Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the...

186
Lecture Handouts on VECTORS AND CLASSICAL MECHANICS (MTH-622) Virtual University of Pakistan Pakistan

Transcript of Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the...

Page 1: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

Lecture Handouts

on

VECTORS AND CLASSICAL MECHANICS

(MTH-622)

Virtual University of Pakistan

Pakistan

Page 2: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

ii

About the Handouts

The following books have been mainly followed to prepare the slides and handouts:

1. Spiegel, M.R., Theory and Problems of Vector Analysis: And an Introduction to Tensor

Analysis. 1959: McGraw-Hill.

2. Spiegel, M.S., Theory and problems of theoretical mechanics. 1967: Schaum.

3. Taylor, J.R., Classical Mechanics. 2005: University Science Books.

4. DiBenedetto, E., Classical Mechanics: Theory and Mathematical Modeling. 2010:

Birkhรคuser Boston.

5. Fowles, G.R. and G.L. Cassiday, Analytical Mechanics. 2005: Thomson Brooks/Cole.

The first two books were considered as main text books. Therefore the students are advised to

read the first two books in addition to these handouts. In addition to the above mentioned books,

some other reference book and material was used to get these handouts prepared.

Page 3: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

3

Contents Module No. 101............................................................................................................................ 10

Example of Non- Conservative Field ..................................................................................... 10

Module No. 102............................................................................................................................ 11

Introduction to Simple Harmonic Motion and Oscillator ................................................... 11

Module No. 103............................................................................................................................ 13

Amplitude, Time period, Frequency and Energy of S.H.M ................................................. 13

Module No. 104............................................................................................................................ 14

Example of S.H.M ................................................................................................................... 14

Module No. 105............................................................................................................................ 16

Example of Energy of S.H.M .................................................................................................. 16

Module No. 106............................................................................................................................ 18

Damped Harmonic Oscillator ................................................................................................ 18

Module No. 107............................................................................................................................ 19

Example of Damped Harmonic Oscillator ........................................................................... 19

Module No. 108............................................................................................................................ 21

Eulerโ€™s Theorem โ€“ Derivation ............................................................................................... 21

Module No. 109............................................................................................................................ 23

Chaslesโ€™ Theorem.................................................................................................................... 23

Module No. 110............................................................................................................................ 24

Kinematics of a System of Particles ...................................................................................... 24

Module No. 111............................................................................................................................ 25

The Concept of Rectilinear Motion of Particles, Uniform Rectilinear Motion, Uniformly

Accelerated Rectilinear Motion ............................................................................................. 25

Module No. 112............................................................................................................................ 27

The Concept of Curvilinear Motion of Particles .................................................................. 27

Module No. 113............................................................................................................................ 28

Example Related to Curvilinear Coordinates ...................................................................... 28

Module No. 114............................................................................................................................ 30

Introduction to Projectile, Motion of a Projectile ................................................................ 30

Module No. 115............................................................................................................................ 33

Conservation of Energy for a System of Particles ............................................................... 33

Module No. 116............................................................................................................................ 34

Conservation of Energy .......................................................................................................... 34

Page 4: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

4

Module No. 117............................................................................................................................ 36

Introduction to Impulse โ€“ Derivation ................................................................................... 36

Module No. 118............................................................................................................................ 37

Example of Impulse ................................................................................................................ 37

Module No. 119............................................................................................................................ 38

Torque ...................................................................................................................................... 38

Module No. 120............................................................................................................................ 39

Example of Torque ................................................................................................................. 39

Module No. 121............................................................................................................................ 41

Introduction to Rigid Bodies and Elastic Bodies ................................................................. 41

Module No. 122............................................................................................................................ 42

Properties of Rigid Bodies ...................................................................................................... 42

Module No. 123............................................................................................................................ 43

Instantaneous Axis and Center of Rotation.......................................................................... 43

Module No. 124............................................................................................................................ 44

Centre of Mass & Motion of the Center of Mass ................................................................. 44

Module No. 125............................................................................................................................ 46

Centre of Mass & Motion of the Center of Mass ................................................................. 46

Module No. 126............................................................................................................................ 48

Example of moment of Inertia and Product of Inertia ........................................................ 48

Module No. 127............................................................................................................................ 49

Radius of Gyration .................................................................................................................. 49

Module No. 128............................................................................................................................ 50

Principal Axes for the Inertia Matrix ................................................................................... 50

Module No. 129............................................................................................................................ 51

Introduction to the Dynamics of a System of Particles ....................................................... 51

Module No. 130............................................................................................................................ 54

Introduction to Center of Mass and Linear Momentum .................................................... 54

Module No. 131............................................................................................................................ 55

Law of Conservation of Momentum for Multiple Particles ................................................ 55

Module No. 132............................................................................................................................ 57

Example of Conservation of Momentum .............................................................................. 57

Module No. 133............................................................................................................................ 60

Angular Momentum โ€“ Derivation ......................................................................................... 60

Page 5: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

5

Module No. 134............................................................................................................................ 62

Angular Momentum in Case of Continuous Distribution of Mass..................................... 62

Module No. 135............................................................................................................................ 64

Law of Conservation of Angular Momentum ...................................................................... 64

Module No. 136............................................................................................................................ 66

Example Related to Angular Momentum ............................................................................. 66

Module No. 137............................................................................................................................ 68

Kinetic Energy of a System about Principal Axes โ€“ Derivation ......................................... 68

Module No. 138............................................................................................................................ 70

Moment of Inertia of a Rigid Body about a Given Line ...................................................... 70

Module No. 139............................................................................................................................ 72

Example of M.I of a Rigid Body About Given Line............................................................. 72

Module No. 140............................................................................................................................ 75

Ellipsoid of Inertia .................................................................................................................. 75

Module No. 141............................................................................................................................ 76

Rotational Kinetic Energy ...................................................................................................... 76

Module No. 142............................................................................................................................ 79

Moment of Inertia & Angular Momentum in Tensor Notation ......................................... 79

Module No. 143............................................................................................................................ 81

Introduction to Special Moments of Inertia ......................................................................... 81

Module No. 144............................................................................................................................ 83

M.I. of the Thin Rod โ€“ Derivation ......................................................................................... 83

Module No. 145............................................................................................................................ 85

M.I. of Hoop or Circular Ring โ€“ Derivation ......................................................................... 85

Module No. 146............................................................................................................................ 87

M.I. of Annular Disk - Derivation ......................................................................................... 87

Module No. 147............................................................................................................................ 89

M.I. of a Circular Disk - Derivation ...................................................................................... 89

Module No. 148............................................................................................................................ 91

Rectangular Plate โ€“ Derivation.............................................................................................. 91

Module No. 149............................................................................................................................ 92

M.I. of Square Plate โ€“ Derivation .......................................................................................... 92

Module No. 150............................................................................................................................ 94

M.I. of Triangular Lamina โ€“ Derivation .............................................................................. 94

Page 6: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

6

Module No. 151............................................................................................................................ 96

M.I. of Elliptical Plate along its Major Axis โ€“ Derivation ................................................... 96

Module No. 152............................................................................................................................ 98

M.I. of a Solid Circular Cylinder - Derivation ..................................................................... 98

Module No. 153.......................................................................................................................... 100

M.I. of Hollow Cylindrical Shell - Derivation .................................................................... 100

Module No. 154.......................................................................................................................... 102

M.I of Solid Sphere - Derivation .......................................................................................... 102

Module No. 155.......................................................................................................................... 104

M.I. of the Hollow Sphere โ€“ Derivation .............................................................................. 104

Module No. 156.......................................................................................................................... 107

Inertia Matrix / Tensor of solid Cuboid .............................................................................. 107

Module No. 157.......................................................................................................................... 110

Inertia Matrix / Tensor of solid Cuboid .............................................................................. 110

Module No. 158.......................................................................................................................... 113

M.I of Hemi-Sphere โ€“ Derivation ........................................................................................ 113

Module No. 159.......................................................................................................................... 116

M.I. of Ellipsoid โ€“Derivation................................................................................................ 116

Module No. 160.......................................................................................................................... 120

Example 1 of Moment of Inertia.......................................................................................... 120

Module No. 161.......................................................................................................................... 122

Example 2 of Moment of Inertia.......................................................................................... 122

Module No. 162.......................................................................................................................... 124

Example 3 of Moment of Inertia.......................................................................................... 124

Module No. 163.......................................................................................................................... 126

Example 4 of Moment of Inertia.......................................................................................... 126

Module No. 164.......................................................................................................................... 129

Example 5 of Moment of Inertia.......................................................................................... 129

Module No. 165.......................................................................................................................... 131

Example 5 of Moment of Inertia.......................................................................................... 131

Module No. 166.......................................................................................................................... 133

Example 1 of Parallel Axis Theorem ................................................................................... 133

Module No. 167.......................................................................................................................... 135

Example 2 of Parallel Axis Theorem ................................................................................... 135

Page 7: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

7

Module No. 168.......................................................................................................................... 138

Example 3 of Parallel Axis Theorem ................................................................................... 138

Module No. 169.......................................................................................................................... 140

Example 4 of Parallel Axis Theorem ................................................................................... 140

Module No. 170.......................................................................................................................... 141

Perpendicular Axis Theorem ............................................................................................... 141

Module No. 171.......................................................................................................................... 143

Example 1 of Perpendicular Axis Theorem........................................................................ 143

Module No. 172.......................................................................................................................... 145

Example 2 of Perpendicular Axis Theorem........................................................................ 145

Module No. 173.......................................................................................................................... 149

Example 3 of Perpendicular Axis Theorem........................................................................ 149

Module No. 174.......................................................................................................................... 152

Problem of Moment of Inertia ............................................................................................. 152

Module No. 175.......................................................................................................................... 154

Existence of Principle Axes .................................................................................................. 154

Module No. 176.......................................................................................................................... 157

Determination of Principal Axes of Other Two When One is known .............................. 157

Module No. 177.......................................................................................................................... 159

Determination of Principal Axes by Diagonalizing the Inertia Matrix ........................... 159

Module No. 178.......................................................................................................................... 162

Relation of Fixed and Rotating Frames of Reference........................................................ 162

Module No. 179.......................................................................................................................... 165

Equation of Motion in Rotating Frame of Reference ........................................................ 165

Module No. 180.......................................................................................................................... 168

Example 1 of Equation of Motion in Rotating Frame of Reference................................. 168

Module No. 181.......................................................................................................................... 171

Example 2 of Equation of Motion in Rotating Frame of Reference................................. 171

Module No. 182.......................................................................................................................... 174

Example 3 of Equation of Motion in Rotating Frame of Reference................................. 174

Module No. 183.......................................................................................................................... 177

Example 4 of Equation of Motion in Rotating Frame of Reference................................. 177

Module No. 184.......................................................................................................................... 181

Example 5 of Equation of Motion in Rotating Frame of Reference................................. 181

Page 8: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

8

Module No. 185.......................................................................................................................... 183

General Motion of a Rigid Body .......................................................................................... 183

Module No. 186.......................................................................................................................... 185

Equation of Motion Relative to Coordinate System Fixed on Earth ............................... 185

Page 9: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

9

Page 10: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

10

Module No. 101

Example of Non- Conservative Field

Problem:

Show that the force field given by

๏ฟฝ๏ฟฝ = ๐‘ฅ2๐‘ฆ๐‘ง๐‘– โˆ’ ๐‘ฅ๐‘ฆ๐‘ง2๐‘— + 2๐‘ฅ๐‘ง๏ฟฝ๏ฟฝ

is non-conservative.

Solution:

We have

๏ฟฝ๏ฟฝ = ๐‘ฅ2๐‘ฆ๐‘ง๐‘– โˆ’ ๐‘ฅ๐‘ฆ๐‘ง2๐‘— + 2๐‘ฅ๐‘ง๏ฟฝ๏ฟฝ

To verify whether the force field F is conservative or not, we will check whether ๐›ป ร— ๏ฟฝ๏ฟฝ = 0 or

not.

โˆ‡ ร— ๏ฟฝ๏ฟฝ = |

๐‘– ๐‘— ๏ฟฝ๏ฟฝ๐œ•

๐œ•๐‘ฅโ„ ๐œ•๐œ•๐‘ฆโ„ ๐œ•

๐œ•๐‘งโ„

๐‘ฅ2๐‘ฆ๐‘ง โˆ’๐‘ฅ๐‘ฆ๐‘ง2 2๐‘ฅ๐‘ง

|

= ๐‘– [๐œ•

๐œ•๐‘ฆ(2๐‘ฅ๐‘ง) โˆ’

๐œ•

๐œ•๐‘ง(โˆ’๐‘ฅ๐‘ฆ๐‘ง2)] โˆ’ ๐‘— [

๐œ•

๐œ•๐‘ง(๐‘ฅ2๐‘ฆ๐‘ง) โˆ’

๐œ•

๐œ•๐‘ฅ(2๐‘ฅ๐‘ง)] + ๏ฟฝ๏ฟฝ [

๐œ•

๐œ•๐‘ฅ(โˆ’๐‘ฅ๐‘ฆ๐‘ง2) โˆ’

๐œ•

๐œ•๐‘ฆ(๐‘ฅ2๐‘ฆ๐‘ง)]

= (2๐‘ฅ๐‘ฆ๐‘ง)๐‘– โˆ’ (๐‘ฅ2๐‘ฆ โˆ’ 2๐‘ง)๐‘— + (๐‘ฆ๐‘ง2 + ๐‘ฅ2๐‘ง)๏ฟฝ๏ฟฝ

โ‰  0

As we obtain โˆ‡ ร— ๏ฟฝ๏ฟฝ โ‰  0

We conclude that ๏ฟฝ๏ฟฝ is non-conservative.

Page 11: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

11

Module No. 102

Introduction to Simple Harmonic Motion and Oscillator

Simple Harmonic Motion (SHM) is a particular type of oscillation and periodic motion in which

restoring force of an object is directly proportional to the displacement of the object acting in

opposite direction of displacement.

Mathematically, the restoring force ๐น is given by

๐น๐‘… = โˆ’๐‘˜๐‘ฅ

where the subscript ๐‘… represents the restoring force and ๐‘˜ is the constant of proportionality often

called the spring constant or modulus of elasticity.

In Newtonian mechanics, by Newton's second law we have eq. of S.H.M

๐น = ๐‘š๐‘Ž = ๐‘š๐‘‘2๐‘ฅ

๐‘‘๐‘ก2= โˆ’๐‘˜๐‘ฅ

or

๐‘š๏ฟฝ๏ฟฝ + ๐‘˜๐‘ฅ = 0

This vibrating system is called a simple harmonic oscillator or linear harmonic oscillator.

This type of motion is often called simple harmonic motion.

The following physical systems are some examples of simple harmonic oscillator

Mass on a spring

An object of mass m linked to a spring of spring constant k represents the simple harmonic

motion in closed region.

Page 12: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

12

The equation representing the period for the mass attached on a spring

๐‘ป = ๐Ÿ๐…โˆš๐’Ž

๐’Œ

The above equation expresses that the time period of oscillation is independent of amplitude as

well as the acceleration.

Simple pendulum

The movement of the mass attached to a simple pendulum is considered as simple harmonic

motion.

The time period of a mass m attached to a pendulum of length l with gravitational

acceleration g is given by

๐‘ป = ๐Ÿ๐…โˆš๐’

๐’ˆ

Page 13: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

13

Module No. 103

Amplitude, Time period, Frequency and Energy of S.H.M

Amplitude

Amplitude is defined as the maximum distance covered by the oscillating body in one oscillation

or length of a wave measured from its mean position.

The amplitude of a pendulum is one-half the distance that the mass covered in moving from one

terminal to the other. The vibrating sources generate waves, whose amplitude is proportional to

the amplitude of the vibrating source.

Time Period

Time period is minimum time required by a oscillation system to complete its one cycle of

oscillation of the specific system.

It is denoted by T and measured in seconds.

Frequency

The frequency (f) of an oscillatory system is the number of oscillations pass through a specific

point in one second.

It is measure in hertz (Hz).

The frequency of S.H.M can be calculate by using the following relation

๐‘“ =1

๐‘‡

Energy of S.H.M

If T is the kinetic energy, V the potential energy and ๐ธ = ๐‘‡ + ๐‘‰ the total energy of a simple

harmonic oscillator, then we have

๐พ. ๐ธ = ๐‘‡ =1

2๐‘š๐‘ฃ2

and

๐‘‰ =1

2๐‘˜๐‘ฅ2

Then the total energy of S.H.M will be

๐ธ =1

2๐‘š๐‘ฃ2 +

1

2๐‘˜๐‘ฅ2

Page 14: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

14

Module No. 104

Example of S.H.M

Problem Statement

A particle of mass 4 moves along ๐‘ฆ axis attracted towards the origin by a force whose magnitude

is numerically equal to 6๐‘ฆ. If the particle is initially at rest at ๐‘ฆ = 10,

i. The differential equation and initial conditions describing the motion,

ii. The position of the particle at any time,

iii. The speed and velocity of the particle at any time,

iv. The amplitude, time period and frequency of the vibration.

Solution:

i. Let ๐‘Ÿ = ๐‘ฆ be the position vector of the particle. The acceleration of the particle is

๐‘‘2๐‘Ÿ

๐‘‘๐‘ก2=

๐‘‘2๐‘ฆ

๐‘‘๐‘ก2

The net force acting on the particle is โˆ’6๐‘ฆ. Then by using the Newton's second law,

โˆ’6๐‘ฆ = 4๐‘‘2๐‘ฆ

๐‘‘๐‘ก2

or ๐‘‘2๐‘ฆ

๐‘‘๐‘ก2 +3

2๐‘ฆ = 0

which is the required differential equation. The required initial conditions (I. Cs) are

๐‘ฆ = 10, ๐‘‘๐‘ฆ/๐‘‘๐‘ก = 0 ๐‘Ž๐‘ก ๐‘ก = 0

ii. Since the general solution the diff. eq. is

When ๐‘ก = 0, ๐‘ฅ = 20 ๐‘ ๐‘œ ๐‘กโ„Ž๐‘Ž๐‘ก ๐ด = 20. Thus

๐‘ฆ = ๐ด cosโˆš3/2๐‘ก + ๐ต sinโˆš3/2 ๐‘ก (1)

Using I. Cs

At ๐‘ก = 0, ๐‘ฆ = 10. Thus ๐ด = 10. So,

๐‘ฆ = 10 cosโˆš3/2๐‘ก + Bsin โˆš3/2 ๐‘ก (2)

Page 15: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

15

๐‘‘๐‘ฆ

๐‘‘๐‘ก= โˆ’10โˆš3/2 sinโˆš3/2 ๐‘ก + โˆš3/2Bcosโˆš3/2๐‘ก

(3)

Since at ๐‘ก = 0,โ‡’ ๐‘‘๐‘ฆ

๐‘‘๐‘ก= 0

Thus, we get ๐ต = 0. Hence (2) becomes

๐‘ฆ = 10 cosโˆš3/2๐‘ก (4)

This gives the position at any time.

iii. Speed at any time?

From (6) ๐‘‘๐‘ฆ

๐‘‘๐‘ก= โˆ’10โˆš3/2 sinโˆš3/2๐‘ก

This gives the speed at any time.

iv. Amplitude, T, F ?

General form for the position of a particle moving to and fro is

๐‘ฆ(๐‘ก) = A cos(2๐œ‹๐‘ก/T)

Thus, ๐‘ฆ = 10 cosโˆš3/2๐‘ก

Amplitude = 10

Period = T = 2โˆš2

3๐œ‹

Frequency = 1 ๐‘‡โ„

Page 16: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

16

Module No. 105

Example of Energy of S.H.M

ENERGY OF A SIMPLE HARMONIC OSCILLATOR

Example:

Find the total energy of the force ๏ฟฝ๏ฟฝ = โˆ’3๐‘ฅ๐‘– acting on a simple harmonic oscillator, where ๐‘–

represents the direction.

Solution:

Since the total energy of SHM

๐ธ = ๐‘‡ + ๐‘‰

By Newton's second law,

๐น = ๐‘š๐‘Ž

therefore

๐น = ๐‘š๐‘‘๐‘ฃ

๐‘‘๐‘ก= โˆ’3๐‘ฅ

๐‘‘๐‘ฃ

๐‘‘๐‘ก= โˆ’

3

๐‘š๐‘ฅ

Integrating with respect to ๐‘ก, we have

๐‘ฃ = โˆ’3

2๐‘š๐‘ฅ2 + ๐‘

๐‘ can be calculated if the initial condition is given. Assuming ๐‘ฃ = 0 initially, which gives ๐‘ = 0.

Thus ๐‘ฃ = โˆ’3

2๐‘š๐‘ฅ2

So,

๐‘‡ =9

8๐‘š๐‘ฅ4

Now, as the potential energy is given by V where ๏ฟฝ๏ฟฝ = โˆ’๐›ป๐‘‰

or ๐น = โˆ’3๐‘ฅ๐‘– = โˆ’(๐œ•๐‘‰

๐œ•๐‘ฅ๐‘– +

๐œ•๐‘‰

๐œ•๐‘ฆ๐‘— +

๐œ•๐‘‰

๐œ•๐‘ง๐‘˜)

Page 17: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

17

Then

๐œ•๐‘‰

๐œ•๐‘ฅ= 3๐‘ฅ ,

๐œ•๐‘‰

๐œ•๐‘ฆ= 0,

๐œ•๐‘‰

๐œ•๐‘ง= 0

By integrating, we obtain

๐‘‰ =3

2๐‘ฅ2 + ๐‘1

Assuming ๐‘‰ = 0, corresponding to ๐‘ฅ = 0, we get ๐‘1 = 0.

So the potential energy is ๐‘‰ =1

2๐‘˜๐‘ฅ2

Hence

๐ธ =9

8๐‘š๐‘ฅ4 +

1

2๐‘˜๐‘ฅ2

Page 18: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

18

Module No. 106

Damped Harmonic Oscillator

The forces acting on a harmonic oscillator are called damping forces which tend to decrease the

amplitude of the successive oscillations or simply force apposing the motion. Since the damping

force is proportional to the velocity. Thus, mathematically,

๐น๐‘‘ = โˆ’๐‘๐‘ฃ

= โˆ’๐‘๏ฟฝ๏ฟฝ

where ๐‘‘ represents the damping force and ๐‘ is the damping coefficient.

