water distribution system project

46
ALMA MATER STU FA Department of Civil Course WATER DISTRI Instructors: Dott. Ing. Andrea Bolognesi Dott. Ing. Cristiana Bragalli UDIORUM UNIVERSITY O ACULTY OF ENGINEERING CIVIL ENGINEERING DICAM l and Environmental Engineering and Materia e of Advanced Hydrosystems Engineering IBUTION NETWORK DESIGN AND AN Academic Year 2012 – 2013 1 OF BOLOGNA als Science NALYSIS Student: Tommaso Cignali

description

hydrosystem engineering

Transcript of water distribution system project

Page 1: water distribution system project

ALMA MATER STUDIORUM

FACULTY OF ENGINEERING

Department of Civil and Environmental Engineering and Materials Science

Course of Advanced Hydrosystems Engineering

WATER DISTRIBUTION NETWORK DES

Instructors: Dott. Ing. Andrea Bolognesi Dott. Ing. Cristiana Bragalli

ALMA MATER STUDIORUM – UNIVERSITY OF BOLOGNA

FACULTY OF ENGINEERING

CIVIL ENGINEERING

DICAM Department of Civil and Environmental Engineering and Materials Science

Course of Advanced Hydrosystems Engineering

WATER DISTRIBUTION NETWORK DESIGN AND ANALYSIS

Instructors:

Dott. Ing. Andrea Bolognesi

Academic Year 2012 – 2013

1

UNIVERSITY OF BOLOGNA

Department of Civil and Environmental Engineering and Materials Science

IGN AND ANALYSIS

Instructors: Student:

Tommaso Cignali

Page 2: water distribution system project

2

The objective of the following project is to build a Water Distribution Network for an assigned area. The distribution conduits and nodes has been already designed from the delivery of the project data:

Starting from this map already georeferenced on EPANET, we have determined some useful data of the design project: Minimum Hydraulic Head for each node:

Minimum hydraulic head is calculated only once and it is the value with which to compare the hydraulic head that resulting from the single-period simulation: Hmin = Minimum Head for each node (m)

Hmin = znode + p +Hbuild,max + f Where: znode = elevation of axis pipe znode = zground – p (zground by the map; p = 1.8 m is assumed as average depth of the axis pipe) Hbuild,max = maximum height of the building in the area adjacent the node (Hbuild,max by map) f = 5 m (height above the base of the roof) Water demand

Residential usage rate per capita: d = 300 liters/capita/day

Population considered for the design (Geometric Increase Method)

� = �� � (1 + )� = 9184 � (1 + 0.009)�� = 13.143

Page 3: water distribution system project

3

P0 = 9184 inhabitants at 2001 r = 9‰ rate of increase of the population T = 40 years (In the case of WDNs, the higher are the year’s value, the “safer” is the design project) Base demand for each node Base demand for each node is calculated as follows:

���������� ������� = �� �ℎ�� ! = ∑ !#$(#,$)∈'

�# = �! (

)

* +

!#,2

./# = �# � �86400 (1/�)

Demand multipliers:

Peak Hour Demand: 34,567 = 3 (the average rate of usage during the maximum hour of usage in the year)

Minimum Hour Demand: 34,5#8 = 0.3 (the average rate of usage during the minimum hour of usage in the year)

These are the results obtained for each nodes:

