 Weakest Link ZfM 071018

    59/65

    59

    of 30CrNiMo8 steel for pushof 30CrNiMo8 steel for push -pull or rotating bendingpull or rotating bending

    (total no of specimens investigated > 700)(total no of specimens investigated > 700)

    L

    L

    D

    D

    g

    g

    d D E

    D E

    t

    a)

    b)

    x

    y

    z

    x

    y

    z

    Comparison between localComparison between local --stress and weakeststress and weakest --

  • 8/12/2019 Weakest Link ZfM 071018

    60/65

    60

    link predictions by means oflink predictions by means of

    Error indicesError indices

    PublicationsPublications

  • 8/12/2019 Weakest Link ZfM 071018

    61/65

    61

    PublicationsPublications

    A. Wormsen, G. HrkegrdA statistical investigation of fatigue behaviour according toWeibulls weakest link theory, Proceedings of the 15th EuropeanConference on Fracture , Stockholm, Sweden, 2004.A. Wormsen, G. Hrkegrd, H.J. HuthProbabilistic fatigue assessment of a hydro-turbine blade model.9th International Fatigue Congress , Atlanta, Georgia, 2006.

    A. Wormsen, G. HrkegrdWeibull fatigue analysis of notched components under constantand variable amplitude loading. 9th International FatigueCongress , Atlanta, Georgia, 2006.A. Wormsen, B. Sjdin, G. Hrkegrd, A. FjeldstadNon-local stress approach for fatigue assessment based onweakest-link theory and statistics of extremes. To be publishedin Fatigue & Fracture of Engineering Materials & Structures .

    CONCLUSIONSCONCLUSIONS

  • 8/12/2019 Weakest Link ZfM 071018

    62/65

    62

    CONCLUSIONSCONCLUSIONS

    A weakest-link module for fatigue life

    prediction is available in PFATWeakest-link modelling is closely relatedto the statistical distribution of materialdefectsGood agreement with fatigue tests oncomponent-like specimensPredestined to become the new industrystandard

    http://www.alstom.com/http://www.alcoa.com/global/en/home.asp
  • 8/12/2019 Weakest Link ZfM 071018

    63/65

    63

    OUTLOOKOUTLOOK

    http://en.wikipedia.org/wiki/Image:Elkem_logo.pnghttp://en.wikipedia.org/wiki/Image:RR_logo.pnghttp://www.gjuteriforeningen.se/main.htmhttp://en.wikipedia.org/wiki/Image:VestasLogo.gifhttp://en.wikipedia.org/wiki/Image:StatoilLogo.gifhttp://en.wikipedia.org/wiki/Image:Volvo_logo.pnghttp://en.wikipedia.org/wiki/Image:Siemens_logo2.pnghttp://en.wikipedia.org/wiki/Image:Saab-logo.pnghttp://www.manbw.com/http://en.wikipedia.org/wiki/Image:BMW_Logo.svghttp://www.alstom.com/http://www.alcoa.com/global/en/home.asp
  • 8/12/2019 Weakest Link ZfM 071018

    64/65

    64

    OUTLOOK OUTLOOK

    Database describing the relevant statisticaldistributions of fatigue strength and lifeVerification testing of real components

    Random defect analysis: Statisticaldistribution of material defects, short fatiguecrack growth

    These are objectives of a Norwegian-Danishprogram (3.5 MCHF, 2007-2010) on castcomponents for large wind turbines

  • 8/12/2019 Weakest Link ZfM 071018

    65/65

    65

    More about random defects and fatigue inMore about random defects and fatigue ina weeka week same time and place!same time and place!

    A postA post --processor for fatigueprocessor for fatigue --crack crack --growthgrowthanalysis based on a finite element stressanalysis based on a finite element stress

    field and its application to components withfield and its application to components withsmall, random defectssmall, random defects