The negative sign shows that that direction of ๐น๐‘‘ is opposite to the velocity ๐‘ฃ.

As we know that for the restoring force:

๐‘š๏ฟฝ๏ฟฝ + ๐‘˜๐‘ฅ = 0

Adding the restoring force with the damping force, the equation of motion of the damped

harmonic oscillator will be,

๐‘š๏ฟฝ๏ฟฝ + ๐‘˜๐‘ฅ = โˆ’๐‘๏ฟฝ๏ฟฝ

or

๐‘š๏ฟฝ๏ฟฝ + ๐‘๏ฟฝ๏ฟฝ + ๐‘˜๐‘ฅ = 0

Since the mass is not equal to zero, therefore ๏ฟฝ๏ฟฝ +๐‘

๐‘š๏ฟฝ๏ฟฝ +

๐‘˜

๐‘š๐‘ฅ = 0

let

๐‘

๐‘š= 2๐œ, โˆš

๐‘˜

๐‘š= ๐œ”0

then the equation can be written as

๏ฟฝ๏ฟฝ + 2๐œ๏ฟฝ๏ฟฝ + ๐œ”02๐‘ฅ = 0

Page 19: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

19

Module No. 107

Example of Damped Harmonic Oscillator

Problem Statement

A particle of mass 4 moves along ๐‘ฆ axis attracted towards the origin by a force whose magnitude

is numerically equal to 6๐‘ฆ. If the particle is initially at rest at ๐‘ฆ = 10. Consider that the particle has

also a damping force whose magnitude is numerically equal to 6 times the instantaneous speed.

Find

i. Position of the particle

ii. Velocity of the particle at any time

Solution

i. Since we have by Newton's second law

๐น = ๐‘š๐‘Ž = 4๏ฟฝ๏ฟฝ

According to the given information, the damping force is โˆ’6๏ฟฝ๏ฟฝ.

So the net force is

โˆ’6๐‘ฆ โˆ’ 6๏ฟฝ๏ฟฝ

Hence,

4๏ฟฝ๏ฟฝ = โˆ’6๐‘ฆ โˆ’ 6๏ฟฝ๏ฟฝ

or

๏ฟฝ๏ฟฝ +2

3๏ฟฝ๏ฟฝ +

2

3๐‘ฆ = 0

The solution of the above equation is

๐‘ฆ = ๐‘’โˆ’โˆš2 3โ„ ๐‘ก(๐ด + ๐ต๐‘ก)

and

๏ฟฝ๏ฟฝ = ๐ต๐‘’โˆ’โˆš2 3โ„ ๐‘ก โˆ’ โˆš2 3โ„ (๐ด + ๐ต๐‘ก)๐‘’โˆ’โˆš2 3โ„ ๐‘ก

To find the values of constants, we use I. Cs

At ๐‘ก = 0, ๐‘ฆ = 10 and ๐‘‘๐‘ฆ/๐‘‘๐‘ก = 0; thus,

๐ด = 10

and 0 = ๐ต(1) โˆ’ โˆš2 3โ„ (10)

๐ต = 10โˆš2 3โ„

and the solution gives

๐‘ฆ = ๐‘’โˆ’โˆš2 3โ„ ๐‘ก(๐ด + ๐ต๐‘ก)

= 10๐‘’โˆ’โˆš2 3โ„ ๐‘ก(1 + โˆš2 3โ„ ๐‘ก)

Page 20: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

20

the position at any time t.

Page 21: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

21

Module No. 108

Eulerโ€™s Theorem โ€“ Derivation

The following theorem, called Euler's theorem, is fundamental in the motion of rigid bodies.

Theorem Statement

โ€œA rotation of a rigid body about a fixed point of the body is equivalent to a rotation about a line

which passes through the point.โ€

The line referred to is called the instantaneous axis of rotation. Rotations can be considered as

finite or infinitesimal. Finite rotations cannot be represented by vectors since the commutative

law fails. However, infinitesimal rotations can be represented by vectors.

Proof:

Let O be the fixed point in the body, which we take as a sphere S. Further, we take O at the

center of the sphere. Let A, B be two distinct points on the sphere. As the body moves, the point

O (on the axis) remains foxed and A and B suffer displacement.

Let ๐ดโ€™ and ๐ตโ€™ bet the new locations of the points A and B after an infinitesimal time interval ๐›ฟ๐‘ก

respectively.We join (A, B) and (๐ดโ€™, ๐ตโ€™) by great circular areas.

Also we join (๐ด, ๐ดโ€™) and (๐ต, ๐ตโ€™) by mean of great circular arcs. Let Aโ€ and Bโ€ draw axes at right

angles, which meat at the point C on the sphere.

We join C with A, B, ๐ดโ€™, ๐ตโ€™ by means of great circular arcs.

Consider the spherical triangles โˆ†๐ถ๐ดโ€ฒ๐ด" and โˆ†๐ถ๐ด๐ด". Obviously

Page 22: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

22

i. ๐‘š < ๐ถ๐ด"A โ‰…CA"๐ดโ€ฒ

ii. ๐ด๐ด"=A"๐ดโ€ฒ

iii. ๐ถ๐ด" is common to triangle

Therefore โˆ†๐ถ๐ด๐ด" โ‰… โˆ†๐ถ๐ดโ€ฒ๐ด" and it follows that ๐ถ๐ด = ๐ถ๐ดโ€™

Similarly for the triangle โˆ†๐ถ๐ด๐ต ๐‘Ž๐‘›๐‘‘ โˆ†๐ถ๐ดโ€ฒ๐ตโ€ฒ, we have

๐ถ๐ต = ๐ถ๐ตโ€™, ๐ถ๐ดโ€™ = ๐ถ๐ด ๐‘Ž๐‘›๐‘‘ ๐ด๐ต = ๐ดโ€™๐ตโ€™

The last relation is due to the fact that by the definition of rigid body, the distance between a pair

of particles remains unchanged. Hence

โˆ†๐ถ๐ด๐ต โ‰… โˆ†๐ถ๐ดโ€ฒ๐ตโ€ฒ

The portion of rigid body lying in โˆ†๐ถ๐ด๐ต has moved to โˆ†๐ถ๐ดโ€ฒ๐ตโ€ฒ.

In this process the point O and C have remained fixed, Although the later was at rest only

instantaneously. Therefore the body has under gone a rotation about the axis OC.

Hence the theorem.

Page 23: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

23

Module No. 109

Chaslesโ€™ Theorem

Theorem Statement:

Chasleโ€™s theorem states that the most general rigid body displacement can be produced by a

translation along a line (called its screw axis) followed (or preceded) by a rotation about that line.

Explanation:

A rigid body has six degrees of freedom.

By Eulerโ€™s theorem, three of these are associated with pure rotation.

The remaining three must be associated with translation.

To describe the general motion of a rigid body, think of the general motion as translation

of a fixed point ๐‘‚ in the body to a point ๐‘‚โ€ฒ followed by the rotation about an axis through

๐‘‚โ€ฒ.

Page 24: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

24

Module No. 110

Kinematics of a System of Particles (Space, time & matter)

Kinematics is the branch of mechanics deals with the moving objects without reference to the

forces which cause the motion.

In other words we can say those kinematics are the features or properties of motion of concerned

with system of particles (rigid bodies).

Here some features of rigid body motion are

Displacement

Position

Velocity

Linear Velocity & Angular Velocity

Linear Acceleration & Angular Acceleration

Motion of a Rigid Body (Translation & Rotation)

From everyday experience, we all have some idea as to the meaning of each of the following terms

or concepts. However, we would certainly find it difficult to formulate completely satisfactory

definitions. We take them as undefined concepts.

I. Space. This is closely related to the concepts of point, position,' direction and displacement.

Measurement in space involves the concepts of length or distance, with which we assume

familiarity. Units of length are feet, meters, miles, etc.

II. Time. This concept is derived from our experience of having one event taking place after, before

or simultaneous with another event. Measurement of time is achieved, for example, by use of

clocks. Units of time are seconds, hours, years, etc.

III. Matter. Physical objects are composed of "small bits of matter" such as atoms and molecules.

From this we arrive at the concept of a material object called a particle which can be considered as

occupying a point in space and perhaps moving as time goes by. A measure of the "quantity of

matter" associated with a particle is called its mass. Units of mass are grams, kilograms, etc. Unless

otherwise stated we shall assume that the mass of a particle does not change with time.

Page 25: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

25

Module No. 111

The Concept of Rectilinear Motion of Particles, Uniform Rectilinear Motion,

Uniformly Accelerated Rectilinear Motion

When a moving particle remains on a single straight line, the motion is said to be rectilinear. In

this case, without loss of generality we can choose the ๐‘ฅ-axis as the line of motion.

The general equation of motion is then

๐น = ๐‘š๐‘Ž โŸน ๐น(๐‘ฅ, ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ) = ๐‘š๏ฟฝ๏ฟฝ

Rectilinear motion for a particle:

Rectilinear motion of a body is defined by considering the two point of a body covered the same

distance in the parallel direction. The figures below illustrate rectilinear motion for a particle and

body.

Rectilinear motion for a body:

In the above figures, ๐‘ฅ(๐‘ก) represents the position of the particles along the direction of motion, as

a function of time t.

An example of linear motion is an athlete running g along a straight track.

The rectilinear motion can be of two types:

i. Uniform rectilinear motion

ii. Non uniform rectilinear motion

Uniform Rectilinear Motion:

Uniform rectilinear motion is a type of motion in which the body moves with uniform velocity or

zero acceleration.

Page 26: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

26

In contrast, Non uniform rectilinear motion is such type of motion with variable velocity or non-

zero acceleration.

Uniformly accelerated rectilinear motion:

Uniformly accelerated rectilinear motion is a special case of non-uniform rectilinear motion along

a line is that which arises when an object is subjected to constant acceleration. This kind of motion

is called uniformly accelerated motion.

Uniformly accelerated motion is a type of motion in which the velocity of an object changes by an

equal amount in every equal intervals of time.

An example of uniformly accelerated body is freely falling object in which the amount of

gravitational acceleration remains same.

๐น = ๐‘š๐‘”

Page 27: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

27

Module No. 112

The Concept of Curvilinear Motion of Particles

The motion of a particle moving in a curved path is called curvilinear motion. Example: A stone

thrown into the air at an angle.

Curvilinear motion describes the motion of a moving particle that conforms to a known or fixed

curve. The study of such motion involves the use of two co-ordinate systems, the first being

planar motion and the latter being cylindrical motion.

Tangential and normal unit vectors are usually denoted by ๐‘’๐‘ก and ๐‘’๐‘› respectively.

Velocity of Curvilinear motion

If the tangential and normal unit vectors are ๐‘’๐‘ก and ๐‘’๐‘› respectively, then the velocity will be

๏ฟฝ๏ฟฝ =๐‘‘๐‘ 

๐‘‘๐‘ก๐‘’๐‘ก

You have already learnt that

๐‘ฃ = vT

Acceleration of Curvilinear motion

If the tangential and normal unit vectors are ๐‘’๐‘ก and ๐‘’๐‘› respectively, then the acceleration will be

๏ฟฝ๏ฟฝ =๐‘‘2๐‘ 

๐‘‘๐‘ก2๐‘’๐‘ก +

(๐‘‘s๐‘‘๐‘กโ„ )

2

๐œŒ๐‘’๐‘›

You have already learnt that

๐‘Ž = T๐‘‘v

๐‘‘๐‘ก+

v2

rN

Example

A stone thrown into the air at an angle.

A car driving along a curved road.

Throwing paper airplanes or paper darts is an example of curvilinear motion.

Page 28: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

28

Module No. 113

Example Related to Curvilinear Coordinates

Example 1

Problem Statement

Prove that a cylindrical coordinate system is orthogonal.

Solution

The position vector of any point in cylindrical coordinates is

๐‘Ÿ = ๐‘ฅ๐‘– + ๐‘ฆ๐‘— + ๐‘ง๏ฟฝ๏ฟฝ

We studied that the in cylindrical coordinates

๐‘ฅ = ๐œŒ cos๐œ‘ , ๐‘ฆ = ๐œŒ sin ๐œ‘, ๐‘ง = ๐‘ง

this implies

๐‘Ÿ = ๐œŒ cos๐œ‘ ๐‘– + ๐œŒ sin๐œ‘ ๐‘— + ๐‘ง๏ฟฝ๏ฟฝ

The tangent vectors to the ฯ, ฯ† and ะณ curves are given respectively by ๐œ•๐‘Ÿ

๐œ•๐œŒ ,

๐œ•๐‘Ÿ

๐œ•๐œ‘,๐œ•๐‘Ÿ

๐œ•๐‘ง and where

๐œ•๐‘Ÿ

๐œ•๐œŒ= cos๐œ‘ ๐‘– + sin๐œ‘ ๐‘—

๐œ•๐‘Ÿ

๐œ•๐œ‘= โˆ’๐œŒ sin๐œ‘ ๐‘– + ๐œŒ cos๐œ‘ ๐‘—

๐œ•๐‘Ÿ

๐œ•๐‘ง= ๏ฟฝ๏ฟฝ

The unit vectors in these directions are

๐‘’1 = ๐‘’๐œŒ =๐œ•๐‘Ÿ ๐œ•๐œŒโ„

|๐œ•๐‘Ÿ ๐œ•๐œŒโ„ |=

cos๐œ‘ ๐‘– + sin๐œ‘ ๐‘—

|cos ๐œ‘ ๐‘– + sin๐œ‘ ๐‘—|

=cos๐œ‘ ๐‘– + sin ๐œ‘ ๐‘—

โˆšcos2 ๐œ‘ + sin2 ๐œ‘ = cos๐œ‘ ๐‘– + sin๐œ‘ ๐‘—

๐‘’2 = ๐‘’๐œ‘ =๐œ•๐‘Ÿ ๐œ•๐œ‘โ„

|๐œ•๐‘Ÿ ๐œ•๐œ‘โ„ |=

โˆ’๐œŒ sin๐œ‘ ๐‘– + ๐œŒ cos๐œ‘ ๐‘—

|โˆ’๐œŒ sin๐œ‘ ๐‘– + ๐œŒ cos๐œ‘ ๐‘—|

=๐œŒ(โˆ’ sin ๐œ‘ ๐‘– + cos๐œ‘)

โˆš๐œŒ2 cos2 ๐œ‘ + ๐œŒ2 sin2 ๐œ‘ = โˆ’sin๐œ‘ ๐‘– + cos๐œ‘ ๐‘—

๐‘’3 = ๐‘’๐‘ง =๐œ•๐‘Ÿ ๐œ•๐‘งโ„

|๐œ•๐‘Ÿ ๐œ•๐‘งโ„ |= ๏ฟฝ๏ฟฝ

Then

Page 29: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

29

๐‘’1. ๐‘’2 = (cos๐œ‘ ๐‘– + sin๐œ‘ ๐‘—). (โˆ’ sin๐œ‘ ๐‘– + cos๐œ‘ ๐‘—)

= โˆ’sin๐œ‘ cos๐œ‘ +sin๐œ‘ cos๐œ‘ = 0

๐‘’2. ๐‘’3 = (โˆ’sin๐œ‘ ๐‘– + cos๐œ‘ ๐‘—). ๏ฟฝ๏ฟฝ = 0

๐‘’3. ๐‘’1 = ๏ฟฝ๏ฟฝ. (cos๐œ‘ ๐‘– + sin๐œ‘ ๐‘—) = 0

and so ๐‘’1, ๐‘’2 and ๐‘’3 are mutually perpendicular and the coordinate system is orthogonal.

Example 2

Problem Statement

Prove

๐‘‘๐‘’๐œŒ

๐‘‘๐‘ก= ๐œ‘๐‘’๐œ‘

๐‘‘๐‘’๐œ‘

๐‘‘๐‘ก= โˆ’๐œ‘๐‘’๐œŒ

where dots denote differentiation with respect to time t.

Solution

We have

๐‘’๐œŒ = cos๐œ‘ ๐‘– + sin๐œ‘ ๐‘—

and

๐‘’๐œ‘ = โˆ’sin๐œ‘ ๐‘– + cos๐œ‘ ๐‘—

Then

๐‘‘๐‘’๐œŒ

๐‘‘๐‘ก=

๐‘‘

๐‘‘๐‘ก(cos๐œ‘ ๐‘– + sin๐œ‘ ๐‘—)

= โˆ’sin ๐œ‘ ๏ฟฝ๏ฟฝ๐‘– + cos๐œ‘ ๏ฟฝ๏ฟฝ๐‘— = ๏ฟฝ๏ฟฝ(โˆ’ sin๐œ‘ ๐‘– + cos๐œ‘ ๐‘—) = ๏ฟฝ๏ฟฝ๐‘’๐œ‘

๐‘‘๐‘’๐œ‘

๐‘‘๐‘ก=

๐‘‘

๐‘‘๐‘ก(โˆ’ sin๐œ‘ ๐‘– + cos๐œ‘ ๐‘—)

= โˆ’cos๐œ‘ ๏ฟฝ๏ฟฝ๐‘– โˆ’ sin ๐œ‘ ๏ฟฝ๏ฟฝ๐‘— = โˆ’๏ฟฝ๏ฟฝ(cos๐œ‘ ๏ฟฝ๏ฟฝ๐‘– + sin๐œ‘ ๏ฟฝ๏ฟฝ๐‘—) = โˆ’๏ฟฝ๏ฟฝ๐‘’๐œŒ

Page 30: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

30

Module No. 114

Introduction to Projectile, Motion of a Projectile

Introduction to Projectile

If a ball is thrown from one person to another or an object is dropped from a moving plane, then

their path of traveling/motion is often called a projectile. If air resistance is negligible, a projectile

can be considered as a freely falling body so the Eq of motion will be

md2r

dt2= โˆ’mg

or

d2r

dt2= โˆ’g

with appropriate I.Cs

Motion of a Projectile with Resistance

Earlier, we studied the motion of a projectile under the assumption that air resistance is negligible.

If we further assume that the motion takes place in the vertical plane, (๐‘‹๐‘Œ-plane), and the only

force acting on the projectile is the gravity, then the equation of motion will be

d2r

dt2= g = โˆ’gj

Here we will discuss the problem of projectile motion when air resistance is taken into account.

Assuming the model of retarding force in which

๐น โˆž ๐‘ฃ

or

๐น = โˆ’๐‘˜1๐‘ฃ

Let the initial velocity of the projectile be ๐‘ฃ0 and angle of projection be ๐œƒ

The initial conditions can be taken as

๐‘ฅ(๐‘ก = 0) = ๐‘ฆ(๐‘ก = 0) = 0

๏ฟฝ๏ฟฝ(๐‘ก = 0) = ๐‘ฃ0 cos ๐œƒ = ๐‘ข1

๏ฟฝ๏ฟฝ(๐‘ก = 0) = ๐‘ฃ0 sin ๐œƒ = ๐‘ฃ1

The equation of motion in the horizontal and vertical direction can be written as

๐‘š๏ฟฝ๏ฟฝ = โˆ’๐‘˜1๏ฟฝ๏ฟฝ

or ๏ฟฝ๏ฟฝ = โˆ’๐‘˜1

๐‘š๏ฟฝ๏ฟฝ = โˆ’๐‘˜๏ฟฝ๏ฟฝ (1)

๐‘š๏ฟฝ๏ฟฝ = โˆ’๐‘˜๏ฟฝ๏ฟฝ โˆ’ ๐‘š๐‘” (2)

By the substitution ๏ฟฝ๏ฟฝ = ๐‘ง we can solve eq (1) as

Page 31: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

31

๐‘ง = ๏ฟฝ๏ฟฝ = ๐ด๐‘’โˆ’๐‘˜๐‘ก

With the initial condition ๏ฟฝ๏ฟฝ = ๐‘ข1, when ๐‘ก = 0, we obtain the constant of integration ๐ด = ๐‘ข1

so that

๏ฟฝ๏ฟฝ = ๐‘ข1๐‘’โˆ’๐‘˜๐‘ก

Another integration gives

๐‘ฅ = โˆ’๐‘ข1๐‘’

โˆ’๐‘˜๐‘ก

๐‘˜+ ๐ต

The initial condition ๐‘ฅ(0) = 0 gives ๐ต =๐‘ข1

๐‘˜โ„ . Hence the solution of equation (1) can be

written as

๐‘ฅ =๐‘ข1

๐‘˜(1 โˆ’ ๐‘’โˆ’๐‘˜๐‘ก) (3)

We can solve equation (2) in the same manner and obtain

๐‘ฆ = โˆ’๐‘”๐‘ก

๐‘˜+

๐‘˜๐‘ฃ1+๐‘”

๐‘˜2(1 โˆ’ ๐‘’โˆ’๐‘˜๐‘ก) (4)

The path of motion can be obtained from (3) and (4) by eliminating ๐‘ก

๐‘ฆ =๐‘”

๐‘˜2ln (1 โˆ’

๐‘˜๐‘ฅ

๐‘ข1) +

๐‘˜๐‘ฃ1 + ๐‘”

๐‘˜2

๐‘˜๐‘ฅ

๐‘ข1

which is no longer a parabola.

We can solve equation (2) in the same manner and obtain

๐‘ฆ = โˆ’๐‘”๐‘ก

๐‘˜+

๐‘˜๐‘ฃ1+๐‘”

๐‘˜2(1 โˆ’ ๐‘’โˆ’๐‘˜๐‘ก) (4)

The path of motion can be obtained from (3) and (4) by eliminating ๐‘ก

๐‘ฆ =๐‘”

๐‘˜2ln (1 โˆ’

๐‘˜๐‘ฅ

๐‘ข1) +

๐‘˜๐‘ฃ1 + ๐‘”

๐‘˜2

๐‘˜๐‘ฅ

๐‘ข1

which is no longer a parabola.