Pipe ID Length

(m) Diam Unit Cost

€/m Cost € 1 132,76 150 39,4 5230,744

2 374,68 125 37 13863,16

3 119,74 100 27,2 3256,928

4 312,72 100 27,2 8505,984

5 289,09 60 19,8 5723,982

6 336,33 60 19,8 6659,334

7 135,81 60 19,8 2689,038

8 201,26 60 19,8 3984,948

9 132,53 100 27,2 3604,816

10 144,66 125 37 5352,42

11 175,72 125 37 6501,64

12 112,17 200 54,4 6102,048

13 210,74 200 54,4 11464,256

14 75,41 250 72,9 5497,389

15 181,42 200 54,4 9869,248

16 146,96 125 37 5437,52

17 162,69 80 24,5 3985,905

18 99,64 60 19,8 1972,872

19 52,98 60 19,8 1049,004

20 162,97 60 19,8 3226,806

21 83,96 80 24,5 2057,02

22 49,82 100 27,2 1355,104

23 78,5 100 27,2 2135,2

24 99,27 100 27,2 2700,144

25 82,29 80 24,5 2016,105

26 147,49 60 19,8 2920,302

27 197,32 60 19,8 3906,936

28 83,3 100 27,2 2265,76

29 113,8 100 27,2 3095,36

30 80,82 100 27,2 2198,304

31 340,97 100 27,2 9274,384

Page 4: water distribution system project

4

Node n zground Hbuild,max f Hmin Hmax H˛ test

1 65,5 26,9 5 97,4 133,7 120,99 OK

2 63,7 16,7 5 85,4 131,9 114,64 OK

3 62,3 30,3 5 97,6 130,5 111,59 OK

4 61,9 18,2 5 85,1 130,1 106,93 OK

5 60,4 34,1 5 99,5 128,6 105,02 OK

6 64,9 26,8 5 96,7 133,1 105,15 OK

7 67,3 17,5 5 89,8 135,5 107,26 OK

8 65,5 12,1 5 82,6 133,7 113,5 OK

9 65,6 26,8 5 97,4 133,8 117,97 OK

10 63,8 29,7 5 98,5 132 118,81 OK

11 62,8 33,4 5 101,2 131 114,28 OK

12 61,5 19,2 5 85,7 129,7 106,34 OK

13 60,3 23,6 5 88,9 128,5 105,79 OK

14 61 15,1 5 81,1 129,2 107,69 OK

15 62,4 33,5 5 100,9 130,6 111 OK

16 63 17,7 5 85,7 131,2 114,14 OK

17 65,2 30,6 5 100,8 133,4 119,45 OK

18 63,4 30,2 5 98,6 131,6 117,58 OK

19 61 30,6 5 96,6 129,2 108,63 OK

20 61,2 34 5 100,2 129,4 108,23 OK

21 61,5 26,8 5 93,3 129,7 106,88 OK

22 62,7 27,7 5 95,4 130,9 109,1 OK

23 61,4 24,3 5 90,7 129,6 110,31 OK

24 66,5 21,1 5 92,6 134,7 111,58 OK

25 63,6 11,8 5 80,4 131,8 111,97 OK

32 77,39 80 24,5 1896,055

33 112,37 80 24,5 2753,065

34 37,34 100 27,2 1015,648

35 108,85 100 27,2 2960,72

36 182,82 125 37 6764,34

37 136,02 150 39,4 5359,188

38 56,7 150 39,4 2233,98

39 124,08 125 37 4590,96

40 234,6 60 19,8 4645,08

41 203,83 80 24,5 4993,835

42 248,05 60 19,8 4911,39

43 65,19 60 19,8 1290,762

44 210,09 80 24,5 5147,205

45 147,57 80 24,5 3615,465

46 103,8 80 24,5 2543,1

47 210,95 60 19,8 4176,81

48 75,08 80 24,5 1839,46

49 180,29 80 24,5 4417,105

50 149,05 80 24,5 3651,725

51 215,05 80 24,5 5268,725

52 144,44 100 27,2 3928,768

53 34,74 125 37 1285,38

54 59,93 150 39,4 2361,242

55 165,67 80 24,5 4058,915

56 119,97 100 27,2 3263,184

57 83,17 100 27,2 2262,224

58 1 300 90,7 90,7

TOTAL 8405,86 TOT. COST 239.228 €

Page 5: water distribution system project

5

26 62,1 33,9 5 101 130,3 113,07 OK

27 62,4 17,1 5 84,5 130,6 115,12 OK

28 65,8 10,9 5 81,7 134 115,23 OK

29 63,9 17,1 5 86 132,1 115,53 OK

30 64,1 15,4 5 84,5 132,3 116,16 OK

31 64,1 30,6 5 99,7 132,3 120,45 OK

32 63,9 23,6 5 92,5 132,1 117,94 OK

33 64,6 29,4 5 99 132,8 119,29 OK

34 64,7 17,9 5 87,6 132,9 119,78 OK

35 64,9 16,5 5 86,4 133,1 117,84 OK

36 66 21,4 5 92,4 134,2 118,71 OK

After that I searched the pipes

Commercially available and have

assigned to each pipe its diameter and

relative roughness; considering this

scheme with a polyethylene pipes with

PN 16 bar and roughness equal to

0.0015 mm.

Page 6: water distribution system project

6

The assignment of the diameters of the pipes is probably the most delicate part of the project, as derived from this all the results calculated later. The design criteria is performed through an iterative method, parallel to a first verification of the criteria set out below, and check if the network is more or less balance. After several attempts, have been adopted for this network of diameters between 60 ÷ 125 mm. and a few diameters between 125 ÷ 250 mm while the diameter of the reservoir is used as diameter of 300 mm Once you have assigned to all pipes diameters must run the program and verify that all scenarios, that after describe, satisfy the following design criteria:

9#5#8 = 95#8 9#5#8 ≤ 9# ≤ 9#567 ∀(�) ∈ < 9#567 = =# + 70 ?

@5#8 ≅ 0.2 ?/� @5#8 ≤ @#$ ≤ @567 ∀(�) ∈ B @567 = 2 ?/�

N = set of nodes R = set of pipes The “Hi” test is already done in the excel table reported above. When “OK” means that the Hi is between Hmin and Hmax. While the velocity test is reported as follows:

Page 7: water distribution system project

7

All the velocities into the network’s conduits are above 0.2 m/s and below 2 m/s. So, also the velocity test is satisfied. I can proceed now with network analysis (Steady State Simulation). Inversion flow must not take place. Velocity and unit headloss should have a certain uniformity.