Page 32: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

32

Time of Flight ๐‰ Time of flight can be found by putting in equation (4) ๐‘ฆ = 0 and ๐‘ก = ๐œ

0 = โˆ’๐‘”๐œ

๐‘˜+

๐‘˜๐‘ฃ1 + ๐‘”

๐‘˜2(1 โˆ’ ๐‘’โˆ’๐‘˜๐œ)

๐œ =๐‘˜๐‘ฃ1+๐‘”

๐‘”๐‘˜(1 โˆ’ ๐‘’โˆ’๐‘˜๐œ) (5)

This equation can be solved exactly for ๐œ. To find an approximate solution, we expand the

exponential factor in equation (5), using

๐‘’๐‘ฅ = 1 + ๐‘ฅ +๐‘ฅ2

2!+

๐‘ฅ3

3!+ โ‹ฏโ€ฆโ€ฆ ..

Form equation (5)

๐œ =๐‘˜๐‘ฃ1 + ๐‘”

๐‘”๐‘˜(๐‘˜๐œ โˆ’

๐‘˜2๐œ2

๐‘˜๐œ+

๐‘˜3๐œ3

3!+ โ‹ฏ . . )

1 =๐‘˜๐‘ฃ1 + ๐‘”

๐‘”๐‘˜(๐‘˜ โˆ’

๐‘˜2๐œ

๐‘˜๐œ+

๐‘˜3๐œ2

3!+ โ‹ฏ . . )

which on simplification gives

๐œ =2๐‘ฃ1

๐‘˜๐‘ฃ1 + ๐‘”+

1

3๐‘˜๐œ2 + โ‹ฏ . .

In the limit of small air resistance (i.e. ๐‘˜ โ†’ 0), the above expression reduces to

๐œ =2๐‘ฃ1

๐‘˜๐‘ฃ1+๐‘”+

๐‘˜

3๐œ2 (6)

When there is no resistance, (๐‘˜ = 0), obtain from (6)

๐œ0 =2๐‘ฃ1

๐‘”=

2๐‘ฃ0 sin ๐œƒ

๐‘”

If ๐‘˜ is non-zero small number, then the time of flight ๐œ will be very close to ๐œ0. Substituting ๐œ0 for

๐œ on the R.H.S of (6), and simplifying we get

๐œ =2๐‘ฃ1

๐‘”(1 โˆ’

๐‘˜๐‘ฃ1

3๐‘”)

The above equation gives a formula for approximate time of flight in the presence of a weak

retarding force.

Page 33: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

33

Module No. 115

Conservation of Energy for a System of Particles

Statement

โ€œThe law of conservation of energy describes that the net energy of an isolated system remains

conserved. Energy can neither be created nor destroyed; rather, it transforms from one form to

another.โ€

Theorem Statement

(Principle of conservation of energy)

In case of conservative force field, the total energy is a constant. i.e.,

If ๐‘‡ is for kinetic energy and ๐‘‰ is for potential energy, then the total energy ๐ธ is

๐ธ = ๐‘‡ + ๐‘‰ = constant

Explanation

For a conservative force field, we have already learned that the work done by the system of

particles is

Work done = change in kinetic energy = ๐‘Š = ๐‘‡2 โ€“ ๐‘‡1

Also Work done = change in potential energy = ๐‘Š = ๐‘‰1 โ€“ ๐‘‰2

By comparing, we get

๐‘‡2 โ€“ ๐‘‡1 = ๐‘‰1 โ€“ ๐‘‰2

or

๐‘‡1 + ๐‘‰1 = ๐‘‡2 + ๐‘‰2

which can be written as

1

2๐‘š๐‘ฃ1

2 + ๐‘‰1 =1

2๐‘š๐‘ฃ2

2 + ๐‘‰2

.

Page 34: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

34

Module No. 116

Conservation of Energy

Example

Consider the force field ๐น = โˆ’๐‘˜๐‘Ÿ3๐‘Ÿ

i. Find whether the given field is conservative or not.

ii. Find the potential energy of the given force field of part (i).

iii. For the particle moving in ๐‘ฅ๐‘ฆ โˆ’ plane, find the work done by the force in moving the

particle from A to B, where A is the point where ๐‘Ÿ = ๐‘Ž, and B where ๐‘Ÿ = ๐‘.

iv. If the particle of mass ๐‘š moves with velocity ๐‘ฃ =๐‘‘๐‘Ÿ

๐‘‘๐‘ก in this field, show that if ๐ธ is the

constant, total energy then

v. 1

2 ๐‘š (

๐‘‘๐‘Ÿ

๐‘‘๐‘ก)2

+1

5 ๐‘˜๐‘Ÿ5 = ๐ธ

Solution

i. As ๏ฟฝ๏ฟฝ = โˆ’๐‘˜๐‘Ÿ3๐‘Ÿ = โˆ’๐‘˜(๐‘ฅ2 + ๐‘ฆ2)3/2(๐‘ฅ๐‘– + ๐‘ฆ๐‘—)

โˆ‡ ร— ๏ฟฝ๏ฟฝ = |

๐‘– ๐‘— ๐‘˜

๐œ• ๐œ•๐‘ฅโ„ ๐œ• ๐œ•๐‘ฆโ„ ๐œ• ๐œ•๐‘งโ„

โˆ’๐‘˜(๐‘ฅ2 + ๐‘ฆ2)3/2๐‘ฅ โˆ’๐‘˜(๐‘ฅ2 + ๐‘ฆ2)3/2๐‘ฆ 0

|

= ๐‘– [๐œ•

๐œ•๐‘ฆ(0) โˆ’

๐œ•

๐œ•๐‘ง(โˆ’๐‘˜(๐‘ฅ2 + ๐‘ฆ2)3/2๐‘ฆ)] + ๐‘— [

๐œ•

๐œ•๐‘ง(โˆ’๐‘˜(๐‘ฅ2 + ๐‘ฆ2)3/2๐‘ฅ) โˆ’

๐œ•

๐œ•๐‘ฅ(0)]

+ ๐‘˜ [๐œ•

๐œ•๐‘ฅ(โˆ’๐‘˜(๐‘ฅ2 + ๐‘ฆ2)3/2๐‘ฆ) โˆ’

๐œ•

๐œ•๐‘ฆ(โˆ’๐‘˜(๐‘ฅ2 + ๐‘ฆ2)3/2๐‘ฅ)]

= โˆ’3๐‘˜(๐‘ฅ2 + ๐‘ฆ2)12๐‘ฅ๐‘ฆ + 3๐‘˜(๐‘ฅ2 + ๐‘ฆ2)

12๐‘ฅ๐‘ฆ = 0

Thus the given field is conservative.

ii. Since the field is conservative there exists a potential V such that

๐น = โˆ’๐›ป๐‘‰

๐น = โˆ’๐‘˜๐‘Ÿ3๐‘Ÿ = โˆ’๐‘˜(๐‘ฅ2 + ๐‘ฆ2)32(๐‘ฅ๐‘– + ๐‘ฆ๐‘—)

= โˆ’๐‘˜(๐‘ฅ2 + ๐‘ฆ2)32๐‘ฅ๐‘– โˆ’ ๐‘˜(๐‘ฅ2 + ๐‘ฆ2)

32๐‘ฆ๐‘— = โˆ’โˆ‡๐‘‰

= โˆ’๐œ•๐‘‰

๐œ•๐‘ฅ๐‘– โˆ’

๐œ•๐‘‰

๐œ•๐‘ฆ๐‘— โˆ’

๐œ•๐‘‰

๐œ•๐‘ง๐‘˜

Page 35: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

35

By comparing, we get

๐œ•๐‘‰

๐œ•๐‘ฅ= ๐‘˜(๐‘ฅ2 + ๐‘ฆ2)3/2๐‘ฅ,

๐œ•๐‘‰

๐œ•๐‘ฆ=๐‘˜(๐‘ฅ2 + ๐‘ฆ2)3/2๐‘ฆ and

๐œ•๐‘‰

๐œ•๐‘ง= 0

From which, by omitting the constants, we get

๐‘‰ =1

5 ๐‘˜(๐‘ฅ2 + ๐‘ฆ2)5/2 =

1

5 ๐‘˜๐‘Ÿ5

is required potential.

iii. The velocity potential at point A

=1

5 ๐‘˜๐‘Ž5

and the velocity potential at point B

=1

5๐‘˜๐‘5

So, the work done from A to B is

= Potential at A - Potential at B

=1

5 ๐‘˜๐‘Ž5 โˆ’

1

5 ๐‘˜๐‘5 =

1

2 ๐‘˜(๐‘Ž5 โˆ’ ๐‘5)

which is required work done by the given force field.

iv. Since the kinetic energy of a particle of mass ๐‘š moving with velocity v =๐‘‘๐‘Ÿ

๐‘‘๐‘ก is

๐‘‡ =1

2 ๐‘š๐‘ฃ2 =

1

2 ๐‘š(

๐‘‘๐‘Ÿ

๐‘‘๐‘ก)2

From part (ii), we have the potential energy

๐‘‰ =1

5 ๐‘˜๐‘Ÿ5

Thus the total energy ๐ธ will be

๐ธ = ๐‘‡ + ๐‘‰

=1

2 ๐‘š (

๐‘‘๐‘Ÿ

๐‘‘๐‘ก)2

+1

5 ๐‘˜๐‘Ÿ5

Hence proved.

Page 36: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

36

Module No. 117

Introduction to Impulse โ€“ Derivation

Impulse is a special type of force defined by applying the integral of a force ๐น, over the time

interval, t, for which it acts on the body.

Impulse is a directional (vector) quantity in the same direction of force as force is also a directional

quantity. When Impulse is applied to a rigid body, it results a corresponding vector change in its

linear momentum along the same direction. The SI unit of impulse is the newton second (๐‘ ยท ๐‘ ),

and the dimensionally equivalent unit of momentum is the kilogram meter per second (๐‘˜๐‘”๐‘š๐‘ โˆ’1).

The particle is located at ๐‘ƒ1 and ๐‘ƒ2 at times ๐‘ก1 and ๐‘ก2 where it has velocities ๐‘ฃ1 and ๐‘ฃ2 respectively.

The time integral of the force F given by

โˆซ ๐น๐‘‘๐‘ก

๐‘ก2

๐‘ก1

is called the impulse of the force ๐น.

Theorem Statement

The impulse is equal to the change in momentum; or, in symbols,

โˆซ ๐น๐‘‘๐‘ก = ๐‘š๐‘ฃ2 โˆ’ ๐‘š๐‘ฃ1 = ๐‘2 โˆ’ ๐‘1

๐‘ก2

๐‘ก1

Proof

We have to prove that the impulse of a force is equal to the change in momentum.

By definition of impulse and Newton's second law, we have

โˆซ ๐น๐‘‘๐‘ก =

๐‘ก2

๐‘ก1

โˆซ ๐‘š๐‘‘๐‘ฃ

๐‘‘๐‘ก๐‘‘๐‘ก =

๐‘ก2

๐‘ก1

โˆซ ๐‘š๐‘‘๐‘ฃ = ๐‘š|๐‘ฃ|๐‘ก1๐‘ก2 =

๐‘ก2

๐‘ก1

๐‘š๐‘ฃ2 โˆ’ ๐‘š๐‘ฃ1 = ๐‘2 โˆ’ ๐‘1

where we use the conditions

๐‘ฃ(๐‘ก1) = ๐‘ฃ1 and ๐‘ฃ(๐‘ก2) = ๐‘ฃ2

The theorem is true even when the mass is variable and the force is non-conservative.

Page 37: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

37

Module No. 118

Example of Impulse

Example:

What is the magnitude of the impulse developed by a mass of 200 gm which changes its velocity

from 5๐‘– โˆ’ 3๐‘— + 7๐‘˜ m/sec to 2๐‘– + 3๐‘— + ๐‘˜ m/sec?

Solution:

Since we have the following information:

๐‘š = 200 gm

๐‘ฃ1 = 5๐‘– โˆ’ 3๐‘— + 7๐‘˜

๐‘ฃ2 = 2๐‘– + 3๐‘— + ๐‘˜

As we know that

Impulse = ๐‘2 โˆ’ ๐‘1

= ๐‘š๐‘ฃ2 โˆ’ ๐‘š๐‘ฃ1

= ๐‘š(๐‘ฃ2 โˆ’ ๐‘ฃ1)

Substituting the values, we get

Impulse = 200(2๐‘– + 3๐‘— + ๐‘˜ โˆ’ (5๐‘– โˆ’ 3๐‘— + 7๐‘˜))

= 200(โˆ’3๐‘– + 6๐‘— โˆ’ 6๐‘˜)

The magnitude of the Impulse will be

Impulse magnitude = 200โˆš9 + 36 + 36

= 200โˆš81

= 200(9)

= 1800mgm/sec

= 1.8 N sec

Page 38: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

38

Module No. 119

Torque

Definition

Torque is defined as the turning effect of a body. It is trend of an acting force due to which the

rotational motion of a body changes. It is also called twist and rotational force on an object.

Mathematically, torque is defined as the cross product of the force vector to the distance vector,

which causes rotational motion of the body.

๐‰ = ๏ฟฝ๏ฟฝ ร— ๏ฟฝ๏ฟฝ

The magnitude of torque depends upon the applied force, the length of the lever arm connecting

the axis to the point where the force applied, and the angle between the force vector and the length

of lever arm. Symbolically we can write it as:

๐‰ = |๐’“||๐‘ญ| ๐ฌ๐ข๐ง ๐œฝ

Torque is a vector quantity implies that it has direction as well as magnitude.

The SI unit for torque is the newton meter (Nm).

The direction of torque can be approximate using Right Hand Rule.

Theorem:

The torque acting on a particle equals the time rate of change in its angular momentum, i.e.,

๐œ =๐‘‘ฮฉ

๐‘‘๐‘ก

where ฮฉ = r ร— p is defined angular momentum of the system.

Proof:

As we know torque is defined as

๐œ = ๐‘Ÿ ร— ๐น = ๐‘Ÿ ร— ๐‘š๐‘Ž

as m is constant, therefore

= ๐‘š(๐‘Ÿ ร— ๐‘Ž)

= ๐‘š(๐‘Ÿ ร—๐‘‘๐‘ฃ

๐‘‘๐‘ก)

= ๐‘š๐‘‘

๐‘‘๐‘ก(๐‘Ÿ ร— ๐‘ฃ)

=๐‘‘

๐‘‘๐‘ก(๐‘Ÿ ร— ๐‘š๐‘ฃ)

=๐‘‘

๐‘‘๐‘ก(๐‘Ÿ ร— ๐‘)

where ๐‘ = ๐‘š๐‘ฃ is defined as linear momentum and hence the theorem.

Page 39: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

39

Module No. 120

Example of Torque

Example

A particle of mass ๐‘š moves Along a space curve defined by ๐‘Ÿ = acos๐œ”๐‘ก ๐‘– + ๐‘ sin๐œ”๐‘ก ๐‘—.

Find

(i) The Torque

(ii) The angular momentum about the origin.

Solution

(i) As we know that the torque acting on a particle is equal to the time rate of change of its

angular momentum, i.e.

๐œ =๐‘‘ฮฉ

๐‘‘๐‘ก=

๐‘‘

๐‘‘๐‘ก(๐‘Ÿ ร— ๐‘)

where ๐‘ = ๐‘š๐‘ฃ.

As ๐‘Ÿ = acos๐œ”๐‘ก ๐‘– + ๐‘ sin๐œ”๐‘ก ๐‘—. Therefore

๐‘ฃ =๐‘‘๐‘Ÿ

๐‘‘๐‘ก

๐‘ฃ = โˆ’๐‘Ž๐œ” sin๐œ”๐‘ก ๐‘– + ๐‘๐œ” cos๐œ”๐‘ก ๐‘—

So,

๐‘ = โˆ’๐‘Ž๐‘š๐œ” sin๐œ”๐‘ก ๐‘– + ๐‘๐‘š๐œ” cos๐œ”๐‘ก ๐‘—

Now

๐‘Ÿ ร— ๐‘

= |๐‘– ๐‘— ๏ฟฝ๏ฟฝ

acos๐œ”๐‘ก ๐‘ sin๐œ”๐‘ก 0โˆ’๐‘Ž๐‘š๐œ” sin๐œ”๐‘ก ๐‘๐‘š๐œ” cos๐œ”๐‘ก 0

|

= [๐‘Ž๐‘๐‘š๐œ”cos2๐œ”๐‘ก + ๐‘Ž๐‘๐‘š๐œ”sin2๐œ”๐‘ก]๏ฟฝ๏ฟฝ

= ๐‘Ž๐‘๐‘š๐œ”๏ฟฝ๏ฟฝ

Page 40: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

40

๐œ =๐‘‘ฮฉ

๐‘‘๐‘ก=

๐‘‘

๐‘‘๐‘ก(๐‘Ÿ ร— ๐‘) = 0

(ii) From part (i), we already have

ฮฉ = ๐‘Ÿ ร— ๐‘

= ๐‘Ž๐‘๐‘š๐œ”๏ฟฝ๏ฟฝ

is the required angular momentum.

Page 41: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

41

Module No. 121

Introduction to Rigid Bodies and Elastic Bodies

Definition of Rigid Bodies

When a force is applied to an object/ system of particles, and if the object maintains its

overall shape, then the object is called a rigid body.

Gap between two fixed points on the rigid body remains same regardless of external

forces exerted on it.

We can neglect the deformation of such bodies.

A rigid body usually has continuous distribution of mass.

Definition of Elastic Bodies

When a force is applied to a system of particles, it changes the distance between

individual particles. Such systems are often called deformable or elastic bodies.

Examples

A spring and rubber band are some common examples of elastic bodies.

A wheel is a common example of rigid body.

Page 42: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

42

Module No. 122

Properties of Rigid Bodies

Following are some of the properties of the rigid bodies.

Degree of freedom

The number of coordinates required to specify the position of a system of one or more particles is

called the number of degrees of freedom of the system.

For example a particle moving freely in space requires 3 coordinates, e.g. (x, y, z), to specify its

position. Thus the number of degrees of freedom is 3.

Similarly, a system consisting of N particles moving freely in space requires 3N coordinates to

specify its position. Thus the number of degrees of freedom is 3N.

Translations

A displacement of a rigid body is a direct change of position of its particles. Translational motion

is the displacement of all particles of the body by the same amount and the line segment joining

the initial and the final position of the particles represented by parallel vectors.

Examples of translational motion are particles freely falling down to earth and the motion of a

bullet fired from a gun.

Rotations

Circular motion of a body about a fixed point or axis is called rotation. If during a displacement

the points of the rigid body on some line remains fixed and all other are displaced through the

same angle, then this displacement is called rotation. A rigid performs rotations around an

imaginary line called a rotation axis.

If the axis of rotation passes through the center of mass of the rigid body then body is said to be

spin or rotate upon itself. If a body rotates about some external fixed point is called revolution or

orbital motion of the rigid body. The example of revolution is the rotation of earth around sun

and motion of moon around sun.

Rotational motion concerns only with rigid bodies. The reverse rotation of a body (inverse

rotation) is also a rotation.

A wheel is common examples of rotation.

Page 43: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

43

Module No. 123

Instantaneous Axis and Center of Rotation

Introduction to General Plane Motion

The general plane motion of a rigid body can be considered as:

Translational motion along the given fixed plane and rotational motion about a suitable

axis perpendicular to the plane.

This fixed axis is specifically chosen to pass through the center of mass of the rigid body.

Instantaneous Axis of Rotation

The axis about which the rigid body rotates is called instantaneous axis of rotation, where

this axis is perpendicular to the plane.

Instantaneous Center of Rotation

The point where instantaneous axis meets the fixed plane along which the body performs

translation motion is described as the instantaneous center of rotation.

Page 44: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

44

Module No. 124

Centre of Mass & Motion of the Center of Mass

The center of mass (c.m.) or centroid of system of particles is a hypothetical particle such that if

the entire mass of the system were concentrated there, the mechanical properties would remain the

same. In particular expression of linear momentum, angular momentum and kinetic energy assume

simpler or more convenient forms when referred to the coordinated of this hypothetical particle

and the equation of motion can be reduced to simpler equation of a single particle.

Let ๐‘Ÿ1, ๐‘Ÿ2, ๐‘Ÿ3, โ€ฆโ€ฆโ€ฆ . , ๐‘Ÿ๐‘be the position vectors of a system of N particles of masses

๐‘š1, ๐‘š2, ๐‘š3, โ€ฆโ€ฆโ€ฆ . ,๐‘š๐‘ respectively [see Fig.].

The center of mass or centroid of the system of particles is defined as that point C having position

vector

๐‘Ÿ๐‘ =โˆ‘ ๐‘š๐‘–๐‘Ÿ๐‘–๐‘–

โˆ‘ ๐‘š๐‘–๐‘–

When the system is moving the position vector will depend on time t and therefore ๐‘Ÿ๐‘will also be

a function of t. the velocity and acceleration of center of mass will be then given by

๏ฟฝ๏ฟฝ๐‘ = ๐’—๐’„ =โˆ‘ ๐‘š๐‘–๐‘Ÿ๏ฟฝ๏ฟฝ๐‘–

โˆ‘ ๐‘š๐‘–๐‘–

๏ฟฝ๏ฟฝ๐‘ = ๐’‚๐’„ =โˆ‘ ๐‘š๐‘–๐‘Ÿ๏ฟฝ๏ฟฝ๐‘–

โˆ‘ ๐‘š๐‘–๐‘–

Motion of Center of Mass Motion of center of mass can be examined by considering the following points:

Page 45: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

45

1. If a system experiences no external force, the center-of-mass of the system will remain at

rest, or will move at constant velocity if it is already moving.

2. If there is an external force, the center of mass accelerates according to ๐น = ๐‘š๐‘Ž.

3. Basically, the center-of-mass of a system can be treated as a point mass, following

Newton's Laws.

4. If an object is thrown into the air, different parts of the object can follow quite complicated

paths, but the center-of-mass will follow a parabola.

5. If an object explodes, the different pieces of the object will follow seemingly independent

paths after the explosion. The center of mass, however, will keep doing what it was doing

before the explosion. This is because an explosion involves only internal forces.

Page 46: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

46

Module No. 125

Centre of Mass & Motion of the Center of Mass

The moment of inertia of a rigid body is a property which depends upon its mass and shape, (i.e.

the mass distribution of the body) and determines its behavior in rotational motion.

In rotational motion, the moment of inertia plays the same role as the mass in linear motion.

Definition of Moment of Inertia

Formally the moment of inertia ๐ผ of the particle of mass ๐‘š about a line is defined by

๐ผ = ๐‘š๐‘‘2

where ๐‘‘ is the perpendicular distance between the particle and the line (called the axis).

Moment of Inertia of System of particles

The moment of inertia of a system of particles, with masses ๐‘š1, ๐‘š2, ๐‘š3, โ€ฆ ,๐‘š๐‘ about the line or

axis AB is defined as

๐ผ = โˆ‘ ๐‘š๐‘–

๐‘

๐‘–=1๐‘‘๐‘–

2

= ๐‘š1๐‘‘12 + ๐‘š2๐‘‘2

2 + โ‹ฏ+ ๐‘š๐‘๐‘‘๐‘2

In dimensions, the moment of inertia can be expressed as

[๐ผ] = [๐‘€][๐ฟ2]

Moment of Inertia in Coordinate System

The moment of inertia of a particle of mass ๐‘š with coordinates (๐‘ฅ, ๐‘ฆ, ๐‘ง) relative to the

orthogonal Cartesian coordinate system๐‘‚๐‘‹๐‘Œ๐‘ about ๐‘‹, ๐‘Œ, ๐‘ axes will be

๐ผ๐‘ฅ๐‘ฅ = ๐‘š(๐‘ฆ2 + ๐‘ง2)

๐ผ๐‘ฆ๐‘ฆ = ๐‘š(๐‘ง2 + ๐‘ฅ2)

๐ผ๐‘ง๐‘ง = ๐‘š(๐‘ฅ2 + ๐‘ฆ2)

Product of Inertia

The product of inertia for the same particle w.r.to the pair of coordinate axes are defined as

๐ผ๐‘ฅ๐‘ฆ = โˆ’๐‘š๐‘ฅ๐‘ฆ

๐ผ๐‘ฆ๐‘ง = โˆ’๐‘š๐‘ฆ๐‘ง

๐ผ๐‘ง๐‘ฅ = โˆ’๐‘š๐‘ง๐‘ฅ

These definitions can be easily generalized to a system of particle and a rigid body.

Page 47: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

47

Page 48: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

48

Module No. 126

Example of moment of Inertia and Product of Inertia

Problem Statement:

Find the moments of inertia of a ring of radius ๐‘Ž about an axis through center.

Solution:

Let ๐‘€ be the mass and ๐‘Ž the radius of the ring. Then the mass per unit length will be ๐‘€ 2๐œ‹๐‘Žโ„ .

We regard this ring to be composed of small elements of mass (๐›ฟ๐‘š) each of length ๐›ฟ๐‘ ,

we can write it as

๐›ฟ๐‘š

๐›ฟ๐‘ =

๐‘€

2๐œ‹๐‘ŽโŸน ๐›ฟ๐‘š =

๐‘€

2๐œ‹๐‘Ž๐›ฟ๐‘ 

Moment of inertia of the element about an axis through center O and the perpendicular to the

plane of the ring equals ๐‘€

2๐œ‹๐‘Ž๐›ฟ๐‘  ๐‘Ž2.

Therefore the M.I of the whole ring will be

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” =๐‘€

2๐œ‹๐‘Ž๐‘Ž2 โˆ‘ ๐›ฟ๐‘ 

๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘ =

๐‘€๐‘Ž

2๐œ‹โˆซ๐‘‘๐‘  =

๐‘€๐‘Ž

2๐œ‹ร— 2๐œ‹๐‘Ž = ๐‘€๐‘Ž2

Hence ๐‘€๐‘Ž2 is the required moment of inertia of the ring.

Page 49: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

49

Module No. 127

Radius of Gyration

Radius of gyration specifies the distribution of the elements of body around the axis in terms of

the mass moment of inertia, As it is the perpendicular distance from the axis of rotation to a point

mass m that gives an equivalent inertia to the original object m The nature of the object does not

affect the concept, which applies equally to a surface bulk mass.

Mathematically the radius of gyration is the root mean square distance of the object's parts from

either its center of mass or the given axis, depending on the relevant application.

Let ๐ผ = โˆ‘ ๐‘š๐‘–๐‘๐‘–=1 ๐‘‘๐‘–

2 be the moment of inertia of a system of particles about AB, and

๐‘€ = โˆ‘ ๐‘š๐‘–๐‘๐‘–=1 be the total mass of the system.

Then the quantity K such that

๐พ2 =๐ผ

๐‘€=

โˆ‘ ๐‘š๐‘–๐‘๐‘–=1 ๐‘‘๐‘–

2

โˆ‘ ๐‘š๐‘–๐‘๐‘–=1

or

๐พ = โˆš๐ผ

๐‘€

is called the radius of gyration of the system AB.

Example:

Find the radius of gyration, K, of the triangular lamina of mass M and moment of inertia ๐ผ =1

6โ„ ๐‘€โ„Ž2.

Solution:

Since formula for radius of gyration is given by

๐พ2 =๐ผ

๐‘€

by substituting value in above , we get

๐พ2 =1

6โ„ ๐‘€โ„Ž2

๐‘€= 1

6โ„ โ„Ž2

or ๐พ =โ„Ž

โˆš6

Page 50: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

50

Module No. 128

Principal Axes for the Inertia Matrix

Principal Axes

When a rigid body is rotating about a fixed point O, the angular velocity vector ๐œ” and the

angular momentum vector L (about O) are not in general in the same direction. However

it can be proved that at each point in the body there exists distinct directions, which are

fixed relative to the body, along which the two vectors are aligned i.e. coincident. Such

directions are called principal directions and the axes along them are referred to as

principal axes of inertia. The corresponding moments of inertia are called principal

moments of inertia.

Orthogonality of Principal Axes

If the principal axes at each point of the body exist, then their orthogonality can be proved by

stating that axes relative to which product of inertia are zero are the principal axes.

Page 51: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

51

Module No. 129

Introduction to the Dynamics of a System of Particles

Dynamics

Dynamics is the branch of mechanics deals with forces and relationship fundamentally to the

motion but sometimes also to the equilibrium of bodies.

The Dynamics of a System of Particles

Suppose we have a system of N particles in motion under forces. These will be two types of

forces, internal and external.

Internal forces act between particles of the system; all other are external. We suppose further that

the internal forces satisfy Newtonโ€™s third law of motion. i.e. Internal forces between a pair of

particles are equal and opposite If ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

denotes the internal force on the ith particle due to the

jth particle, then in the view of this assumption we can write

๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก) = โˆ’๐น๐‘—๐‘–

(๐‘–๐‘›๐‘ก) (1)

The equation of motion for the ith particle of system can therefore be written as

๐น๐‘–(๐‘’๐‘ฅ๐‘ก)

+ โˆ‘ ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)๐‘

๐‘—=1 = ๐‘š๐‘–๏ฟฝ๏ฟฝ๐‘– (2)

where ๐น๐‘–(๐‘’๐‘ฅ๐‘ก)

denotes the external force on the ith particle, and ๏ฟฝ๏ฟฝ๐‘–, the acceleration of the ith

particle. It is clear from equation (1) that the internal force on a given particle due to itself is zero

and therefore the term ๐‘– = ๐‘— does not contribute to the sum.

To obtain an equation of motion for the whole system we sum over i, (from 1 to N), on the both

sides of equation (2), and obtain

โˆ‘๐น๐‘–(๐‘’๐‘ฅ๐‘ก)

๐‘–

+ โˆ‘โˆ‘๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘—

= โˆ‘๐‘š๐‘–๏ฟฝ๏ฟฝ๐‘–

๐‘–๐‘–

or

๐น(๐‘’๐‘ฅ๐‘ก) + โˆ‘ ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘–,๐‘— = โˆ‘ ๐‘š๐‘–๏ฟฝ๏ฟฝ๐‘–๐‘– (3)

Where ๐น(๐‘’๐‘ฅ๐‘ก) denotes the total external force on the system. Now we will show that because of

condition (1), the second term on L.H.S of (3) is zero.

โˆ‘๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

=1

2โˆ‘(๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก) + ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก))

๐‘–,๐‘—

Since the indices I and j are dummy and vary over the same set of integers, we can interchange

them in the second sum on the R.H.S of the last equation. Therefore we have

Page 52: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

52

โˆ‘๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

=1

2โˆ‘(๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก) + ๐น๐‘—๐‘–(๐‘–๐‘›๐‘ก))

๐‘–,๐‘—

=1

2โˆ‘(๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก) โˆ’ ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก))

๐‘–,๐‘—

= 0

Therefore the equation (3) becomes

๐น(๐‘’๐‘ฅ๐‘ก) = โˆ‘ ๐‘š๐‘–๏ฟฝ๏ฟฝ๐‘–๐‘– (4)

In case of centroid, the relation becomes

โˆ‘๐‘š๐‘–๏ฟฝ๏ฟฝ๐‘–

๐‘–

= ๐‘€๏ฟฝ๏ฟฝ๐‘

where ๏ฟฝ๏ฟฝ๐‘ = ๏ฟฝ๏ฟฝ๐‘ is the acceleration of center of mass (c.m.) and M is the total mass of the system.

Hence equation (4) can be written as

๐น(๐‘’๐‘ฅ๐‘ก) = ๐‘€๏ฟฝ๏ฟฝ๐‘ =๐‘‘

๐‘‘๐‘ก(๐‘€๏ฟฝ๏ฟฝ๐‘) (5)

If ๐น(๐‘’๐‘ฅ๐‘ก) = 0 then ๐‘‘

๐‘‘๐‘ก(๐‘€๏ฟฝ๏ฟฝ๐‘) = 0, which implies that ๐‘€๏ฟฝ๏ฟฝ๐‘ =constant.

We conclude that if external forces are on a system of particles are zero, then its momentum will

be a constant of motions or a conserved quantity. Equation (5) describes the translational motion

of the system and may be referred to as the translational equation of motion which describes the

rotational motion of the system, we take the cross product of both sides of equation (2) with

๐‘Ÿ๐‘–, and obtain

๐‘Ÿ๐‘–ร—๐น๐‘–(๐‘’๐‘ฅ๐‘ก)

+ โˆ‘ ๐‘Ÿ๐‘– ร— ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘

๐‘—=1

= ๐‘š๐‘–๐‘Ÿ๐‘– ร— ๏ฟฝ๏ฟฝ๐‘–

summing over i

โˆ‘ ๐‘Ÿ๐‘–ร—๐น๐‘–(๐‘’๐‘ฅ๐‘ก)

+ โˆ‘ ๐‘Ÿ๐‘– ร— ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)๐‘

๐‘–,๐‘—=1 =๐‘– โˆ‘ ๐‘š๐‘–๐‘Ÿ๐‘– ร— ๏ฟฝ๏ฟฝ๐‘–๐‘– (6)

Now we will show that in view of our assumption (1) about internal forces, the second term on

L.H.S of equation (6) is zero. On interchanging the dummy indices and using (1) we have

โˆ‘ ๐‘Ÿ๐‘– ร— ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

=1

2โˆ‘(๐‘Ÿ๐‘– ร— ๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

+ ๐‘Ÿ๐‘— ร— ๐น๐‘—๐‘–(๐‘–๐‘›๐‘ก))

=1

2โˆ‘(๐‘Ÿ๐‘– ร— ๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก) โˆ’

๐‘–,๐‘—

๐‘Ÿ๐‘— ร— ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก))

=1

2โˆ‘ (๐‘Ÿ๐‘– โˆ’ ๐‘Ÿ๐‘—) ร— ๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก)๐‘–,๐‘— (7)

The vector ๐‘Ÿ๐‘– โˆ’ ๐‘Ÿ๐‘— is in the direction of the line segment joining the particles I and j and therefore

it is parallel to ๐น๐‘–๐‘— . Therefore the last term on R.H.S of equation (7) is zero.

Hence we finally obtain

โˆ‘๐‘Ÿ๐‘– ร— ๐น๐‘–๐‘—(๐‘’๐‘ฅ๐‘ก)

๐‘–,๐‘—

= โˆ‘๐‘š๐‘–๐‘Ÿ๐‘– ร— ๏ฟฝ๏ฟฝ๐‘–

๐‘–

or

Page 53: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

53

โˆ‘ ๐บ๐‘– = ๐บ๐‘’๐‘ฅ๐‘ก =

๐‘–

โˆ‘๐‘š๐‘–๐‘Ÿ๐‘– ร— ๏ฟฝ๏ฟฝ๐‘–

๐‘–

=๐‘‘

๐‘‘๐‘ก(โˆ‘๐‘š๐‘–๐‘Ÿ๐‘– ร— ๏ฟฝ๏ฟฝ๐‘–

๐‘–

)

=๐‘‘

๐‘‘๐‘ก(โˆ‘๐‘Ÿ๐‘– ร— ๐‘š๐‘–๏ฟฝ๏ฟฝ๐‘–

๐‘–

)

=๐‘‘

๐‘‘๐‘กโˆ‘๐ฟ๐‘– =

๐‘‘๐ฟ

๐‘‘๐‘ก๐‘–

which is usually written as

๐‘‘๐ฟ

๐‘‘๐‘ก= ๐บ(๐‘’๐‘ฅ๐‘ก)

where ๐บ๐‘–(๐‘’๐‘ฅ๐‘ก)

is the torque or momentum due to external force on the ith particle, and ๐บ๐‘–(๐‘’๐‘ฅ๐‘ก) is

the torque due to all external forces on the system.

Similarly L is the total angular momentum of the system.

โˆ‘๐‘Ÿ๐‘– ร— ๐น๐‘–๐‘—(๐‘’๐‘ฅ๐‘ก)

๐‘–,๐‘—

= โˆ‘๐บ๐‘– = ๐บ

๐‘–

Thus we have obtained the following two equations of motion for a system of particles. ๐‘‘

๐‘‘๐‘ก(๐‘€๏ฟฝ๏ฟฝ๐‘) = ๐น(๐‘’๐‘ฅ๐‘ก) (8)

and ๐‘‘๐ฟ

๐‘‘๐‘ก= ๐บ(๐‘’๐‘ฅ๐‘ก) (9)

It follows from equation (8) that if the total external torque on the system is zero, then its angular

momentum will be a constant of motion or a conserved quantity.

Page 54: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

54

Module No. 130

Introduction to Center of Mass and Linear Momentum

The rigid bodies are a system of particles in which the position of particles is relatively fixed. We

consider such a system of particles in this article and will discuss its center of mass and linear

momentum.

Center of Mass

Our general system consists of ฮท particles of masses ๐‘š1, ๐‘š2, โ€ฆโ€ฆ . . , ๐‘š๐‘›whose position vectors

are, respectively, ๐‘Ÿ1, ๐‘Ÿ2, โ€ฆโ€ฆ . . , ๐‘Ÿ๐‘›. We define the center of mass of the system as the point whose

position vector ๐‘Ÿ๐‘๐‘š is given by

๐‘Ÿ๐‘๐‘š =๐‘š1๐‘Ÿ1+๐‘š2๐‘Ÿ2+๐‘š3๐‘Ÿ3+โ‹ฏโ€ฆโ€ฆ.+๐‘š๐‘›๐‘Ÿ๐‘›

๐‘š1+๐‘š2+โ‹ฏโ€ฆ..+๐‘š๐‘›=

โˆ‘ ๐‘š๐‘–๐‘Ÿ๐‘–๐‘›๐‘–=1

๐‘š (1)

where ๐‘š = โˆ‘ ๐‘š๐‘– ๐‘›๐‘–=1 is the total mass of the system.

The above definition of center of mass leads us to three equations

๐‘ฅ๐‘๐‘š =โˆ‘ ๐‘š๐‘–๐‘ฅ๐‘–

๐‘›๐‘–=1

๐‘š, ๐‘ฆ๐‘๐‘š =

โˆ‘ ๐‘š๐‘–๐‘ฆ๐‘–๐‘›๐‘–=1

๐‘š, ๐‘ง๐‘๐‘š =

โˆ‘ ๐‘š๐‘–๐‘ง๐‘–๐‘›๐‘–=1

๐‘š

which are the rectangular coordinates of the center of mass of the system.

Linear Momentum

We define the linear momentum ฯ of the system as the vector sum of the linear momentum of the

individual particles, namely,

๐‘ = โˆ‘๐‘๐‘– = โˆ‘๐‘š๐‘–๐‘ฃ๐‘–

๐‘–๐‘–

From equation (1)

๐‘Ÿ๐‘๐‘š =โˆ‘ ๐‘š๐‘–๐‘Ÿ๐‘–

๐‘›๐‘–=1

๐‘š (1)

๏ฟฝ๏ฟฝ๐‘๐‘š = ๐œˆ๐‘๐‘š =โˆ‘ ๐‘š๐‘–๐‘ฃ๐‘–

๐‘›๐‘–=1

๐‘š

it follows that

๐‘ = ๐‘š๐œˆ๐‘๐‘š

that is, the linear momentum of a system of particles is the product of the velocity of the center

of mass and the total mass of the system.

Page 55: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

55

Module No. 131

Law of Conservation of Momentum for Multiple Particles

Statement

In the absence of the external force, the momentum of the system of particles will be conserved.

Proof

Suppose we have a system of N particles in motion under forces. These will be two types of

forces, internal and external.

Suppose now that there are external forces ๐น1๐น2, . . . , ๐น๐‘–, , . . . , ๐น๐‘› acting on the respective particles.

In addition, there may be internal forces of interaction between any two particles of the system.

We denote these internal forces by ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก), meaning the force exerted on particle i by particle j.

Internal Forces act between particles of the system; all over the external. We suppose further that

the internal force satisfy Newtonโ€™s third law of motion. i.e. Internal forces between a pair of

particles are equal and opposite.

If ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก) denotes the internal force on the ith particle due to the jth particle, then in the view of

this assumption we can write

๐น๐‘—๐‘–(๐‘–๐‘›๐‘ก) = โˆ’๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก) (1)

The equation of motion for the ith particle of the system can therefore be written as

๐น๐‘–(๐‘’๐‘ฅ๐‘ก) + โˆ‘ ๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก)๐‘๐‘—=1 = ๐‘š๐‘–๐‘Ž๐‘– = ๐‘๏ฟฝ๏ฟฝ (2)

where ๐น๐‘–(๐‘’๐‘ฅ๐‘ก) denotes the total external force on the ith particle, and ๐‘Ž๐‘– the acceleration of the ith

particle.

To obtain an equation of motion for the whole system, we sum over I (from 1 to N), on both

sides of the equation (2).

โˆ‘๐น๐‘–(๐‘’๐‘ฅ๐‘ก)

๐‘–

+ โˆ‘โˆ‘๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘

๐‘—=1๐‘–

= โˆ‘๐‘š๐‘–๐‘Ž๐‘–

๐‘–

= ๐‘๏ฟฝ๏ฟฝ

๐น(๐‘’๐‘ฅ๐‘ก) + โˆ‘ ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘–,๐‘— = โˆ‘ ๐‘š๐‘–๐‘Ž๐‘– = ๐‘๏ฟฝ๏ฟฝ๐‘– (3)

where ๐น(๐‘’๐‘ฅ๐‘ก)denotes the total force of the system.

now we will show that because of equation 1, L.H.S of equation 3 is zero.

Page 56: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

56

๐‘๏ฟฝ๏ฟฝ = โˆ‘๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

= (1

2โˆ‘๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

+1

2โˆ‘๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

)

since the indices I and j are dummy and vary over the same set of integers, we can interchange

them in the second sum on R.H.S of the last equation. Therefore we have

๐‘๏ฟฝ๏ฟฝ = โˆ‘๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

= (1

2โˆ‘๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

+1

2โˆ‘๐น๐‘—๐‘–

(๐‘–๐‘›๐‘ก)

๐‘–,๐‘—

)

using equation (1), we have

โˆ‘ ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)

๐‘–,๐‘— = (1

2โˆ‘ ๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก)๐‘–,๐‘— โˆ’

1

2โˆ‘ ๐น๐‘—๐‘–

(๐‘–๐‘›๐‘ก)๐‘–,๐‘— )=0

therefore equation (3) becomes

๐‘๏ฟฝ๏ฟฝ = ๐น(๐‘’๐‘ฅ๐‘ก) = โˆ‘๐‘š๐‘–๐‘Ž๐‘–

๐‘–

for centroid, we know that โˆ‘ ๐‘š๐‘–๐‘Ž๐’Š๐‘– = ๐‘š๐‘Ž๐‘where ๐‘Ž๐‘is the acceleration of centroid.

Hence equation can be written as

๐‘๏ฟฝ๏ฟฝ = ๐น(๐‘’๐‘ฅ๐‘ก) = ๐‘€๐‘Ž๐‘ =๐‘‘

๐‘‘๐‘ก(๐‘€๐‘ฃ๐‘)

If ๐น(๐‘’๐‘ฅ๐‘ก) = 0 then ๐‘๏ฟฝ๏ฟฝ =๐‘‘

๐‘‘๐‘ก(๐‘€๐‘ฃ๐‘) = 0 ๐‘œ๐‘Ÿ ๐‘ = ๐‘€๐‘ฃ๐‘ = constant

We conclude that if external forces are on a system of particles are zero, then its momentum will

be a constant of motion or a conserved quantity.