Page 8: water distribution system project

8

STEADY STATE SIMULATIONS

• Normal operation of the Water distribution Network. Steady- state simulation (single period) for the following water demand conditions:

1.1 Peak Hour Demand → Demand Multiplier = 34,567 = 3 1.2 Minimum Hour Demand → Demand Multiplier = 34,5#8 = 0.3 1.3 Average Demand → Demand Multiplier = 1

1.1 - Peak Hour Demand → Demand Multiplier = CD,EFG = H (*already previously verified, as

follows).

Node n zground Hbuild,max f Hmin Hmax tot head test

1 65,5 26,9 5 97,4 133,7 120,99 OK

2 63,7 16,7 5 85,4 131,9 114,64 OK

3 62,3 30,3 5 97,6 130,5 111,59 OK

4 61,9 18,2 5 85,1 130,1 106,93 OK

5 60,4 34,1 5 99,5 128,6 105,02 OK

6 64,9 26,8 5 96,7 133,1 105,15 OK

7 67,3 17,5 5 89,8 135,5 107,26 OK

8 65,5 12,1 5 82,6 133,7 113,5 OK

9 65,6 26,8 5 97,4 133,8 117,97 OK

10 63,8 29,7 5 98,5 132 118,81 OK

11 62,8 33,4 5 101,2 131 114,28 OK

12 61,5 19,2 5 85,7 129,7 106,34 OK

13 60,3 23,6 5 88,9 128,5 105,79 OK

14 61 15,1 5 81,1 129,2 107,69 OK

15 62,4 33,5 5 100,9 130,6 111 OK

16 63 17,7 5 85,7 131,2 114,14 OK

17 65,2 30,6 5 100,8 133,4 119,45 OK

18 63,4 30,2 5 98,6 131,6 117,58 OK

19 61 30,6 5 96,6 129,2 108,63 OK

20 61,2 34 5 100,2 129,4 108,23 OK

21 61,5 26,8 5 93,3 129,7 106,88 OK

22 62,7 27,7 5 95,4 130,9 109,1 OK

23 61,4 24,3 5 90,7 129,6 110,31 OK

24 66,5 21,1 5 92,6 134,7 111,58 OK

25 63,6 11,8 5 80,4 131,8 111,97 OK

26 62,1 33,9 5 101 130,3 113,07 OK

27 62,4 17,1 5 84,5 130,6 115,12 OK

28 65,8 10,9 5 81,7 134 115,23 OK

29 63,9 17,1 5 86 132,1 115,53 OK

30 64,1 15,4 5 84,5 132,3 116,16 OK

31 64,1 30,6 5 99,7 132,3 120,45 OK

32 63,9 23,6 5 92,5 132,1 117,94 OK

33 64,6 29,4 5 99 132,8 119,29 OK

34 64,7 17,9 5 87,6 132,9 119,78 OK

35 64,9 16,5 5 86,4 133,1 117,84 OK

36 66 21,4 5 92,4 134,2 118,71 OK

Page 9: water distribution system project

9

All criteria are satisfied.

Page 10: water distribution system project

10

1.2 - Minimum Hour Demand → Demand Multiplier = CD,EIJ = K. H

Node n H ᷂ ᷂ Hmin Hmax test

1 121 97,4 133,7 OK

2 120,91 85,4 131,9 OK

3 120,87 97,6 130,5 OK

4 120,8 85,1 130,1 OK

5 120,78 99,5 128,6 OK

6 120,78 96,7 133,1 OK

7 120,81 89,8 135,5 OK

8 120,89 82,6 133,7 OK

9 120,96 97,4 133,8 OK

10 120,97 98,5 132 OK

11 120,91 101,2 131 OK

12 120,79 85,7 129,7 OK

13 120,79 88,9 128,5 OK

14 120,81 81,1 129,2 OK

15 120,86 100,9 130,6 OK

16 120,9 85,7 131,2 OK

17 120,98 100,8 133,4 OK

18 120,95 98,6 131,6 OK

19 120,83 96,6 129,2 OK

20 120,82 100,2 129,4 OK

21 120,8 93,3 129,7 OK

22 120,83 95,4 130,9 OK

23 120,85 90,7 129,6 OK

24 120,87 92,6 134,7 OK

25 120,89 80,4 131,8 OK

26 120,92 101 130,3 OK

27 120,92 84,5 130,6 OK

28 120,92 81,7 134 OK

29 120,93 86 132,1 OK

30 120,99 84,5 132,3 OK

31 120,96 99,7 132,3 OK

32 120,98 92,5 132,1 OK

33 120,98 99 132,8 OK

34 120,96 87,6 132,9 OK

35 120,97 86,4 133,1 OK

36 120,95 92,4 134,2 OK

From the previous table collected on Excel it’s immediate to understand that all the Head verifies are satisfied but from the following picture comes that none velocity is verified (every velocity is below the minimum velocity limit: 0.2 [m/s]

Page 11: water distribution system project

11

All the Head are met but none Velocity is met.

Page 12: water distribution system project

12

1.3 - Average Demand → Demand Multiplier = L

Node n H ᷂ ᷂ Hmin Hmax test

1 121 97,4 133,7 OK

2 120,17 85,4 131,9 OK

3 119,77 97,6 130,5 OK

4 119,16 85,1 130,1 OK

5 118,91 99,5 128,6 OK

6 118,93 96,7 133,1 OK

7 119,2 89,8 135,5 OK

8 120,02 82,6 133,7 OK

9 120,6 97,4 133,8 OK

10 120,71 98,5 132 OK

11 120,12 101,2 131 OK

12 119,08 85,7 129,7 OK

13 119,01 88,9 128,5 OK

14 119,26 81,1 129,2 OK

15 119,69 100,9 130,6 OK

16 120,1 85,7 131,2 OK

17 120,8 100,8 133,4 OK

18 120,55 98,6 131,6 OK

19 119,38 96,6 129,2 OK

20 119,82 100,2 129,4 OK

21 119.96 93,3 129,7 OK

22 120,23 95,4 130,9 OK

23 120,25 90,7 129,6 OK

24 120,29 92,6 134,7 OK

25 120,37 80,4 131,8 OK

26 120,93 101 130,3 OK

27 120,6 84,5 130,6 OK

28 120,78 81,7 134 OK

29 120,84 86 132,1 OK

30 120,59 84,5 132,3 OK

31 120,7 99,7 132,3 OK

32 120,46 92,5 132,1 OK

33 120,32 99 132,8 OK

34 120,1 87,6 132,9 OK

35 120,38 86,4 133,1 OK

36 120,81 92,4 134,2 OK

Also for the Average demand multiplier (equal to 1) all the Heads are verified. The following picture reports which pipes do not satisfy the velocity test (that is, the ones which has velocity below the minimum velocity limit: 0.2 [m/s]):

Page 13: water distribution system project

13

The pipes that don’ t satisfy the velocity test are: 5 – 6 – 40 – 41 – 42 – 47 – 50 .

Page 14: water distribution system project

14

• Breakdown of a pipe in the Water distribution Network: Steady- state simulation (single period) for the average water demand conditions. I must choose to “Close” three main pipes in my network and analyze the consequences of these out-of-service pipes. (Considering one break at a time):

A. – Break Pipe number 1

B. – Break Pipe number 13

C. – Break Pipe number 15

Pipe in which there is the breakdown → Status: Closed.

Pipe n. 1

Pipe n. 13

Pipe n. 15

Page 15: water distribution system project

15

A. – Break Pipe number 1:

Node n Head Pressure Hmin Hmax test

1 120,86 55,71 97,4 133,7 OK

2 116,99 52,59 85,4 131,9 OK

3 116,99 53,64 97,6 130,5 OK

4 116,99 54,49 85,1 130,1 OK

5 117,16 55,92 99,5 128,6 OK

6 117,75 53,35 96,7 133,1 OK

7 118,32 50,42 89,8 135,5 OK

8 119,5 53 82,6 133,7 OK

9 120,73 54,22 97,4 133,8 OK

10 119,42 56,16 98,5 132 OK

11 117,28 55,72 101,2 131 OK

12 117,32 54,64 85,7 129,7 OK

13 118,12 55,42 88,9 128,5 OK

14 118,92 55,52 81,1 129,2 OK

15 119,56 55,42 100,9 130,6 OK

16 116,98 55,26 85,7 131,2 OK

17 118,98 51,48 100,8 133,4 OK

18 118,27 54,88 98,6 131,6 OK

19 118,09 55,37 96,6 129,2 OK

20 118,62 55,44 100,2 129,4 OK

21 118,9 55,29 93,3 129,7 OK

22 119,18 54,72 95,4 130,9 OK

23 119,21 54,7 90,7 129,6 OK

24 119,26 52,68 92,6 134,7 OK

25 119,72 54,81 80,4 131,8 OK

26 119,78 55,86 101 130,3 OK

27 119,83 55,82 84,5 130,6 OK

28 119,94 54,13 81,7 134 OK

29 120,74 55,33 86 132,1 OK

30 120,22 55,84 84,5 132,3 OK

31 120,52 56,34 99,7 132,3 OK

32 120,62 56,02 92,5 132,1 OK

33 120,3 55,92 99 132,8 OK

34 120,49 55,92 87,6 132,9 OK

35 119,76 54,87 86,4 133,1 OK

36 119,96 54,59 92,4 134,2 OK

All the Heads in every node are verified within the limits.