Page 57: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

57

Module No. 132

Example of Conservation of Momentum

Problem Statement

A particle ๐ด, of mass 6 kg, travelling in a straight line at 5 msโˆ’1 collides with a particle ๐ต, of

mass 4 kg, travelling in the same straight line, but in the opposite direction, with a speed of 3

msโˆ’1. Given that after the collision particle ๐ด continues to move in the same direction at 1.5

msโˆ’1, what speed does particle ๐ต move with after the collision? (ยฉ mathcentre 2009)

Given Data

Mass of particle ๐ด = ๐‘š1 = 6kg

Velocity of ๐ด before collision = ๐‘ข1 =5msโˆ’1

Velocity of ๐ด after collision = ๐‘ฃ1 =1.5msโˆ’1

Mass of Particle ๐ต = ๐‘š2 = 4kg

Velocity of ๐ต before collision = ๐‘ข2 = 3msโˆ’1

Required

Velocity of ๐ต after collision = ๐‘ฃ2 = ?

Solution

It is always useful to depict the collision with the velocities both before and after.

Using the principle of conservation of momentum:

๐‘š1๐‘ข1 + ๐‘š2๐‘ข2 = ๐‘š1๐‘ฃ1 + ๐‘š2๐‘ฃ2

6 ร— 5 + 4 ร— (โˆ’3) = 6 ร— 1.5 + 4 ร— ๐‘ฃ2

9 = 4 ร— ๐‘ฃ2

๐‘ฃ2 = 9 4โ„ = 2.3 ๐‘š ๐‘ โˆ’1

So after the collision particle B moves with a speed of 2.3 m sโˆ’1, in the same direction as A.

Example 2

Page 58: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

58

Problem Statement

A particle A, of mass 8 kg, collides with a particle B, of mass m2 kg. The velocity of particle

A before the collision was (โˆ’1๐‘– + 4๐‘—) ๐‘š ๐‘ โˆ’1 and the velocity of particle B before the collision

was (โˆ’0.8๐‘– + 1.4๐‘—) ๐‘š ๐‘ โˆ’1. Given the velocity of particle A after the collision was

(โˆ’2๐‘– + 2๐‘—) ๐‘š ๐‘ โˆ’1, and the velocity of particle B was 3๐‘— ๐‘š ๐‘ โˆ’1, what was the mass of particle

B?

Given Data

Mass of particle A= ๐‘š1 = 8kg

Velocity of A before collision= ๐‘ข1 = (โˆ’1๐‘– + 4๐‘—) ๐‘š ๐‘ โˆ’1

Velocity of A after collision= ๐‘ฃ1 = (โˆ’2๐‘– + 2๐‘—) ๐‘š ๐‘ โˆ’1

Velocity of B before collision= ๐‘ข2 = (โˆ’0.8๐‘– + 1.4๐‘—) ๐‘š ๐‘ โˆ’1

Velocity of B after collision= ๐‘ฃ2 =?3๐‘— ๐‘š ๐‘ โˆ’1

Required

Mass of Particle B= ๐‘š2 =?

Solution

It is always useful to depict the collision with the velocities both before and after.

Using the principle of conservation of momentum:

๐‘š1๐‘ข1 + ๐‘š2๐‘ข2 = ๐‘š1๐‘ฃ1 + ๐‘š2๐‘ฃ2

6 ร— 5 + 4 ร— (โˆ’3) = 6 ร— 1.5 + 4 ร— ๐‘ฃ2

9 = 4 ร— ๐‘ฃ2

๐‘ฃ2 = 9 4โ„ = 2.3msโˆ’1

So after the collision particle ๐ต moves with a speed of 2.3 msโˆ’1, in the same direction as ๐ด.

Example 2

Problem Statement

A particle ๐ด, of mass 8 kg, collides with a particle ๐ต, of mass 2 kg. The velocity of particle ๐ด

before the collision was (โˆ’1๐‘– + 4๐‘—) msโˆ’1 and the velocity of particle ๐ต before the collision was

(โˆ’0.8๐‘– + 1.4๐‘—) msโˆ’1. Given the velocity of particle ๐ด after the collision was (โˆ’2๐‘– + 2๐‘—) msโˆ’1,

and the velocity of particle ๐ต was 3๐‘— msโˆ’1, what was the mass of particle ๐ต?

Given Data

Page 59: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

59

Mass of particle ๐ด = ๐‘š1 = 8kg

Velocity of ๐ด before collision = ๐‘ข1 = (โˆ’1๐‘– + 4๐‘—)msโˆ’1

Velocity of ๐ด after collision = ๐‘ฃ1 = (โˆ’2๐‘– + 2๐‘—)msโˆ’1

Velocity of ๐ต before collision = ๐‘ข2 = (โˆ’0.8๐‘– + 1.4๐‘—)msโˆ’1

Velocity of ๐ต after collision = ๐‘ฃ2 = 3๐‘— msโˆ’1

Required

Mass of Particle ๐ต = ๐‘š2 = ?

Solution

By making use of principle of conservation of momentum:

๐‘š1๐‘ข1 + ๐‘š2๐‘ข2 = ๐‘š1๐‘ฃ1 + ๐‘š2๐‘ฃ2

8(โˆ’1๐‘– + 4๐‘—) + ๐‘š2(โˆ’0.8๐‘– + 1.4๐‘—)

= 8(โˆ’2๐‘– + 2๐‘—) + ๐‘š2(3๐‘—)

โˆ’8๐‘– + 32๐‘— + 16๐‘– โˆ’ 16๐‘— + ๐‘š2(โˆ’0.8๐‘– + 1.4๐‘—) โˆ’ ๐‘š2(3๐‘—) = 0

8๐‘– + 16๐‘— + ๐‘š2(โˆ’0.8๐‘– โˆ’ 1.6๐‘—) = 0

8๐‘– + 16๐‘— โˆ’ ๐‘š2(+0.8๐‘– + 1.6๐‘—) = 0

8๐‘– + 16๐‘— = ๐‘š2(0.8๐‘– + 1.6๐‘—)

๐‘š2 =0.8๐‘– + 1.6๐‘—

8๐‘– + 16๐‘—

By rationalizing and solving the above fraction, we obtain

๐‘š2 = 10๐‘˜๐‘”

Page 60: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

60

Module No. 133

Angular Momentum โ€“ Derivation

Angular momentum of a particle of mass ๐‘š, position vector ๐‘Ÿ and linear momentum ๐‘ is defined

as ๐‘Ÿ ร— ๐‘. It is also called moment of momentum.

Let there be a system consists of N particles with positon vector ๐‘Ÿ๐‘– and the momentum ๐‘๐‘– (๐‘– =

1,2,3, โ€ฆโ€ฆ . , ๐‘) then the total angular momentum L is given by

๐ฟ = โˆ‘๐‘Ÿ๐‘– ร— ๐‘๐‘– = โˆ‘๐‘Ÿ๐‘– ร— (๐‘š๐‘ฃ๐‘–)

๐‘–๐‘–

To find the relation between L and ๐œ”, we proceed as follows:

๐ฟ = โˆ‘๐‘Ÿ๐‘– ร— (๐‘š๐‘–๐‘ฃ๐‘–)

๐‘–

= โˆ‘๐‘Ÿ๐‘– ร— ๐‘š๐‘–(๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘–)

๐‘–

= โˆ‘๐‘š๐‘–[๐‘Ÿ๐‘– ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘–)

๐‘–

]

= โˆ‘ ๐‘š๐‘–[(๐‘Ÿ๐‘–. ๐‘Ÿ๐‘–)๏ฟฝ๏ฟฝ โˆ’ (๐‘Ÿ๐‘–. ๏ฟฝ๏ฟฝ)๐‘Ÿ๐‘–๐‘– ] (1)

Here (๐‘Ÿ๐‘–. ๐‘Ÿ๐‘–)๏ฟฝ๏ฟฝ and (๐‘Ÿ๐‘–. ๏ฟฝ๏ฟฝ)๐‘Ÿ๐‘– are not parallel vectors. If they were parallel then we could easily say

that L is parallel to ๏ฟฝ๏ฟฝ.

We conclude that in general L and ๏ฟฝ๏ฟฝ are not parallel to each other. To find the relationship

between the vectors L and ๏ฟฝ๏ฟฝ we proceed as follows:

Since

๐‘Ÿ๐‘– = ๐‘ฅ๐‘–๐‘– + ๐‘ฆ๐‘–๐‘— + ๐‘ง๐‘–๏ฟฝ๏ฟฝ

therefore

๐‘Ÿ๐‘–. ๐‘Ÿ๐‘– = ๐‘ฅ๐‘–2 + ๐‘ฆ๐‘–

2 + ๐‘ง๐‘–2

and

๏ฟฝ๏ฟฝ. ๐‘Ÿ๐‘– = ๐œ”๐‘ฅ๐‘ฅ๐‘– + ๐œ”๐‘ฆ๐‘ฆ๐‘– + ๐œ”๐‘ง๐‘ง๐‘–

Therefore substituting these values in equation (1), we have

๐ฟ = โˆ‘ ๐‘š๐‘–(๐‘– ๐‘ฅ๐‘–2 + ๐‘ฆ๐‘–

2 + ๐‘ง๐‘–2)(๐œ”๐‘ฅ๐‘– + ๐œ”๐‘ฆ๐‘— + ๐œ”๐‘ง๏ฟฝ๏ฟฝ) โˆ’ (๐œ”๐‘ฅ๐‘ฅ๐‘– + ๐œ”๐‘ฆ๐‘ฆ๐‘– + ๐œ”๐‘ง๐‘ง๐‘–)(๐‘ฅ๐‘–๐‘– + ๐‘ฆ๐‘–๐‘— + ๐‘ง๐‘–๏ฟฝ๏ฟฝ)

(2)

Writing

๐ฟ = ๐ฟ๐‘ฅ๐‘– + ๐ฟ๐‘ฆ๐‘— + ๐ฟ๐‘ง๏ฟฝ๏ฟฝ โ‰ก ๐ฟ1๐‘– + ๐ฟ2๐‘— + ๐ฟ3๏ฟฝ๏ฟฝ

and

๐œ” = ๐œ”๐‘ฅ๐‘– + ๐œ”๐‘ฆ๐‘— + ๐œ”๐‘ง๏ฟฝ๏ฟฝ โ‰ก ๐œ”1๐‘– + ๐œ”2๐‘— + ๐œ”3๏ฟฝ๏ฟฝ

and comparing the coefficient of ๐‘– on both sides of equation (2), we obtain

Page 61: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

61

๐ฟ๐‘ฅ = โˆ‘๐‘š๐‘–(

๐‘–

๐‘ฅ๐‘–2 + ๐‘ฆ๐‘–

2 + ๐‘ง๐‘–2)๐œ”๐‘ฅ โˆ’ (๐œ”๐‘ฅ๐‘ฅ๐‘– + ๐œ”๐‘ฆ๐‘ฆ๐‘– + ๐œ”๐‘ง๐‘ง๐‘–)๐‘ฅ๐‘–

= โˆ‘๐‘š๐‘–[

๐‘–

๐‘ฅ๐‘–2๐œ”๐‘ฅ + (๐‘ฆ๐‘–

2 + ๐‘ง๐‘–2)๐œ”๐‘ฅ โˆ’ ๐œ”๐‘ฅ๐‘ฅ๐‘–

2 โˆ’ ๐œ”๐‘ฆ๐‘ฅ๐‘–๐‘ฆ๐‘– โˆ’ ๐œ”๐‘ง๐‘ฅ๐‘–๐‘ง๐‘–]

= ๐œ”๐‘ฅ โˆ‘ ๐‘š๐‘–๐‘– (๐‘ฆ๐‘–2 + ๐‘ง๐‘–

2) โˆ’ ๐œ”๐‘ฅ๐‘ฅ๐‘–2 โˆ’ ๐œ”๐‘ฆ โˆ‘ ๐‘š๐‘–๐‘– ๐‘ฅ๐‘–๐‘ฆ๐‘– โˆ’ ๐œ”๐‘ง โˆ‘ ๐‘š๐‘–๐‘– ๐‘ฅ๐‘–๐‘ง๐‘–] (3)

As we studied the definitions of moment of inertia and product of inertia be defined as

๐ผ๐‘ฅ๐‘ฅ = โˆ‘๐‘š๐‘–(๐‘ฆ๐‘–2 + ๐‘ง๐‘–

2)

๐‘–

๐ผ๐‘ฆ๐‘ฆ = โˆ‘๐‘š๐‘–(๐‘ง๐‘–2 + ๐‘ฅ๐‘–

2)

๐‘–

๐ผ๐‘ง๐‘ง = โˆ‘๐‘š๐‘– (๐‘ฅ๐‘–2 + ๐‘ฆ๐‘–

2)

๐‘–

and

๐ผ๐‘ฅ๐‘ฆ = โˆ’โˆ‘๐‘š๐‘–๐‘ฅ๐‘–๐‘ฆ๐‘–

๐‘–

๐ผ๐‘ฆ๐‘ง = โˆ’โˆ‘๐‘š๐‘–๐‘ฆ๐‘–๐‘ง๐‘–

๐‘–

๐ผ๐‘ง๐‘ฅ = โˆ’โˆ‘๐‘š๐‘–๐‘ฅ๐‘–๐‘ง๐‘–

๐‘–

Using these definitions and noting that ๐ผ๐‘ฅ๐‘ฆ = ๐ผ๐‘ฆ๐‘ฅ etc. we can write

๐ฟ๐‘ฅ = ๐ผ๐‘ฅ๐‘ฅ๐œ”๐‘ฅ + ๐ผ๐‘ฅ๐‘ฆ๐œ”๐‘ฆ + ๐ผ๐‘ฅ๐‘ง๐œ”๐‘ง

Similarly we obtain

๐ฟ๐‘ฆ = ๐ผ๐‘ฆ๐‘ฅ๐œ”๐‘ฅ + ๐ผ๐‘ฆ๐‘ฆ๐œ”๐‘ฆ + ๐ผ๐‘ฆ๐‘ง๐œ”๐‘ง

๐ฟ๐‘ง = ๐ผ๐‘ง๐‘ฅ๐œ”๐‘ฅ + ๐ผ๐‘ฆ๐‘ง๐œ”๐‘ฆ + ๐ผ๐‘ง๐‘ง๐œ”๐‘ง

Page 62: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

62

Module No. 134

Angular Momentum in Case of Continuous Distribution of Mass

An actual rigid body consists of very large number of particles and therefore we may suppose that

there is a continuous distribution of mass. If ๐œŒ(๐‘Ÿ) denotes density of a volume element ๐‘‘๐‘‰,

surrounding the point ๐‘Ÿ, then the mass of this element will be ๐œŒ(๐‘Ÿ)๐‘‘๐‘‰.

Hence we can write the expression of angular momentum in case of continuous distribution of

mass by

๐ผ11 โ‰ก ๐ผ๐‘ฅ๐‘ฅ = โˆซ๐œŒ(๐‘Ÿ)(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘‰

where

๐‘Ÿ = (๐‘ฅ, ๐‘ฆ, ๐‘ง) โ‰ก (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3), ๐‘‘๐‘‰ = ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง

Similarly the other two moment of inertia are defined as

๐ผ22 โ‰ก ๐ผ๐‘ฆ๐‘ฆ = โˆซ๐œŒ(๐‘Ÿ)(๐‘ง2 + ๐‘ฅ2)๐‘‘๐‘‰

and

๐ผ33 โ‰ก ๐ผ๐‘ง๐‘ง = โˆซ๐œŒ(๐‘Ÿ)(๐‘ฅ2 + ๐‘ฆ2)๐‘‘๐‘‰

Similarly the product of inertia are defined as

๐ผ12 โ‰ก ๐ผ๐‘ฅ๐‘ฆ = โˆ’โˆซ๐œŒ(๐‘Ÿ)๐‘ฅ๐‘ฆ๐‘‘๐‘‰,

๐ผ23 โ‰ก ๐ผ๐‘ฆ๐‘ง = โˆ’โˆซ๐œŒ(๐‘Ÿ)๐‘ฆ๐‘ง๐‘‘๐‘‰,

๐ผ31 โ‰ก ๐ผ๐‘ง๐‘ฅ = โˆ’โˆซ๐œŒ(๐‘Ÿ)๐‘ง๐‘ฅ๐‘‘๐‘‰

By using these definitions of moment of inertia, we can find the expression of angular momentum

by using the following result

๐ฟ = ๐ฟ๐‘ฅ๐‘– + ๐ฟ๐‘ฆ๐‘— + ๐ฟ๐‘ง๏ฟฝ๏ฟฝ

๐ฟ = ๐ผ๐‘ฅ๐‘ฅ๐œ”๐‘ฅ + ๐ผ๐‘ฆ๐‘ฆ๐œ”๐‘ฆ + ๐ผ๐‘ง๐‘ง๐œ”๐‘ง + ๐ผ๐‘ฅ๐‘ฆ(๐œ”๐‘ฅ + ๐œ”๐‘ฆ) + ๐ผ๐‘ฆ๐‘ง(๐œ”๐‘ฆ + ๐œ”๐‘ง) + ๐ผ๐‘ง๐‘ฅ(๐œ”๐‘ง + ๐œ”๐‘ฅ)

where

๐ฟ๐‘ฅ = ๐ผ๐‘ฅ๐‘ฅ๐œ”๐‘ฅ + ๐ผ๐‘ฅ๐‘ฆ๐œ”๐‘ฆ + ๐ผ๐‘ฅ๐‘ง๐œ”๐‘ง

๐ฟ๐‘ฆ = ๐ผ๐‘ฆ๐‘ฅ๐œ”๐‘ฅ + ๐ผ๐‘ฆ๐‘ฆ๐œ”๐‘ฆ + ๐ผ๐‘ฆ๐‘ง๐œ”๐‘ง

๐ฟ๐‘ง = ๐ผ๐‘ง๐‘ฅ๐œ”๐‘ฅ + ๐ผ๐‘ง๐‘ฆ๐œ”๐‘ฆ + ๐ผ๐‘ง๐‘ง๐œ”๐‘ง

and ๐œ”๐‘ฅ, ๐œ”๐‘ฆ, ๐œ”๐‘ง are the components of angular velocity along (๐‘ฅ, ๐‘ฆ, ๐‘ง).

or

Page 63: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

63

[

๐ฟ๐‘ฅ

๐ฟ๐‘ฆ

๐ฟ๐‘ง

] = [

๐ผ๐‘ฅ๐‘ฅ ๐ผ๐‘ฅ๐‘ฆ ๐ผ๐‘ฅ๐‘ง

๐ผ๐‘ฅ๐‘ฆ ๐ผ๐‘ฆ๐‘ฆ ๐ผ๐‘ฆ๐‘ง

๐ผ๐‘ฅ๐‘ง ๐ผ๐‘ฆ๐‘ง ๐ผ๐‘ง๐‘ง

] [

๐œ”๐‘ฅ

๐œ”๐‘ฆ

๐œ”๐‘ง

]

where we have used the property of products of inertia that

๐ผ๐‘ฅ๐‘ฆ = ๐ผ๐‘ฆ๐‘ฅ, ๐ผ๐‘ฆ๐‘ง = ๐ผ๐‘ง๐‘ฆ and

๐ผ๐‘ฅ๐‘ง = ๐ผ๐‘ง๐‘ฅ

The above matrix form can be written as

๐ฟ = ๐ผ๐œ”

Page 64: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

64

Module No. 135

Law of Conservation of Angular Momentum

Angular Momentum

The angular momentum of a single particle is defined as the cross product of linear momentum

and position vector of concerned particle.

Mathematically ๐ฟ = ๐‘Ÿ ร— ๐‘š๐‘ฃ.

Angular Momentum of System of Particles

The angular momentum L of a system of particles is defined accordingly, as the vector sum of the

individual angular momentum, namely,

๐ฟ = โˆ‘๐‘Ÿ๐‘– ร— ๐‘š๐‘–๐‘ฃ๐‘– (1)

๐‘›

๐‘–=1

Law of Conservation of Angular Momentum

The time rate change of angular momentum in the absence of some external forces is zero.

Mathematically, we can write

๐’…๐‘ณ

๐’…๐’•= ๐ŸŽ โŸน ๐‘ณ = ๐œ๐จ๐ง๐ฌ๐ญ๐š๐ง๐ญ

Let us calculate the time derivative of the angular momentum. Using the rule for differentiating

the cross product, we find

๐‘‘๐ฟ

๐‘‘๐‘ก=

๐‘‘

๐‘‘๐‘ก(โˆ‘๐‘Ÿ๐‘– ร— ๐‘š๐‘–๐‘ฃ๐‘–

๐‘›

๐‘–=1

) = โˆ‘(๐‘ฃ๐‘– ร—

๐‘›

๐‘–=1

๐‘š๐‘–๐‘ฃ๐‘–) + โˆ‘(๐‘Ÿ๐‘– ร—

๐‘›

๐‘–=1

๐‘š๐‘–๐‘Ž๐‘–)

Now the first term on the right vanishes, because,๐‘ฃ๐‘– ร— ๐‘ฃ๐‘– = 0 and, because ๐‘š๐‘–๐‘Ž๐‘– is equal to the

total force acting on particle i, we can write

๐‘‘๐ฟ

๐‘‘๐‘ก= โˆ‘(๐‘Ÿ๐‘– ร—

๐‘›

๐‘–=1

๐‘š๐‘–๐‘Ž๐‘–)

๐‘‘๐ฟ

๐‘‘๐‘ก= โˆ‘ [๐‘Ÿ๐‘– ร— (๐‘›

๐‘–=1 โˆ‘ ๐น๐‘–(๐‘’๐‘ฅ๐‘ก)

๐‘– + โˆ‘ โˆ‘ ๐น๐‘–๐‘—(๐‘–๐‘›๐‘ก)๐‘›

๐‘—=1๐‘›๐‘–=1 )] (2)

๐‘‘๐ฟ

๐‘‘๐‘ก= โˆ‘ ๐‘Ÿ๐‘– ร— ๐น๐‘–

(๐‘’๐‘ฅ๐‘ก)๐‘›๐‘–=1 + โˆ‘ โˆ‘ ๐น๐‘–๐‘—

(๐‘–๐‘›๐‘ก)๐‘›๐‘—=1

๐‘›๐‘–=1 ) (3)

where ๐น๐‘– denotes the total external force on particle ๐‘–, and ๐น๐‘–๐‘— denotes the (internal) force exerted

on particle i by any other particle ๐‘—. Now the double summation on the right consists of pairs of

terms of the form

Page 65: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

65

(๐‘Ÿ๐‘– ร— ๐น๐‘—) + (๐‘Ÿ๐‘— ร— ๐น๐‘—๐‘–) (4)

Denoting the vector displacement of particle ๐‘— relative to particle ๐‘– by ๐‘Ÿ๐‘–๐‘—, we see from the triangle

shown in Figure that

๐‘Ÿ๐‘–๐‘— = ๐‘Ÿ๐‘— โˆ’ ๐‘Ÿ๐‘– (5)

Therefore, because ๐น๐‘—๐‘– = -๐น๐‘–๐‘—, expression (3) reduces to

โˆ’๐‘Ÿ๐‘–๐‘— ร— ๐น๐‘–๐‘— (6)

which clearly vanishes if the internal forces are central, that is, if they act along the lines

connecting pairs of particles. Hence, the double sum in Equation (3) vanishes. Now the cross

product (๐‘Ÿ๐‘– ร— ๐น๐‘–)is the moment of the external force F. The sum โˆ‘(๐‘Ÿ๐‘– ร— ๐น๐‘–) is, therefore, the

total moment of all the external forces acting on the system. If we denote the total external

torque, or moment of force, by N, Equation (3) takes the form

๐‘‘๐ฟ

๐‘‘๐‘ก= ๐‘

That is, the time rate of change of the angular momentum of a system is equal to the total

moment of all the external forces acting on the system.