Page 16: water distribution system project

16

Some velocities in some pipes are not placed within the minimum and maximum limit. Those pipes are: 2 – 3 – 4 – 5 – 41 – 42 – 50. (The 1 pipe is the broken one). (Vmin has not to be considered at this stage). It’s very important to say that the we’ve checked that “red conduits” do not overtake the maximum velocity limit: 2 [m/s].

Page 17: water distribution system project

B.– Break Pipe number 13:

We can immediately see that all the Heads at nodes are within the Head’s limits (maxcase of pipe 13 as a broken pipe.

We can immediately see that all the Heads at nodes are within the Head’s limits (max

17

We can immediately see that all the Heads at nodes are within the Head’s limits (max. and min.), in

Page 18: water distribution system project

18

Now, let’s check the velocities for each pipe.

It’s immediate to see how the break of Pipe 13 causes 9 non-verified velocities on pipes under the minimum velocity limit. (Vmin has not to be considered at this stage). It’s very important to say that the we’ve checked that “red conduits” do not overtake the maximum velocity limit: 2 [m/s].

Page 19: water distribution system project

B. – Break Pipe number 15:

Break Pipe number 15:

19

Page 20: water distribution system project

20

Even for the breakdown of Pipe 15 all the Heads for each node are verified (within their own max. and min. Head).

Even in the case of Pipe 15 breakdown, 9 velocities of 9 conduits are below the minimum velocity limit. (Vmin has not to be considered at this stage). It’s very important to say that the we’ve checked that “red conduits” do not overtake the maximum velocity limit: 2 [m/s].

Page 21: water distribution system project

21

• Fire Condition in Water distribution Network: Two fire conditions are considered: fire in correspondence of the node with grater population (Maximum Base Demand) and fire in the node of the network faraway to the reservoir.

Steady –state simulation (single period) for the average water demand condition → Demand Multiplier = 1. Two fire condition are considered, fire in correspondence of :

A. Node number 17: the node with great population;

B. Node number 6: the node of the network faraway to the reservoir.

Fire flow is valuated with the formula of Conti: M# = 6√� Where P in the population express in thousands of inhabitants. Fire M# is added to the Base Demand of the node.

A. Fire Condition in Node 17: the most populated node:

All the Heads are verified in case of Fire Condition in the most populated node: Node 17. Now, let’s check the velocities in every conduit:

Page 22: water distribution system project

22

The pipes where is not satisfied the Velocity test in case of fire condition in Node 17 are: 5 – 6 – 40 – 41 – 42 – 47 – 50. (Vmin has not to be considered at this stage). It’s very important to say that the we’ve checked that “red conduits” do not overtake the maximum velocity limit: 2 [m/s].

Page 23: water distribution system project

23

A. Fire Condition in Node 6: the one faraway to the reservoir The Heads in each node are all verified in case of fire in Node 6: the most faraway node to the reservoir. Now let’s check the velocities in the same case:

Page 24: water distribution system project

24

Only two pipes don’t supply the minimum velocity limit in case of fire conditions at node 6: the most faraway to the reservoir. It’s very important to say that the we’ve checked that “red conduits” do not overtake the maximum velocity limit: 2 [m/s].

Page 25: water distribution system project

EXTENDED PERIOD SIMULATION

In this part of the project three different simulations 1. Extended period simulation with leakage allocation;

2. Extended period simulation with leakage allocation and water age analysis;

3. Extended period simulation with

The input data are as follows: Leakage: p = 0.39 (real losses rate that is the fraction of water that is lost) emitter exponent n = 1.1 Demand Pattern:

O(�) = /(�)./

D Actual Demand BD Base Demand (users consumption + leakage) BD’= (1 – p) BD (user consumption only)

O(�)′ = /(�)./′

Chlorine parameters: Global Bulk Coeff. = - 1.2 Global Wall Coeff. = - 1.1 Source quality (reservoir) = 0.4 mg/l Inputting data into the program we obtain the following pattern:

EXTENDED PERIOD SIMULATIONS

In this part of the project three different simulations have been analyzed:

Extended period simulation with leakage allocation;

Extended period simulation with leakage allocation and water age analysis;

Extended period simulation with leakage allocation and water quality analysis.

(real losses rate that is the fraction of water that is lost)

Base Demand (users consumption + leakage)

p) BD (user consumption only)

0.4 mg/l

Inputting data into the program we obtain the following pattern:

25

Extended period simulation with leakage allocation and water age analysis;

analysis.

Page 26: water distribution system project

26

Before starting the actual analysis is necessary to calculate:

QR��1 .��� /�?���: Q./ = ( ./# =)

#T*45.63

V1R��1 !��W�X�: M1 = Y � Q/. = 0.36 � 44.13 = 17.796

Z?���� OR�[[�O����: M1# = \# � Y#8 → \# = M1#Y#8

Where Y# is the average pressure at node i-th (obtain from Demand Multiplier = 1). After this I insert \# as Emitter coefficient in each node.

Node IDs Tot Length Half Length Node BD Pressure alpha ql

1 418,91 209,455 1,1371 55,85 0,005 0,441

2 657,39 328,695 1,7844 55,77 0,008 0,692

3 629,78 314,89 1,7095 56,42 0,008 0,663

4 654,79 327,395 1,7774 56,66 0,008 0,690

5 702,81 351,405 1,9077 57,67 0,009 0,740

6 682,23 341,115 1,8518 53,53 0,009 0,719

7 678,04 339,02 1,8405 51,3 0,009 0,714

8 424,68 212,34 1,1528 53,52 0,006 0,447

9 411,97 205,985 1,1183 54,6 0,005 0,434

10 462,16 231,08 1,2545 56,54 0,006 0,487

11 590,27 295,135 1,6022 56,42 0,007 0,622

12 356,45 178,225 0,9675 54,44 0,005 0,375

13 393,59 196,795 1,0684 57,11 0,005 0,415

14 214,9 107,45 0,5833 56,66 0,003 0,226

15 486,29 243,145 1,3200 56,19 0,006 0,512

16 500,4 250,2 1,3583 55,8 0,006 0,527

17 742,04 371,02 2,0142 55,3 0,009 0,782

18 481,53 240,765 1,3071 56,45 0,006 0,507

19 510,38 255,19 1,3854 56,48 0,006 0,538

20 394,24 197,12 1,0701 56,51 0,005 0,415

21 422,85 211,425 1,1478 56,35 0,005 0,445

22 673,16 336,58 1,8272 55,54 0,009 0,709

23 389,83 194,915 1,0582 55,4 0,005 0,411

24 544,74 272,37 1,4786 52,27 0,007 0,574

25 304,86 152,43 0,8275 55,42 0,004 0,321

26 377,39 188,695 1,0244 56,56 0,005 0,397

27 358,06 179,03 0,9719 56,33 0,004 0,377

28 469,43 234,715 1,2742 54,6 0,006 0,494

29 556,82 278,41 1,5114 55,79 0,007 0,586

30 300,75 150,375 0,8164 56,27 0,004 0,317

31 316,76 158,38 0,8598 56,53 0,004 0,334

32 272,76 136,38 0,7404 56,4 0,003 0,287

33 394,23 197,115 1,0701 56,18 0,005 0,415

34 260,34 130,17 0,7067 56,14 0,003 0,274

Page 27: water distribution system project

27

35 368,81 184,405 1,0011 55,16 0,005 0,388

36 406,08 203,04 1,1023 54,8 0,005 0,428

TOTAL TOT. BD 45,6283

1 - EXTENDED PERIOD SIMULATION WITH LEAKAGE ALLOCATION:

Demand Multiplier = 0.61 Emitter exponent = 1.1

Total Duration= 24:00 h Hydraulic Time Step = 1:00 h

1.1 - Graph with velocity versus all pipes at some particular time.

Velocities in each conduit at 7:00 AM

Page 28: water distribution system project

28

Velocities in each conduit at 8:00 PM

Page 29: water distribution system project

Total Heads for each node at 7:00 AM

Total Heads for each node at 7:00 AM

29

Page 30: water distribution system project

Total Head for each node at 8:00 PM

Total Head for each node at 8:00 PM

30

Page 31: water distribution system project

31

The velocity changes according to the demand; in fact, during the night (low demand) we obtained low speeds (0.10 ÷ 0.30 m/s), but at eight o’clock in the morning, when we have peak demand day, the higher speeds are three times the lower ones (0.30 ÷ 0.90 m/s). 1.2 - Table with hydraulic head versus all nodes at some particular time

Node n Head at 7:00 Head at 20:00

1 120,74 120,79

2 119,17 119,52

3 118,4 118,9

4 117,23 117,95

5 116,74 117,55

6 116,77 117,58

7 117,29 118

8 118,78 119,2

9 119,82 120,05

10 120,2 120,35

11 119,06 119,43

12 117,07 117,82

13 116,93 117,71

14 117,4 118,09

15 118,21 118,75

16 118,97 119,36

17 120,36 120,49

18 119,89 120,11

19 117,65 118,29

20 117,54 118,21

21 117,2 117,93

22 117,74 118,36

23 118,02 118,6

24 118,32 118,83

25 118,43 118,93

26 118,74 119,18

27 119,24 119,58

28 119,19 119,54

29 119,3 119,63

30 119,45 119,74

31 120,61 120,69

32 119,97 120,17

33 120,31 120,44

34 120,44 120,55

35 119,95 120,15

36 120,21 120,36

From the values in this table we can find the relation that exists between the speed and the head.