If a system is isolated, then ๐‘ = 0, and the angular momentum remains constant in both

magnitude and direction:

๐ฟ = โˆ‘๐‘Ÿ๐‘– ร— ๐‘š๐‘–๐‘ฃ๐‘–

๐‘›

๐‘–=1

= Constant vector (8)

This is a statement of the principle of conservation of angular momentum. It is a generalization

for a single particle in a central field.

Page 66: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

66

Module No. 136

Example Related to Angular Momentum

Problem Statement

The moon revolves around the earth so that we always see the same face of the moon.

i. Find how the spin angular momentum and orbital angular momentum of the moon w.r.t.

the earth are related?

ii. Find the change in spin angular momentum of moon so that we could see the entire

moonโ€™s surface during a month.

Solution

i. Let ๐‘€, ๐‘…๐‘š denotes the mass and the radius of the moon respectively.

Then its spin angular momentum i.e. angular momentum about its axis of rotation is given by

๐ฟ๐‘  = ๐ผ๐œ”๐‘ 

where ๐ผ is the moment of inertia and ๐œ”๐‘  angular velocity of the moon about its own axis

The moment of inertia of the sphere is

๐ผ =2

5๐‘š๐‘Ÿ2

by generalizing it for moon, we obtain the moment of inertia for the moon

๐ผ =2

5๐‘€๐‘…๐‘š

2

then the angular momentum of moon will be

๐ฟ๐‘  =2

5๐‘€๐‘…๐‘š

2๐œ”๐‘  (1)

In addition to spinning about its own axis, the moon is also performing orbital motion about the

earth. If we denote the orbital angular momentum by ๐ฟ0, then

๐ฟ0 = ๐‘… ร— (๐‘€๐‘‰) = ๐‘… ร— (๐‘€๐‘…๐œ”0)

= ๐‘€๐‘…2๐œ”0 (2)

โˆด ๐‘ฃ = ๐œ”๐‘Ÿ

where we have treated the moon as a particle and R is the distance between the moon and the

earth. Since we always see the same face of the moon, the moon makes on rotation about its axis

in the same time as it makes on revolution around the earth i.e. ๐œ”๐‘  = ๐œ”0. Form equation (1) and

(2) we have

๐ฟ๐‘ 

๐ฟ0=

25

๐‘€๐‘…๐‘š 2๐œ”๐‘ 

๐‘€๐‘…2๐œ”0

Page 67: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

67

=2

5(๐‘…๐‘š

๐‘…)2

ii. If we have to see the entire moonโ€™s surface during a month, then ๐ฟ๐‘  must either increase

or decrease by one-half of its present value.

Page 68: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

68

Module No. 137

Kinetic Energy of a System about Principal Axes โ€“ Derivation

Kinetic Energy

The kinetic energy for a particle is given by the following scalar equation:

๐‘‡ =1

2๐‘š๐‘ฃ2

Where:

T is the kinetic energy of the particle with respect to ground (an inertial reference frame)

m is the mass of the particle

v is the velocity of the particle, with respect to ground

Kinetic Energy of a Rigid Body

For a rigid body experiencing planar (two-dimensional) motion, the kinetic energy is given by

the following general scalar equation:

๐‘‡ =1

2๐‘š๐‘ฃ๐‘

2 +1

2๐ผ๐‘๐œ”

2 (1)

where the first term in equation (1) shows the kinetic energy due to the motion of center of mass

and second term shows the rotational kinetic energy and subscript c denotes the center of mass

and ๐‘ฃ๐‘ denotes the velocity of c.m and ๐ผ๐‘ denotes the inertia matrix w.r.t c.m.

Kinetic Energy of a Rigid Body w.r.t Origin

If the rigid body is rotating about a fixed point O that is attached to ground, we can express the

kinetic energy as:

๐‘‡ =1

2๐ผ0๐œ”

2

Where:

๐ผ0 is the moment of inertia of the rigid body about an axis passing through the fixed point O, and

perpendicular to the plane of motion and ๐œ” is the angular velocity.

Kinetic Energy of a Rigid Body about Principal Axes

Page 69: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

69

If the center of mass is oriented along with origin then the coordinate axes (xyz axes) and the

principal axes of the rigid body are aligned. In this case, the inertia matrix reduces, i.e. products

of inertia are zero along the principal axes, (๐ผ๐‘ฅ๐‘ฆ = ๐ผ๐‘ฆ๐‘ง = ๐ผ๐‘ง๐‘ฅ = 0) .

For general three-dimensional motion, the kinetic energy of a rigid body about principal axes is

given by the following general scalar equation:

๐‘‡ =1

2๐‘š๐‘ฃ0

2 +1

2๐ผ๐‘ฅ๐œ”๐‘ฅ

2 +1

2๐ผ๐‘ฆ๐œ”๐‘ฆ

2 +1

2๐ผ๐‘ง๐œ”๐‘ง

2 (3)

where ๐ผ๐‘ฅ, ๐ผ๐‘ฆ, ๐ผ๐‘ง are the moment of inertia along principal axes (xyz axes) also called principal

moment of inertia and products of inertia ๐ผ๐‘ฅ๐‘ฆ, ๐ผ๐‘ฆ๐‘ง , ๐ผ๐‘ง๐‘ฅ are zero along the axes

Equation (3) is the required expression of Kinetic Energy along principal axes.

If the rigid body has a fixed point O that is attached to ground, we can give an alternate scalar

equation for the kinetic energy of the rigid body:

๐‘‡ =1

2๐ผ๐‘ฅ๐œ”๐‘ฅ

2 +1

2๐ผ๐‘ฆ๐œ”๐‘ฆ

2 +1

2๐ผ๐‘ง๐œ”๐‘ง

2

in this case, the kinetic energy due to the motion of c.m. vanishes.

Page 70: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

70

Module No. 138

Moment of Inertia of a Rigid Body about a Given Line

Let M be the mass of the system and ๏ฟฝ๏ฟฝ a unit vector along the line ๐‘™. Then ๏ฟฝ๏ฟฝ = ๐œ†๐‘– + ๐œ‡๐‘— + ๐œ๏ฟฝ๏ฟฝ,

where (๐œ†, ๐œ‡, ๐œ)are direction cosines of the line.

If ๐ผ๐‘™ denotes the record moment of inertia, then

๐ผ๐‘™ = โˆ‘๐‘š๐‘–๐‘‘๐‘–2

๐‘–

Form the figure

๐‘‘๐‘– = |๐‘‚๐‘ƒ| sin ๐œƒ๐‘– = |๐‘Ÿ๐‘–| sin ๐œƒ๐‘– = ๐‘Ÿ๐‘– sin ๐œƒ๐‘– = |๐‘’๐‘– ร— ๐‘Ÿ๐‘–|

Therefore

๐ผ๐‘™ = โˆ‘๐‘š๐‘–|๐‘’๐‘– ร— ๐‘Ÿ๐‘–|2

๐‘–

(1)

Now

|๐‘’๐‘– ร— ๐‘Ÿ๐‘–| = |๐‘– ๐‘— ๏ฟฝ๏ฟฝ๐œ† ๐œ‡ ๐œ๐‘ฅ๐‘– ๐‘ฆ๐‘– ๐‘ง๐‘–

|

= (๐œ‡๐‘ง๐‘– โˆ’ ๐œ๐‘ฆ๐‘–)๐‘– + (๐œ๐‘ฅ๐‘– โˆ’ ๐œ†๐‘ง๐‘–)๐‘— + (๐œ†๐‘ง๐‘– โˆ’ ๐œ๐‘ฅ๐‘–)๏ฟฝ๏ฟฝ

|๐‘’๐‘– ร— ๐‘Ÿ๐‘–|2 = (๐œ‡๐‘ง๐‘– โˆ’ ๐œ๐‘ฆ๐‘–)

2 + (๐œ๐‘ฅ๐‘– โˆ’ ๐œ†๐‘ง๐‘–)2 + (๐œ†๐‘ฆ๐‘– โˆ’ ๐œ‡๐‘ฅ๐‘–)

2

Hence on substitution in equation (1), we have

๐ผ๐‘™ = โˆ‘ ๐‘š๐‘–[

๐‘–

(๐œ‡๐‘ง๐‘– โˆ’ ๐œ๐‘ฆ๐‘–)2 + (๐œ๐‘ฅ๐‘– โˆ’ ๐œ†๐‘ง๐‘–)

2 + (๐œ†๐‘ฆ๐‘– โˆ’ ๐œ‡๐‘ฅ๐‘–)2]

๐ผ๐‘™ = โˆ‘๐‘š๐‘–[

๐‘–

๐œ‡2๐‘ง๐‘–2 + ๐œ2๐‘ฆ๐‘–

2 โˆ’ 2๐œ‡๐œ๐‘ฆ๐‘–๐‘ง๐‘– + ๐œ2๐‘ฅ๐‘–2 + ๐œ†2๐‘ง๐‘–

2 โˆ’ 2๐œ๐œ†๐‘ฅ๐‘–๐‘ง๐‘– + ๐œ†๐‘ฆ๐‘– + ๐œ‡๐‘ฅ๐‘– โˆ’ 2๐œ‡๐œ†๐‘ฅ๐‘–๐‘ฆ๐‘–]

= โˆ‘๐‘š๐‘–[

๐‘–

๐œ‡2(๐‘ฅ๐‘–2 + ๐‘ง๐‘–

2) + ๐œ2(๐‘ฅ๐‘–2 + ๐‘ฆ๐‘–

2) + ๐œ†2(๐‘ฆ๐‘–2 + ๐‘ง๐‘–

2) โˆ’ 2๐œ‡๐œ†๐‘ฅ๐‘–๐‘ฆ๐‘– โˆ’ 2๐œ‡๐œ๐‘ฆ๐‘–๐‘ง๐‘– โˆ’ 2๐œ๐œ†๐‘ฅ๐‘–๐‘ง๐‘–

= โˆ‘๐‘š๐‘–[

๐‘–

๐œ†2(๐‘ฆ๐‘–2 + ๐‘ง๐‘–

2) + ๐œ‡2(๐‘ฅ๐‘–2 + ๐‘ง๐‘–

2) + ๐œ2(๐‘ฅ๐‘–2 + ๐‘ฆ๐‘–

2) โˆ’ 2๐œ‡๐œ†๐‘ฅ๐‘–๐‘ฆ๐‘– โˆ’ 2๐œ‡๐œ๐‘ฆ๐‘–๐‘ง๐‘– โˆ’ 2๐œ๐œ†๐‘ฅ๐‘–๐‘ง๐‘–

= ๐œ†2 โˆ‘๐‘š๐‘–[

๐‘–

(๐‘ฆ๐‘–2 + ๐‘ง๐‘–

2) + ๐œ‡2 โˆ‘๐‘š๐‘–

๐‘–

(๐‘ฅ๐‘–2 + ๐‘ง๐‘–

2) + ๐œ2 โˆ‘๐‘š๐‘–

๐‘–

(๐‘ฅ๐‘–2 + ๐‘ฆ๐‘–

2) + 2๐œ‡๐œ†(โˆ’โˆ‘๐‘š๐‘–

๐‘–

๐‘ฅ๐‘–๐‘ฆ๐‘–)

+ 2๐œ‡๐œ(โˆ’โˆ‘๐‘š๐‘–

๐‘–

๐‘ฆ๐‘–๐‘ง๐‘–) + 2๐œ๐œ†(โˆ’โˆ‘๐‘š๐‘–

๐‘–

๐‘ฅ๐‘–๐‘ง๐‘–)

Page 71: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

71

or finally,

๐ผ๐‘™ = ๐œ†2๐ผ๐‘ฅ๐‘ฅ + ๐œ‡2๐ผ๐‘ฆ๐‘ฆ + ๐œ2๐ผ๐‘ง๐‘ง + 2๐œ‡๐œ†๐ผ๐‘ฅ๐‘ฆ + 2๐œ‡๐œ๐ผ๐‘ฆ๐‘ง + 2๐œ๐œ†๐ผ๐‘ง๐‘ฅ

which may also be written as

๐ผ๐‘™ = ๐œ†2๐ผ11 + ๐œ‡2๐ผ22 + ๐œ2๐ผ33 + 2๐œ‡๐œ†๐ผ12 + 2๐œ‡๐œ๐ผ23 + 2๐œ๐œ†๐ผ31

Page 72: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

72

Module No. 139

Example of M.I of a Rigid Body About Given Line

Problem Statement

Calculate the moment of inertia of a right circular cone about its axis of symmetry.

Solution

Let M be the mass, a the radius and h the height of right circular cone. We regard the cone as

composed of elementary circular discs of small thickness each parallel to the base of the cone.

We choose the z-axis along the axis of symmetry, and consider a typical disc of radius r and

width ๐›ฟ๐‘ง at a distance z from the base.

Mass of the disc is given by

๐›ฟ๐‘š = ๐œŒ๐œ‹๐‘Ÿ2๐›ฟ๐‘ง

We regard the disk to be composed of concentric elementary circular rings of varying radii say ๐‘Ÿโ€ฒ

then the mass ๐›ฟ๐‘šโ€ฒ of one circular ring with height ๐›ฟ๐‘ง will be

๐›ฟ๐‘šโ€ฒ = ๐œŒ2๐œ‹๐‘Ÿโ€ฒ๐›ฟ๐‘ง

Then the M.I of one circular ring will be

๐ผ๐‘.๐‘Ÿ = ๐œŒ2๐œ‹๐‘Ÿโ€ฒ๐›ฟ๐‘ง(๐‘Ÿโ€ฒ)2 = 2๐œ‹๐œŒ(๐‘Ÿโ€ฒ)3๐›ฟ๐‘ง

Hence the M.I of the whole disk will be

๐›ฟ๐ผ = โˆ‘ 2๐œ‹๐œŒ(๐‘Ÿโ€ฒ)3๐›ฟ๐‘ง

๐‘Ÿ๐‘–๐‘›๐‘”๐‘ 

= โˆซ2

๐‘Ÿ

0

๐œ‹(๐›ฟ๐‘š

๐œ‹๐‘Ÿ2๐›ฟ๐‘ง)(๐‘Ÿโ€ฒ)3๐›ฟ๐‘ง๐‘‘๐‘Ÿโ€ฒ

=2๐›ฟ๐‘š

๐‘Ÿ2โˆซ(๐‘Ÿโ€ฒ)3๐‘‘๐‘Ÿโ€ฒ

๐‘Ÿ

0

๐›ฟ๐ผ =2๐›ฟ๐‘š

4๐‘Ÿ2๐‘Ÿ4 =

1

2๐›ฟ๐‘š๐‘Ÿ2

From the similar triangles,

we have

Page 73: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

73

๐‘Ÿ

๐‘Ž=

โ„Ž โˆ’ ๐‘ง

โ„Ž or ๐‘Ÿ = ๐‘Ž

โ„Ž โˆ’ ๐‘ง

โ„Ž

Therefore

๐›ฟ๐‘š = ๐œŒ๐œ‹ (๐‘Žโ„Ž โˆ’ ๐‘ง

โ„Ž)2

๐›ฟ๐‘ง

Since the M.I of the disk is

๐›ฟ๐ผ =1

2๐›ฟ๐‘š๐‘Ÿ2

On substituting for ๐›ฟ๐‘š and ๐‘Ÿ, the M.I of the cone about its axis of symmetry will be

๐ผ =1

2โˆซ ๐œŒ๐œ‹ (๐‘Ž

โ„Ž โˆ’ ๐‘ง

โ„Ž)2

(๐‘Žโ„Ž โˆ’ ๐‘ง

โ„Ž)2

โ„Ž

0

๐‘‘๐‘ง

=1

2

๐œŒ๐œ‹๐‘Ž4โ„Ž

โ„Ž4โˆซ(โ„Ž โˆ’ ๐‘ง)4๐‘‘๐‘ง

โ„Ž

0

=1

2

๐œŒ๐œ‹๐‘Ž4โ„Ž

โ„Ž4โˆซ(๐‘ง โˆ’ โ„Ž)4๐‘‘๐‘ง

โ„Ž

0

Since the M.I of the disk is

๐›ฟ๐ผ =1

2๐›ฟ๐‘š๐‘Ÿ2

On substituting for ๐›ฟ๐‘š and ๐‘Ÿ, the M.I of the cone about its axis of symmetry will be

๐ผ =1

2โˆซ ๐œŒ๐œ‹ (๐‘Ž

โ„Ž โˆ’ ๐‘ง

โ„Ž)2

(๐‘Žโ„Ž โˆ’ ๐‘ง

โ„Ž)2

โ„Ž

0

๐‘‘๐‘ง

=1

2

๐œŒ๐œ‹๐‘Ž4โ„Ž

โ„Ž4โˆซ(โ„Ž โˆ’ ๐‘ง)4๐‘‘๐‘ง

โ„Ž

0

=1

2

๐œŒ๐œ‹๐‘Ž4โ„Ž

โ„Ž4โˆซ(๐‘ง โˆ’ โ„Ž)4๐‘‘๐‘ง

โ„Ž

0

๐ผ =๐œŒ๐œ‹๐‘Ž4โ„Ž

10โ„Ž4|(๐‘ง โˆ’ โ„Ž)5|0

โ„Ž

=๐œŒ๐œ‹๐‘Ž4โ„Ž6

10โ„Ž4=

๐œŒ๐œ‹๐‘Ž4โ„Ž2

10

Since we know that

๐œŒ = density of the cone

Page 74: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

74

=๐‘€

(1 3โ„ )๐œ‹๐‘Ž2โ„Ž

So,

๐ผ =3

10๐‘€๐‘Ž2

Page 75: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

75

Module No. 140

Ellipsoid of Inertia

We have obtained the expression of moment of inertia of the given line l in terms of moment and

product of inertia w.r.t the coordinate axes OXYZ coordinate system whose origin O lies on the

line l.

๐ผ๐‘™ = ๐ผ = ๐œ†2๐ผ11 + ๐œ‡2๐ผ22 + ๐œ2๐ผ33 + 2๐œ‡๐œ†๐ผ12 + 2๐œ‡๐œ๐ผ23 + 2๐œ๐œ†๐ผ31

(1)

For the ellipsoid of inertia, we chose a point P such that |๐‘‚๐‘ƒ| = 1โˆš๐ผ

โ„ . If (๐‘ฅ, ๐‘ฆ, ๐‘ง) are coordinates

of point P then

๐œ† =๐‘ฅ

|๐‘‚๐‘ƒ|= ๐‘ฅโˆš๐ผ, ๐œ‡ =

๐‘ฆ

|๐‘‚๐‘ƒ|= ๐‘ฆโˆš๐ผ , ๐œˆ =

๐‘ง

|๐‘‚๐‘ƒ|= ๐‘งโˆš๐ผ

On eliminating ๐œ†, ๐œ‡, ๐œˆ from equation (1), we obtain

๐ผ = (๐‘ฅโˆš๐ผ)2๐ผ11 + (๐‘ฆโˆš๐ผ)2๐ผ22 + (๐‘งโˆš๐ผ)2๐ผ33 + 2(๐‘ฅ๐‘ฆโˆš๐ผโˆš๐ผ)๐ผ12 + 2(๐‘ฆ๐‘งโˆš๐ผโˆš๐ผ)๐ผ23 + 2(๐‘ฅ๐‘งโˆš๐ผโˆš๐ผ)๐ผ31

๐ผ = ๐ผ[๐‘ฅ2๐ผ11 + ๐‘ฆ2๐ผ22 + ๐‘ง2๐ผ33 + 2๐‘ฅ๐‘ฆ๐ผ12 + 2๐‘ฆ๐‘ง๐ผ23 + 2๐‘ง๐‘ฅ๐ผ31]

1 = ๐‘ฅ2๐ผ11 + ๐‘ฆ2๐ผ22 + ๐‘ง2๐ผ33 + 2๐‘ฅ๐‘ฆ๐ผ12 + 2๐‘ฆ๐‘ง๐ผ23 + 2๐‘ง๐‘ฅ๐ผ31

which can also be written as

๐ผ11๐‘ฅ2 + ๐ผ22๐‘ฆ

2 + ๐ผ33๐‘ง2 + 2๐ผ12๐‘ฅ๐‘ฆ + 2๐ผ23๐‘ฆ๐‘ง + 2๐ผ31๐‘ง๐‘ฅ = 1

Since ๐ผ11, ๐ผ22, ๐ผ33 are all positive, equation (2) represents an ellipsoid. This ellipsoid is called

ellipsoid of inertia or momental ellipsoid. The momental ellipsoid contains information about

moments or product of inertia at given point. If P is any point on the ellipsoid of inertia, then

|๐‘‚๐‘ƒ| = 1โˆš๐ผ

โ„ or ๐ผ = 1๐‘‚๐‘ƒ2โ„ i.e. the moment of inertia of a rigid body about any line ๐‘‚๐‘ƒ is equals

to the reciprocal of the square of the length of |๐‘‚๐‘ƒ |.

Page 76: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

76

Module No. 141

Rotational Kinetic Energy

Introduction to Kinetic Energy

Kinetic energy is the energy produced in any body during its motion. It is equal to the half of the

product of mass and square of the velocity of the moving body;

๐พ. ๐ธ.= ๐‘‡ =1

2๐‘š๐‘ฃ2

We consider a rigid body in a general state of motion in which it has both translation and rotation

w.r.t a fixed coordinate system. We suppose that it has an instantaneous angular velocity ๐œ” about

a reference point C. We will use a model of a rigid body in which it is considered a collection of

large number N of particles which satisfy the constraint of rigidity.

If v is the velocity of C, then the velocity ๐‘ฃ๐‘– of the ith particle is given by

๐‘ฃ๐‘– = ๐‘ฃ + ๐œ” ร— ๐‘Ÿ๐‘–

If ๐‘š๐‘– is the mass and ๐‘ฃ๐‘– the velocity of the ith particle, then the kinetic energy of the ith particle

will be

๐‘‡๐‘– =1

2๐‘š๐‘–๐‘ฃ๐‘–

2

therefore the total kinetic energy of the system will be given by

๐‘‡ = โˆ‘๐‘‡๐‘–

๐‘

๐‘–=1

= โˆ‘1

2๐‘š๐‘–๐‘ฃ๐‘–

2

๐‘

๐‘–=1

= โˆ‘1

2๐‘š๐‘–(

๐‘

๐‘–=1

๐‘ฃ + ๐œ” ร— ๐‘Ÿ๐‘–)2

=1

2โˆ‘๐‘š๐‘–[

๐‘

๐‘–=1

๐‘ฃ2 + 2๐‘ฃ.๐œ” ร— ๐‘Ÿ๐‘– + (๐œ” ร— ๐‘Ÿ๐‘–)2]

=1

2(โˆ‘ ๐‘š๐‘–

๐‘

๐‘–=1

)๐‘ฃ2 +1

2โˆ‘๐‘š๐‘–

๐‘

๐‘–=1

2๐‘ฃ.๐œ” ร— ๐‘Ÿ๐‘– +1

2โˆ‘๐‘š๐‘–(๐œ” ร— ๐‘Ÿ๐‘–)

2

๐‘

๐‘–=1

=1

2๐‘€๐‘ฃ2 + ๐‘ฃ. (๐œ” ร— โˆ‘๐‘š๐‘–๐‘Ÿ๐‘–) +

๐‘

๐‘–=1

1

2โˆ‘๐‘š๐‘–(๐œ” ร— ๐‘Ÿ๐‘–)

2

๐‘

๐‘–=1

=1

2๐‘€๐‘ฃ2 + ๐‘ฃ.๐œ” ร— โˆ‘ ๐‘š๐‘–๐‘Ÿ๐‘– +๐‘

๐‘–=11

2โˆ‘ ๐‘š๐‘–(๐œ” ร— ๐‘Ÿ๐‘–)

2๐‘๐‘–=1 (1)

where โˆ‘ ๐‘š๐‘– = ๐‘€ ๐‘๐‘–=1 is the total mass of the system.

Now by using the definition of position vector center of mass (c.m.), we have

๐‘Ÿ๐‘ =โˆ‘ ๐‘š๐‘–๐‘Ÿ๐‘–๐‘–

โˆ‘ ๐‘š๐‘–๐‘– (2)

Now we will discuss the consequence of referring of the position vectors of particle of the system

to the c.m. If the position vector of the ith particle of the system w.r.t the c.s. , then

๐‘Ÿ๐‘– = ๐‘Ÿโ€ฒ๐‘– + ๐‘Ÿ๐‘

Page 77: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

77

Then by substitution this expression in the definition of c.m.in (2) , we obtain

๐‘Ÿ๐‘ =โˆ‘ ๐‘š๐‘–(๐‘– ๐‘Ÿโ€ฒ

๐‘– + ๐‘Ÿ๐‘)

โˆ‘ ๐‘š๐‘–๐‘–

๐‘Ÿ๐‘ =โˆ‘ ๐‘š๐‘–๐‘– ๐‘Ÿโ€ฒ

๐‘–

โˆ‘ ๐‘š๐‘–๐‘–+

๐‘€๐‘Ÿ๐‘๐‘€

๐‘Ÿ๐‘ =โˆ‘ ๐‘š๐‘–๐‘– ๐‘Ÿโ€ฒ

๐‘–

โˆ‘ ๐‘š๐‘–๐‘–+ ๐‘Ÿ๐‘

or we can write

๐‘Ÿ๐‘ =โˆ‘ ๐‘š๐‘–๐‘– ๐‘Ÿโ€ฒ

๐‘–

๐‘€+ ๐‘Ÿ๐‘

which gives

โˆ‘ ๐‘š๐‘–๐‘–

๐‘Ÿโ€ฒ๐‘– = 0

Hence if the reference point C is identified with the center of the mass and origin is taken thereat,

the expression โˆ‘ ๐‘š๐‘–๐‘Ÿ๐‘– = 0 ๐‘๐‘–=1 and therefore

๐‘‡ =1

2๐‘€๐‘ฃ2 +

1

2โˆ‘ ๐‘š๐‘–(๐œ” ร— ๐‘Ÿ๐‘–)

2

๐‘

๐‘–=1

๐‘‡ = ๐‘‡๐‘ก๐‘Ÿ + ๐‘‡๐‘Ÿ๐‘œ๐‘ก

where ๐‘‡๐‘ก๐‘Ÿ =1

2๐‘€๐‘ฃ2 is the translational kinetic energy is also equals to the K.E of the center of the

mass and ๐‘ก๐‘Ÿ๐‘œ๐‘ก =1

2โˆ‘ ๐‘š๐‘–(๐œ” ร— ๐‘Ÿ๐‘–)

2๐‘๐‘–=1 is the rotational kinetic energy of the system.

But we have

(๐œ” ร— ๐‘Ÿ๐‘–)2 = (๐œ” ร— ๐‘Ÿ๐‘–). (๐œ” ร— ๐‘Ÿ๐‘–)

= ๐œ”. ๐‘Ÿ๐‘– ร— (๐œ” ร— ๐‘Ÿ๐‘–)

therefore on substitution

Page 78: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

78

๐‘‡๐‘Ÿ๐‘œ๐‘ก =1

2โˆ‘๐‘š๐‘–[๐œ”. ๐‘Ÿ๐‘– ร— (๐œ” ร— ๐‘Ÿ๐‘–)] =

1

2๐œ”. ๐ฟ

๐‘

๐‘–=1

Thus we have obtained the following formulas for translational and rotational K.E. of a rigid

body

๐‘‡๐‘ก๐‘Ÿ =1

2๐‘€๐‘ฃ2

๐‘‡๐‘Ÿ๐‘œ๐‘ก =1

2๐œ”. ๐ฟ (1)

As we studied the relation ๐ฟ = ๐ผ๐œ”

By using this value in relation (1) we obtain the rotational kinetic energy in terms of moment of

inertia.

๐‘‡๐‘Ÿ๐‘œ๐‘ก =1

2๐œ”. ๐ผ๐œ” =

1

2๐ผ๐œ”2 (2)

where ๐ผ is the moment of inertia of the rigid body about the origin and equation (2) is the

required expression for Rotational Kinetic Energy.

Page 79: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

79

Module No. 142

Moment of Inertia & Angular Momentum in Tensor Notation

To show that the 3 ร— 3 inertia matrix (๐ผ๐‘–๐‘— ) is also a Cartesian tensor of rank 3, we proceed as

follows. Here we have to distinguish between the particle index and the component index, which

denotes particle number, will be denoted by Greek letter ๐›ผ, and will take the value

1,2, โ€ฆโ€ฆ . , ๐‘. On the other hand, the component index, which denotes the component number

will be denotes by the Latin letters such as i and will take the value 1,2,3.

Using this notation, we can write the angular momentum of the system of N particles as

๐ฟ = โˆ‘๐‘Ÿ๐›ผ ร— ๐‘๐›ผ =

๐›ผ

โˆ‘๐‘Ÿ๐›ผ ร— (๐‘š๐›ผ๐‘ฃ๐›ผ)

๐›ผ

where ๐‘ฃ๐›ผ is the velocity of ๐›ผ๐‘กโ„Ž particle. Continuing we have

โˆ‘๐‘š๐›ผ๐‘Ÿ๐›ผ ร— ๐‘ฃ๐›ผ =

๐›ผ

โˆ‘๐‘š๐›ผ๐‘Ÿ๐›ผ ร— (๐œ” ร— ๐‘Ÿ๐›ผ) , โˆด ๐‘ฃ๐›ผ = ๐œ” ร— ๐‘Ÿ๐›ผ๐›ผ

Recall that every particle of the rigid body has the same angular velocity at a given ๐‘ก.

Simplification of the above reduces to

๐ฟ = โˆ‘๐‘š๐›ผ((๐‘Ÿ๐›ผ. ๐‘Ÿ๐›ผ)๐œ” โˆ’ (๐œ”. ๐‘Ÿ๐›ผ)๐‘Ÿ๐›ผ)

๐›ผ

= โˆ‘๐‘š๐›ผ(๐‘Ÿ๐›ผ2๐œ” โˆ’ (๐œ”. ๐‘Ÿ๐›ผ)๐‘Ÿ๐›ผ)

๐›ผ

But

๐œ”. ๐‘Ÿ๐›ผ = โˆ‘๐œ”๐‘–๐‘Ÿ๐›ผ,๐‘– =

3

๐‘–=1

โˆ‘๐œ”๐‘–๐‘ฅ๐›ผ,๐‘– =

3

๐‘–=1

โˆ‘๐œ”๐‘—๐‘ฅ๐›ผ,๐‘—

3

๐‘—=1

where

๐‘Ÿ๐›ผ = (๐‘ฅ๐›ผ , ๐‘ฆ๐›ผ, ๐‘ง๐›ผ) = (๐‘ฅ๐›ผ,1, ๐‘ฅ๐›ผ,2, ๐‘ฅ๐›ผ,3) โ‰ก ๐‘ฅ๐›ผ,๐‘–

Making substitution and taking the ith component of the expression of angular momentum,

we have

๐ฟ๐‘– = โˆ‘๐‘š๐›ผ (๐‘Ÿ๐›ผ2๐œ”๐‘– โˆ’ (โˆ‘๐œ”๐‘—

๐‘—

๐‘ฅ๐›ผ,๐‘—)๐‘ฅ๐›ผ,๐‘–)

๐›ผ

But ๐œ”๐‘– = โˆ‘ ๐œ”๐‘—๐‘— ๐›ฟ๐‘–๐‘—; where ๐›ฟ๐‘–๐‘— = {0, ๐‘– โ‰  ๐‘—1, ๐‘– = ๐‘—

, thus

Page 80: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

80

therefore

๐ฟ๐‘– = โˆ‘๐‘š๐›ผ (๐‘Ÿ๐›ผ2 โˆ‘๐œ”๐‘—

๐‘—

๐›ฟ๐‘–๐‘— โˆ’ โˆ‘๐œ”๐‘—

๐‘—

๐‘ฅ๐›ผ,๐‘—๐‘ฅ๐›ผ,๐‘–)

๐›ผ

๐ฟ๐‘– = โˆ‘๐‘š๐›ผ โˆ‘(๐‘Ÿ๐›ผ2๐›ฟ๐‘–๐‘— โˆ’ ๐‘ฅ๐›ผ,๐‘—๐‘ฅ๐›ผ,๐‘–)๐œ”๐‘—

๐‘—๐›ผ

๐ฟ๐‘– = โˆ‘๐œ”๐‘—

๐‘—

โˆ‘๐‘š๐›ผ(๐‘Ÿ๐›ผ2๐›ฟ๐‘–๐‘— โˆ’ ๐‘ฅ๐›ผ,๐‘—๐‘ฅ๐›ผ,๐‘–)

๐›ผ

which can also be expressed as

๐ฟ๐‘– = โˆ‘ ๐œ”๐‘—๐‘— ๐ผ๐‘–๐‘— (1)

where

๐ผ๐‘–๐‘— = โˆ‘ ๐‘š๐›ผ(๐‘Ÿ๐›ผ2๐›ฟ๐‘–๐‘— โˆ’ ๐‘ฅ๐›ผ,๐‘—๐‘ฅ๐›ผ,๐‘–)๐›ผ (2)

Equation (1) shows that the component of angular momentum depends not only on the angular

velocity ๐œ” but also on the inertia tensor ๐ผ๐‘–๐‘—.

Since the angular velocity (๐œ”๐‘–) and the angular momentum (๐ฟ๐‘–) are known to be cartesion tensor

of rank 1, it follows from the quotient theorem ๐ผ๐‘–๐‘— that ๐ผ๐‘–๐‘— is a tensor of rank 2. It is called the

inertia tensor.

Page 81: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

81

Module No. 143

Introduction to Special Moments of Inertia

In this module, we will study some special moment of inertia. In order to introduce the moment

of inertia of some specific shapes and special rigid bodies, we assume that the rigid body is of

uniform density of particles.

Solid Circular Cylinder

We assume the radius of cylinder is ๐’‚ and mass ๐‘€ about axis of cylinder.

๐ผ =1

2๐‘€๐‘Ž2

Hollow Circular Cylinder

We assume the radius of cylinder is ๐’‚ and mass ๐‘€ about axis of cylinder.

We consider the thickness of Wall of cylinder is negligible.

๐ผ = ๐‘€๐‘Ž2

Solid Sphere

We assume the radius of sphere is ๐’‚ and mass ๐‘€ about a diameter.

๐ผ =2

5๐‘€๐‘Ž2

Hollow Sphere

We assume the radius of sphere is ๐’‚ and mass ๐‘€ about a diameter.

We consider the thickness of sphere is negligible.

๐ผ = ๐‘€๐‘Ž2

Rectangular Plate

We consider sides of length ๐’‚ and ๐’ƒ, and mass M about an axis perpendicular to the plate

through the center of mass.

๐ผ =1

12๐‘€(๐‘Ž2 + ๐‘2)

Thin Rod

We assume the length of rod is ๐’‚ and mass M about an axis perpendicular to the rod through the

center of mass.

Page 82: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

82

๐ผ =1

12๐‘€๐‘Ž2

Triangular Lamina

We assume the height ๐’‰ and mass M of lamina.

๐ผ =1

6๐‘€โ„Ž2

Right Circular Cone

We assume the radius of the circular cone is ๐‘Ž and mass M.

๐ผ =3

10๐‘€๐‘Ž2

Page 83: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

83

Module No. 144

M.I. of the Thin Rod โ€“ Derivation

Problem Statement

Calculate the moment of inertia of a uniform rod of length ๐‘™ about an axis perpendicular to the

rod and passing through an end point.

Solution

Let the ๐‘‹ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  be chosen along the length of the rod, with origin at one end point as shown in

the figure. Let ๐‘€ and ๐‘Ž be the mass and length of rod respectively. We suppose the rod to be

composed of small elements.

Let ๐‘‘๐‘š and ๐‘‘๐‘ฅ be the mass and the length of the specific element of the rod at a distance ๐‘ฅ from

the end point O.

Then

๐‘‘๐‘š

๐‘‘๐‘ฅ=

๐‘€

๐‘Ž

โŸน ๐‘‘๐‘š = ๐‘€

๐‘Ž๐‘‘๐‘ฅ

Then the moment of inertia of this element about the given axis is

๐ผ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐‘‘๐‘š๐‘ฅ2 =๐‘€

๐‘Ž๐‘ฅ2๐‘‘๐‘ฅ

Page 84: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

84

Hence the moment of inertia of the whole rod will be

๐ผ = โˆ‘๐‘€

๐‘Ž๐‘Ž๐‘™๐‘™ ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก๐‘ 

๐‘ฅ2๐‘‘๐‘ฅ

=๐‘€

๐‘Žโˆซ ๐‘ฅ2๐‘‘๐‘ฅ

๐‘Ž

0

=๐‘€

๐‘Ž. |

๐‘ฅ3

3|0

๐‘Ž

=๐‘€

๐‘Ž

๐‘Ž3

3

=1

3๐‘€๐‘Ž2

Page 85: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

85

Module No. 145

M.I. of Hoop or Circular Ring โ€“ Derivation

Problem Statement

Calculate the moment of inertia of a hoop of mass ๐‘€ and radius ๐‘Ÿ about an axis passing through

its center.

Proof

Let ๐‘€ be the mass and ๐‘Ÿ the radius of the hoop. Then we can define the density of the hoop by

๐œŒ =mass

area=

๐‘€

2๐œ‹๐‘Ÿ๐‘‘๐‘Ÿ

We consider this hoop to be composed of small masses (๐›ฟ๐‘š) each of length ๐›ฟ๐‘ .

We can write it as

๐œŒ =๐‘€

2๐œ‹๐‘Ÿ๐‘‘๐‘Ÿ=

๐›ฟ๐‘š

๐‘‘๐‘Ÿ๐›ฟ๐‘ 

โŸน ๐›ฟ๐‘š =๐‘€

2๐œ‹๐‘Ÿ๐›ฟ๐‘ 

Moment of inertia of the small portion of the hoop of mass ๐›ฟ๐‘š about an axis through center and

perpendicular to the plane of the ring equals

๐ผ๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘™๐‘’ = ๐›ฟ๐‘š๐‘Ÿ2

=๐‘€

2๐œ‹๐‘Ÿ๐›ฟ๐‘  ๐‘Ÿ2 =

๐‘€๐‘Ÿ

2๐œ‹๐›ฟ๐‘ 

Therefore the ๐‘€. ๐ผ of the

whole ring/hoop will be

Page 86: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

86

๐ผ =๐‘€๐‘Ÿ

2๐œ‹โˆ‘ ๐›ฟ๐‘ 

๐‘๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘™๐‘’๐‘ 

๐ผ =๐‘€๐‘Ÿ

2๐œ‹โˆซ๐‘‘๐‘ 

=๐‘€๐‘Ÿ

2๐œ‹2๐œ‹๐‘Ÿ

= ๐‘€๐‘Ÿ2

Hence we obtain ๐‘€๐‘Ÿ2 as the moment of inertia of the hoop.

Page 87: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

87

Module No. 146

M.I. of Annular Disk - Derivation Problem

Calculate the moment of inertia of annular disk of mass ๐‘€. The inner radius of the annulus is ๐‘…1

and the outer radius is ๐‘…2 about an axis passing through its center.

Solution

Subdivide the annulur disk into concentric rings one of which is shown in the fig.

Let the mass of the ring is ๐‘‘๐‘š, and the radius be ๐‘Ÿ, then the moment of inertia of the ring will be:

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘Ÿ2๐‘‘๐‘š

The Surface area of the ring is

Area = (2๐œ‹๐‘Ÿ)๐‘‘๐‘Ÿ = 2๐œ‹๐‘Ÿ๐‘‘๐‘Ÿ

Since the surface area of the

annulus is

๐œ‹(๐‘…22 โˆ’ ๐‘…1

2)

Therefore, we can have

Page 88: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

88

๐‘‘๐‘š

๐‘€=

2๐œ‹๐‘Ÿ๐‘‘๐‘Ÿ

๐œ‹(๐‘…22 โˆ’ ๐‘…1

2)

๐‘‘๐‘š =2๐‘Ÿ๐‘‘๐‘Ÿ

(๐‘…22 โˆ’ ๐‘…1

2)๐‘€

Since the moment of Inertia of the ring is:

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘Ÿ2๐‘‘๐‘š

or

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘Ÿ22๐‘Ÿ๐‘‘๐‘Ÿ

๐‘…22 โˆ’ ๐‘…1

2 ๐‘€ =2๐‘€๐‘Ÿ3๐‘‘๐‘Ÿ

๐‘…22 โˆ’ ๐‘…1

2

Thus the total M.I of the annulur disk will be

๐ผ = โˆซ ๐ผ๐‘Ÿ๐‘–๐‘›๐‘”

๐‘…2

๐‘Ÿ=๐‘…1

๐ผ = โˆซ2๐‘€๐‘Ÿ3๐‘‘๐‘Ÿ

๐‘…22 โˆ’ ๐‘…1

2

๐‘…2

๐‘Ÿ=๐‘…1

=2๐‘€

๐‘…22 โˆ’ ๐‘…1

2 โˆซ ๐‘Ÿ3๐‘‘๐‘Ÿ

๐‘…2

๐‘Ÿ=๐‘…1

=2๐‘€

๐‘…22 โˆ’ ๐‘…1

2 |๐‘Ÿ4

4|๐‘…1

๐‘…2

=2๐‘€

๐‘…22 โˆ’ ๐‘…1

2

๐‘…24 โˆ’ ๐‘…1

4

4

๐ผ =1

2๐‘€(๐‘…2

2 + ๐‘…12)

Page 89: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

89

Module No. 147

M.I. of a Circular Disk - Derivation

Problem

To find the moment of inertia of a circular disk of radius ๐‘Ž, and mass ๐‘€ about the axis of the disk.

Solution

Subdivide the disk into concentric rings one of which is the element (ring) shown in the fig.