Page 32: water distribution system project

32

1.3 - Graph with velocity V versus time for some selected pipes.

Here you can see in detail what was stated in paragraph 1.1, namely that the velocity of the water varies throughout the day according to demand. 1.4 - Graph with hydraulic head H versus time for some nodes

For example, comparing the speed and the head at 8.00 am is well known that when the demand for water increases, there is a parallel increase in speed and decrease in head. Then the two graphs (1.3 and 1.4) will be one the opposite of the other.

Page 33: water distribution system project

33

1.5 – Graph frequency plot (value of V for pipe or H for node versus fraction not exceeding the

value)

Frequency graph gives us the speed distribution as a percentage. For example if we look we see that the graph of 4.00 am in 95% of the water pipe has a velocity of about 0.28 m/s, but at 8.00 am in 95% of the water pipe has a velocity of about 0.85 m/s. We see that within 24 hours, the speed changes in all the pipes.

Page 34: water distribution system project

34

Same thing for the distribution of the head. See for example, that at 4.00 am to 50% of the pipes has a head of 118.15 m, while at 8.00 am, 50% of the pipes has a head of about 116.5 m.

Page 35: water distribution system project

35

2 - EXTENDED PERIOD SIMULATION WITH LEAKAGE ALLOCATION AND WATER

AGE ANALYSIS.

For this analysis we consider the second 24 hours. 2.1 – Table with Water Age versus all nodes at some particular time

Water Age analysis at 31:00 hours

Page 36: water distribution system project

36

Water age analysis at 44:00 hrs

In this pictures we can see how long it takes water from the reservoir to reach the various node at

certain hours. And we can see that the growth in demand less time spent using the water to reach the

various nodes.

Page 37: water distribution system project

37

2.2 – Graph with Water Age versus time for some nodes

In these graph we can see how much water takes to get to node during the different hours of the day.

2.3 – Graph frequency plot (value of Water Age for node versus fraction not exceeding the value)

Page 38: water distribution system project

38

Here we observe at certain hours, how long it takes water to each a percentage of the nodes. For example at 28.00 am per hour to reach 60% of the nodes, while at 32.00 am per hour to reach 93% of the nodes. 2.4 – Contour plot some instant of Water Ages. Here we see graphically how long does the water take to reach the different nodes of the network during the different hours of the day.

Page 39: water distribution system project

3 - EXTENDED PERIOD SIMULATION WITH LEAKAGE ALLOCATION AND WATER

QUALITY ANALYSIS.

3.1 Pictures with Chlorine concentration versus all nodes at some particular time.

• Chlorine Concentration at 32:00 hrs

EXTENDED PERIOD SIMULATION WITH LEAKAGE ALLOCATION AND WATER

hlorine concentration versus all nodes at some particular time.

Chlorine Concentration at 32:00 hrs

39

EXTENDED PERIOD SIMULATION WITH LEAKAGE ALLOCATION AND WATER

hlorine concentration versus all nodes at some particular time.

Page 40: water distribution system project

• Chlorine concentration at 44:00 hrs

Chlorine concentration at 44:00 hrs

40

Page 41: water distribution system project

41

This pictures provides us with the chlorine levels in the nodes during the different hours of the day,

the level of chlorine increases with the passing of the day.

3.2 – Graph with Chlorine concentration versus time for some nodes

This is the distribution of the concentration level of chlorine knowing that the reservoir was given as a value of 0.4 mg/l. In all nodes is lower during the night and higher during the day. 3.3 – Graph frequency plot (value of Chlorine concentration for node versus fraction not exceeding

the value)

Page 42: water distribution system project

42

We see the percentage distribution of chlorine at different times of the day.

Page 43: water distribution system project

43

3.4 – Contour plot for some instant of Chlorine concentration. This is the distribution of chlorine levels during the different hours of the day.

Chlorine concentration levels at

32:00 hrs

Chlorine concentration levels at

28:00 hrs

Chlorine concentration levels at

44:00 hrs

Chlorine concentration levels at

47:00 hrs

Page 44: water distribution system project

44

CONCLUSIONS: I had considered important to conclude the project in terms of costs. As I have reported at the beginning, (first table) the pipe cost and consequently the final sum is:

Pipe ID Length (m) Diam Unit Cost €/m Cost €

1 132,76 150 39,4 5230,744

2 374,68 125 37 13863,16

3 119,74 100 27,2 3256,928

4 312,72 100 27,2 8505,984

5 289,09 60 19,8 5723,982

6 336,33 60 19,8 6659,334

7 135,81 60 19,8 2689,038

8 201,26 60 19,8 3984,948

9 132,53 100 27,2 3604,816

10 144,66 125 37 5352,42

11 175,72 125 37 6501,64

12 112,17 200 54,4 6102,048

13 210,74 200 54,4 11464,256

14 75,41 250 72,9 5497,389

15 181,42 200 54,4 9869,248

16 146,96 125 37 5437,52

17 162,69 80 24,5 3985,905

18 99,64 60 19,8 1972,872

19 52,98 60 19,8 1049,004

20 162,97 60 19,8 3226,806

21 83,96 80 24,5 2057,02

22 49,82 100 27,2 1355,104

23 78,5 100 27,2 2135,2

24 99,27 100 27,2 2700,144

25 82,29 80 24,5 2016,105

26 147,49 60 19,8 2920,302

27 197,32 60 19,8 3906,936

28 83,3 100 27,2 2265,76

29 113,8 100 27,2 3095,36

30 80,82 100 27,2 2198,304

31 340,97 100 27,2 9274,384

32 77,39 80 24,5 1896,055

33 112,37 80 24,5 2753,065

34 37,34 100 27,2 1015,648

35 108,85 100 27,2 2960,72

36 182,82 125 37 6764,34

37 136,02 150 39,4 5359,188

38 56,7 150 39,4 2233,98

39 124,08 125 37 4590,96

40 234,6 60 19,8 4645,08

41 203,83 80 24,5 4993,835

42 248,05 60 19,8 4911,39

43 65,19 60 19,8 1290,762

44 210,09 80 24,5 5147,205

45 147,57 80 24,5 3615,465

46 103,8 80 24,5 2543,1

47 210,95 60 19,8 4176,81

48 75,08 80 24,5 1839,46

49 180,29 80 24,5 4417,105

50 149,05 80 24,5 3651,725

Page 45: water distribution system project

45

51 215,05 80 24,5 5268,725

52 144,44 100 27,2 3928,768

53 34,74 125 37 1285,38

54 59,93 150 39,4 2361,242

55 165,67 80 24,5 4058,915

56 119,97 100 27,2 3263,184

57 83,17 100 27,2 2262,224

58 1 300 90,7 90,7

TOTAL 8405,86 TOT. COST 239.228 €

The previous table is based on the following costs’ list:

Cost Table

D (mm) €/m

60 19,8

80 24,5

100 27,2

125 37

150 39,4

200 54,4

250 72,9

300 90,7

Now, is reported the whole amount of the project due to: valves (2 for pipe), Cutting Asfalt, Excavation, Supply and installation of polyethylene pipe, with PN 16 including fittings and covering with sand, Backfilling with gravel, Base layer, binder layer and wear layer of asphalt:

ARTICLE JOB

DESCRIPTION UNITS QUANTITY

UNIT

PRICE TOTAL

000 Cleaning the proposed site from all dirt or any un-required top soil up to 25cm and leveling the site, all according to drawings, specifications, conditions and directed instructions by the engineer.

L.S. 1,00 17694,00 106945,00

Page 46: water distribution system project

46

001 Cutting Asfalt. 0,60 x 8.302,00

m² 4992,08 5,00 24960,40

002

Excavation. The item also includes the demolition and transport a refusal of the asphalt. 0,60 x 2,00 x 8320,13

m³ 9984,17 15,00 149762,55

003 Supply and installation of polyethylene pipe, with PN 16, including fittings and covering with sand. With the following diameters:

a Ø 60 ml. 2381,70 19,80 47157,66

b Ø 80 ml. 1969,13 24,50 48243,69

c Ø 100 ml. 1905,24 27,20 51822,53

d Ø 125 ml. 1183,66 37,00 43795,42

e Ø 150 ml. 385,66 39,40 15195,00

f Ø 200 ml. 504,33 54,40 27435,55

g Ø 250 ml. 75,41 72,90 5497,39

h Ø 300 ml. 1,00 90,70 90,70

004 Supply and installation of valves, with following diameters:

a Ø 60 cad. 26 200,00 5200,00

b Ø 80 cad. 28 250,00 7000,00

c Ø 100 cad. 30 313,00 9390,00

d Ø 125 cad. 14 386,00 5404,00

e Ø 150 cad. 8 459,00 3672,00

f Ø 200 cad. 6 530,00 3180,00

g Ø 250 cad. 2 850,00 1700,00

h Ø 300 cad. 1 1000,00 1000,00

005 Backfilling with gravel. 0,60 x 1,20 x 8320,13

m³ 5990,49 35,00 209667,15

006 Asphalt. Base layer. 0,60 x 0,15 x 8320,13

m³ 748,81 40,00 29952,40

007 Asphalt. Binder. 0,60 x 0,07 x 8320,13

m³ 349,45 150,00 52417,50

008 Asphalt. Wear layer. 0,60 x 8320,13

m² 4992,08 16,50 82369,32

TOTAL EURO 931858,26