Let the mass the of the ring is ๐‘‘๐‘š, then the moment of inertia of the ring will be:

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘Ÿ2๐‘‘๐‘š

The Surface area this element is

Area = (2๐œ‹๐‘Ÿ)๐‘‘๐‘Ÿ = 2๐œ‹๐‘Ÿ๐‘‘๐‘Ÿ

Since we have

๐‘‘๐‘š

๐‘€=

2๐œ‹๐‘Ÿ๐‘‘๐‘Ÿ

๐œ‹๐‘Ž2

๐‘‘๐‘š =2๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž2๐‘€

Since the moment of Inertia of the ring is:

Page 90: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

90

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘Ÿ2๐‘‘๐‘š

or

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘Ÿ22๐‘Ÿ๐‘‘๐‘Ÿ

๐‘Ž2๐‘€ =

2๐‘€๐‘Ÿ3๐‘‘๐‘Ÿ

๐‘Ž2

Thus the total moment of inertia of the circular disk will be

๐ผ๐‘‘๐‘–๐‘ ๐‘˜ = โˆซ ๐ผ๐‘Ÿ๐‘–๐‘›๐‘”

๐‘Ž

๐‘Ÿ=0

๐ผ๐‘‘๐‘–๐‘ ๐‘˜ = โˆซ2๐‘€๐‘Ÿ3๐‘‘๐‘Ÿ

๐‘Ž2

๐‘Ž

๐‘Ÿ=0

=2๐‘€

๐‘Ž2โˆซ ๐‘Ÿ3๐‘‘๐‘Ÿ

๐‘Ž

๐‘Ÿ=0

=2๐‘€

๐‘Ž2|๐‘Ÿ4

4|0

๐‘Ž

=2๐‘€

๐‘Ž2

๐‘Ž4

4

๐ผ๐‘‘๐‘–๐‘ ๐‘˜ =1

2๐‘€๐‘Ž2

which is M.I of a disk.

Page 91: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

91

Module No. 148

Rectangular Plate โ€“ Derivation

Problem Statement

Calculate the inertia matrix of a uniform rectangular plate with sides ๐’‚ and ๐’ƒ about its side.

Solution

We consider a rectangular plate (lamina) of sides of length a and b. We consider an element of

length ๐‘‘๐‘ฅ and ๐‘‘๐‘ฆ.

The mass of selected element will be

๐‘‘๐‘š = ๐œŒ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

Its moment of inertia about the y-axis is

๐œŒ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘ฅ2 = ๐œŒ๐‘ฅ2๐‘‘๐‘ฅ๐‘‘๐‘ฆ.

Thus the total moment of inertia is

๐ผ = โˆซ โˆซ ๐œŒ๐‘ฅ2๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐‘

๐‘ฆ=0

๐‘Ž

๐‘ฅ=0

= ๐œŒ๐‘ โˆซ๐‘ฅ2

๐‘Ž

0

= ๐œŒ๐‘ |๐‘ฅ3

3|0

๐‘Ž

=1

3๐œŒ๐‘๐‘Ž3

Since the total mass of rectangular plate is

๐‘€ = ๐œŒ๐‘Ž๐‘

the moment o inertia will be

๐ผ =1

3๐‘€๐‘Ž2

Page 92: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

92

Module No. 149

M.I. of Square Plate โ€“ Derivation

Problem Statement

Calculate the moment of inertia of a uniform square plate with sides ๐’‚ about any axis through its

center and lying in the plane of plate.

Solution

Consider a uniform square plate with length of its side to be ๐‘Ž, we have to find out M.I. of this

plate about any axis, through its center.

We consider this axis as ๐‘ฆ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘ .

Let ๐œŒ be the density of plate and the total area of square plate is ๐‘Ž2.

So density will be

๐œŒ =๐‘€

๐‘Ž2

We assume that the plate has been divided into vertical strips. Let us consider a strip from the

whole square as shown in figure.

The strips are chosen in this way because each point on a particular strip is approximately the

same distance from axis of rotation i.e. y-axis, the mass of the strip is ๐›ฟ๐‘š and the width of each

strip is ๐›ฟ๐‘ฅ, then the area of the strip will be ๐‘Ž๐›ฟ๐‘ฅ, so

๐›ฟ๐‘š = ๐œŒ๐‘Ž๐›ฟ๐‘ฅ

Let the distance of the strip from y-axis is ๐‘ฅ, then the moment of inertia of strip will be

๐›ฟ๐ผ = ๐›ฟ๐‘š๐‘ฅ2 = ๐‘ฅ2๐œŒ๐‘Ž๐›ฟ๐‘ฅ

So the moment of inertia of square is

๐ผ๐‘ ๐‘ž๐‘ข๐‘Ž๐‘Ÿ๐‘’ = โˆ‘ ๐‘ฅ2๐œŒ๐‘Ž๐›ฟ๐‘ฅ

๐‘Ž๐‘™๐‘™ ๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘๐‘ 

Page 93: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

93

๐ผ๐‘ ๐‘ž๐‘ข๐‘Ž๐‘Ÿ๐‘’ = โˆซ ๐‘ฅ2๐œŒ๐‘Ž๐‘‘๐‘ฅ

๐‘Ž2โ„

โˆ’๐‘Ž2โ„

= ๐œŒ๐‘Ž โˆซ ๐‘ฅ2๐‘‘๐‘ฅ

๐‘Ž2โ„

โˆ’๐‘Ž2โ„

= ๐œŒ๐‘Ž |๐‘ฅ3

3|โˆ’๐‘Ž

2โ„

๐‘Ž2โ„

=๐œŒ๐‘Ž

3|๐‘Ž3

8โˆ’

(โˆ’๐‘Ž3)

8|

=๐œŒ๐‘Ž

3(๐‘Ž3

4) =

๐œŒ๐‘Ž4

12

Now substitute ๐œŒ =๐‘€

๐‘Ž2, we obtain

๐ผ๐‘ ๐‘ž๐‘ข๐‘Ž๐‘Ÿ๐‘’ =๐‘€๐‘Ž2

12

Page 94: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

94

Module No. 150

M.I. of Triangular Lamina โ€“ Derivation

Problem Statement

Find the moment of inertia of a uniform triangular lamina of mass ๐‘€ about one of its sides.

Solution

Let ABC be the lamina. We will find its M.I. about one of its side BC. We choose the X-axis and

the origin as shown in figure.

At a distance x from BC we consider a strip of lamina of width dx. If the mass of the strip is dm

then its moment of inertia about BC is = ๐‘ฅ2๐‘‘๐‘š.

To find dm we note that the triangles ABC and ADE are similar. Therefore the ratios of sides are

the same.

Hence

๐ท๐ธ

๐ต๐ถ=

โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐ด๐ท๐ธ

โ„Ž๐‘’๐‘–๐‘”โ„Ž๐‘ก ๐‘œ๐‘“ ๐ด๐ต๐ถ=

โ„Ž โˆ’ ๐‘ฅ

โ„Ž

which gives

๐ท๐ธ =โ„Ž โˆ’ ๐‘ฅ

โ„Žร— ๐ต๐ถ =

โ„Ž โˆ’ ๐‘ฅ

โ„Žร— ๐‘Ž

where h is the height of the triangle ABC at base BC and a is the length of BC. Now

๐›ฟ๐‘š = ๐œŒ(๐‘Ž๐‘Ÿ๐‘’๐‘Ž) = ๐œŒ๐ท๐ธ๐›ฟ๐‘ฅ

= ๐‘Ž (โ„Ž โˆ’ ๐‘ฅ

โ„Ž)๐›ฟ๐‘ฅ๐œŒ

Page 95: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

95

where ๐œŒ is the density.

Therefore the moment of inertia of triangular lamina about the side BC is

๐ผ = โˆซ๐‘ฅ2๐‘‘๐‘š =โˆซ๐‘Ž (โ„Ž โˆ’ ๐‘ฅ

โ„Ž) ๐‘ฅ2๐‘‘๐‘ฅ๐œŒ

โ„Ž

0

=๐œŒ๐‘Ž

โ„Žโˆซ๐‘ฅ2(โ„Ž โˆ’ ๐‘ฅ)๐‘‘๐‘ฅ

โ„Ž

0

=๐œŒ๐‘Ž

โ„Žโˆซ(โ„Ž๐‘ฅ2 โˆ’ ๐‘ฅ3)๐‘‘๐‘ฅ

โ„Ž

0

=๐œŒ๐‘Ž

โ„Ž|โ„Ž

๐‘ฅ3

3โˆ’

๐‘ฅ4

4|0

โ„Ž

=๐œŒ๐‘Ž

โ„Ž(โ„Ž4

3โˆ’

โ„Ž4

4) =

๐œŒ๐‘Žโ„Ž3

12

Now substitute density= ๐œŒ =๐‘€๐‘Ž๐‘ ๐‘ 

๐ด๐‘Ÿ๐‘’๐‘Ž=

๐‘€

1 2โ„ ๐‘Žโ„Ž

we obtain

๐ผ =1

6๐‘€โ„Ž2

Hence the required expression for moment of inertia of the triangular lamina is 1

6๐‘€โ„Ž2.

Page 96: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

96

Module No. 151

M.I. of Elliptical Plate along its Major Axis โ€“ Derivation

Problem Statement

Find the M.I. of a uniform elliptical plate with semi major axes and semi minor axes a, b

respectively about its major axes.

Solution

We consider the elliptical plate as

๐‘ฅ2

๐‘Ž2 +๐‘ฆ2

๐‘2 = 1 (1)

with semi major axes along x-axis as shown in figure.

From (1) we have

๐‘ฆ = ยฑ๐‘

๐‘Žโˆš๐‘Ž2 โˆ’ ๐‘ฅ2

So, let ๐‘ฆ1 =๐‘

๐‘Žโˆš๐‘Ž2 โˆ’ ๐‘ฅ2,

We consider a small element of plate of mass ๐›ฟ๐‘š of the elliptical plate will be ๐œŒ๐‘‘๐‘  which will be

equal to ๐œŒ๐‘‘๐‘ฅ๐‘‘๐‘ฆ. The moment of inertia if this element along x-axis will be equal to ๐ผ = ๐›ฟ๐‘š๐‘ฆ2.

Then the moment of inertia of whole plate will be

๐ผ๐‘ฅ = โˆซ(๐›ฟ๐‘š)๐‘ฆ2 = โˆซ ๐œŒ๐‘‘๐‘ 

๐‘๐‘™๐‘Ž๐‘ก๐‘’

๐‘ฆ2

Page 97: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

97

= ๐œŒ โˆซ

(

โˆซ ๐‘ฆ2๐‘‘๐‘ฆ

๐‘๐‘Žโˆš๐‘Ž2โˆ’๐‘ฅ2

โˆ’๐‘๐‘Žโˆš๐‘Ž2โˆ’๐‘ฅ2

)

๐‘‘๐‘ฅ

๐‘Ž

โˆ’๐‘Ž

= ๐œŒ โˆซ2๐‘ฆ1

2

3๐‘‘๐‘ฅ

๐‘Ž

โˆ’๐‘Ž

=2๐œŒ

3โˆซ

๐‘3

๐‘Ž3(๐‘Ž2 โˆ’ ๐‘ฅ2)

32โ„ ๐‘‘๐‘ฅ

๐‘Ž

โˆ’๐‘Ž

due to symmetry, we can write it as

=4๐œŒ๐‘3

3๐‘Ž3โˆซ(๐‘Ž2 โˆ’ ๐‘ฅ2)

32โ„

๐‘Ž

0

๐‘‘๐‘ฅ

By making use of polar coordinates, substitute ๐‘ฅ = ๐‘Ž sin ๐œƒ, then ๐‘‘๐‘ฅ = ๐‘Ž cos ๐œƒ this integral

becomes

๐ผ๐‘ฅ =4๐œŒ๐‘3

3๐‘Ž3โˆซ ๐‘Ž3 cos3 ๐œƒ (๐‘Ž cos ๐œƒ

๐œ‹2โ„

0

)๐‘‘๐œƒ

=4๐œŒ๐‘Ž๐‘3

3โˆซ cos4 ๐œƒ

๐œ‹2โ„

0

๐‘‘๐œƒ

=4๐œŒ๐‘Ž๐‘3

3

1 ร— 3

2 ร— 4ร—

๐œ‹

2

=1

4๐œŒ๐‘Ž๐‘3๐œ‹

=1

4๐‘Ž๐‘3๐œ‹ ร—

๐‘€

๐œ‹๐‘Ž๐‘=

1

4๐‘€๐‘2

where for elliptical plate, we have

๐œŒ =๐‘€

๐œ‹๐‘Ž๐‘

is the required expression for M.I.

Page 98: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

98

Module No. 152

M.I. of a Solid Circular Cylinder - Derivation

Problem Statement

To find the moment of inertia of a solid circular cylinder of radius ๐‘Ž, mass ๐‘€ and the height of

the cylinder โ„Ž about the axis of the cylinder.

Solution

Letโ€™s subdivide the solid circular cylinder into concentric cylindrical shells/ hollow cylinders,

one of which is shown in the fig.

Let the mass of one shell is๐‘‘๐‘š, height is same as โ„Ž, thickness be ๐‘‘๐‘Ÿ and the radius be ๐‘Ÿ then the

density of the shell will be

๐œŒ =๐‘‘๐‘š

2๐œ‹๐‘Ÿ๐‘‘๐‘Ÿโ„Ž

or

๐‘‘๐‘š = 2๐œ‹๐œŒ๐‘Ÿ๐‘‘๐‘Ÿโ„Ž

Since we have

Page 99: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

99

๐œŒ =๐‘€

๐‘‰๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ=

๐‘€

๐œ‹๐‘Ž2โ„Ž=

๐‘‘๐‘š

2๐œ‹๐‘Ÿ๐‘‘๐‘Ÿโ„Ž

or

๐‘‘๐‘š =2๐‘€

๐‘Ž2๐‘Ÿ๐‘‘๐‘Ÿ

Since the moment of inertia of the shell will be:

๐ผ๐‘ โ„Ž๐‘’๐‘™๐‘™ = ๐‘Ÿ2๐‘‘๐‘š

or

๐ผ๐‘ โ„Ž๐‘’๐‘™๐‘™ = ๐‘Ÿ22๐‘€

๐‘Ž2๐‘Ÿ๐‘‘๐‘Ÿ =

2๐‘€

๐‘Ž2๐‘Ÿ3๐‘‘๐‘Ÿ

Thus the total moment of inertia of the solid circular cylinder will be

๐ผ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ = โˆซ ๐ผ๐‘ โ„Ž๐‘’๐‘™๐‘™

๐‘Ž

๐‘Ÿ=0

๐ผ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ = โˆซ2๐‘€

๐‘Ž2๐‘Ÿ3๐‘‘๐‘Ÿ

๐‘Ž

๐‘Ÿ=0

=2๐‘€

๐‘Ž2โˆซ ๐‘Ÿ3๐‘‘๐‘Ÿ

๐‘Ž

๐‘Ÿ=0

=2๐‘€

๐‘Ž2|๐‘Ÿ4

4|0

๐‘Ž

=2๐‘€

๐‘Ž2

๐‘Ž4

4

๐ผ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ =1

2๐‘€๐‘Ž2

is the M.I of solid cylinder.

Page 100: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

100

Module No. 153

M.I. of Hollow Cylindrical Shell - Derivation

Problem

To find the moment of inertia of a hollow open cylindrical shell of radius ๐‘…, thickness ๐‘‘๐‘…, mass

๐‘€ and height of shell โ„Ž about the axis of shell.

Solution

Letโ€™s subdivide the hollow shell into small hoops/ rings, one of which is shown in the figure.

Let the mass of one ring is๐‘‘๐‘š, height is ๐‘‘โ„Ž, thickness be ๐‘‘๐‘Ÿ and the radius be ๐‘…, then the mass

of one ring will be

Page 101: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

101

๐‘‘๐‘š = ๐œŒ2๐œ‹๐‘…๐‘‘๐‘…๐‘‘โ„Ž

Hence the moment of inertia of the ring of radius ๐‘… will be

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‘๐‘š๐‘…2

or

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = (๐œŒ2๐œ‹๐‘…๐‘‘๐‘…๐‘‘โ„Ž)๐‘…2 = 2๐œŒ๐œ‹๐‘…3๐‘‘๐‘…๐‘‘โ„Ž

In order to obtain the moment of inertia for the whole hollow cylindrical open shell, we will

integrate

๐ผ = โˆซ ๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = โˆซ2๐œŒ๐œ‹๐‘…3๐‘‘๐‘…๐‘‘โ„Ž

โ„Ž

0

๐ผ = 2๐œŒ๐œ‹๐‘…3๐‘‘๐‘… โˆซ๐‘‘โ„Ž

โ„Ž

0

= 2๐œŒ๐œ‹๐‘…3๐‘‘๐‘…โ„Ž

Since the density of the hollow cylindrical shell is

๐œŒ =๐‘€

2๐œ‹๐‘…๐‘‘๐‘…โ„Ž

Therefore

๐ผ = ๐‘€๐‘…2

is the M.I of hollow cylindrical open shell.

Page 102: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

102

Module No. 154

M.I of Solid Sphere - Derivation

Problem

Find the moment of inertia of a uniform solid sphere of radius ๐’‚ and mass ๐‘ด about an axis (the

z-axis) passing through the center.

Solution

For a uniform solid sphere, due to symmetry, we have

๐ผ๐‘ฅ๐‘ฅ = ๐ผ๐‘ฆ๐‘ฆ = ๐ผ๐‘ง๐‘ง

In order to calculate the moment of Inertia of the sphere, we split the sphere into thin circular

discs, one of which is shown in Figure.

We have already derived the expression for the moment of inertia of a representative disc of

radius ๐‘ฅ, which is

๐ผ๐‘‘๐‘–๐‘ ๐‘˜ =1

2๐‘ฅ2๐‘‘๐‘š

of an elementary disc of mass ๐‘‘๐‘š and the radius ๐‘ฅ.

As we know the mass = (density)(Area of disc)

therefore

Page 103: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

103

๐‘‘๐‘š = ๐œŒ๐œ‹๐‘ฅ2

Hence moment of inertia of the sphere along z-axis will be

๐ผ๐‘ง๐‘ง = โˆซ1

2๐œŒ๐œ‹๐‘ฅ4๐‘‘๐‘ง

๐‘Ž

โˆ’๐‘Ž

Now, to write โ€œ๐‘ฅโ€in

terms of ๐‘ง, we make

a triangle as shown in fig,

where

๐‘Ž2 = ๐‘ฅ2 + ๐‘ง2, โŸน ๐‘ฅ2 = ๐‘Ž2 โˆ’ ๐‘ง2

๐ผ๐‘ง๐‘ง = โˆซ1

2๐œŒ๐œ‹(๐‘Ž2 โˆ’ ๐‘ง2)2๐‘‘๐‘ง

๐‘Ž

โˆ’๐‘Ž

=8

15๐œ‹๐œŒ๐‘Ž5

Since the mass of the sphere is

๐‘€ =4

3๐œ‹๐‘Ž3๐œŒ

Therefore

๐ผ๐‘ง๐‘ง =2

5๐‘€๐‘Ž2

Also

๐ผ๐‘ฅ๐‘ฅ = ๐ผ๐‘ฆ๐‘ฆ = ๐ผ๐‘ง๐‘ง =2

5๐‘€๐‘Ž2

is the required moment of inertia of the sphere.

Page 104: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

104

Module No. 155

M.I. of the Hollow Sphere โ€“ Derivation

Problem

A thin uniform hollow sphere has a radius ๐‘น and mass ๐‘ด. Calculate its moment of inertia about

any axis through its center.

Solution

In order to calculate the moment of inertia of the hollow sphere, we split the hollow sphere into

thin hoops (rings), as shown in Figure.

We have already derived the expression for the moment of inertia of a representative hoop of

radius ๐‘ฅ, which is

๐ผ = ๐‘‘๐‘š๐‘ฅ2

of an elementary ring of mass ๐‘‘๐‘š and the radius ๐‘ฅ.

The volume of the elementary ring is

๐‘‘๐‘‰ = 2๐œ‹๐‘ฅ๐‘…๐‘‘๐œƒ๐‘‘๐‘…

As we know the mass = (density)(volume)

Page 105: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

105

๐‘‘๐‘š = ๐œŒ๐‘‘๐‘‰

therefore

๐‘‘๐‘š = ๐œŒ2๐œ‹๐‘ฅ๐‘…๐‘‘๐‘…๐‘‘๐œƒ

Hence the moment of inertia of the small ring of radius ๐‘ฅ will be

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = ๐‘‘๐‘š๐‘ฅ2

or

๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = (2๐œ‹๐‘ฅ๐œŒ๐‘…๐‘‘๐‘…๐‘‘๐œƒ)๐‘ฅ2 = 2๐œ‹๐œŒ๐‘…๐‘‘๐‘…๐‘ฅ3๐‘‘๐œƒ

which is the moment of inertia of ring of radius ๐‘ฅ chosen from the hollow sphere.

In order to obtain the moment of inertia for the whole hollow sphere, we will integrate

๐ผ = โˆซ ๐ผ๐‘Ÿ๐‘–๐‘›๐‘” = โˆซ 2๐œ‹๐œŒ๐‘…๐‘‘๐‘…๐‘ฅ3๐‘‘๐œƒ

๐œ‹2โ„

โˆ’๐œ‹2โ„

due to symmetry, we can write

๐ผ = 4๐œ‹๐œŒ๐‘…๐‘‘๐‘… โˆซ ๐‘ฅ3๐‘‘๐œƒ

๐œ‹2โ„

0

To solve the integral, we need to write ๐‘ฅ in terms of ๐œƒ. From fig we have

๐‘ฅ = ๐‘… cos ๐œƒ

The integral becomes,

๐ผ = 4๐œ‹๐œŒ๐‘…๐‘‘๐‘… โˆซ (๐‘… cos ๐œƒ)3๐‘‘๐œƒ

๐œ‹2โ„

0

๐ผ = 4๐œ‹๐œŒ๐‘…4๐‘‘๐‘… โˆซ cos3 ๐œƒ ๐‘‘๐œƒ

๐œ‹2โ„

0

๐ผ = 4๐œ‹๐œŒ๐‘…4๐‘‘๐‘… โˆซ cos ๐œƒ cos2 ๐œƒ ๐‘‘๐œƒ

๐œ‹2โ„

0

Page 106: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

106

๐ผ = 4๐œ‹๐œŒ๐‘…4๐‘‘๐‘… โˆซ cos ๐œƒ (1 โˆ’ sin2 ๐œƒ)๐‘‘๐œƒ

๐œ‹2โ„

0

๐ผ = 4๐œ‹๐œŒ๐‘…4๐‘‘๐‘… โˆซ cos ๐œƒ (1 โˆ’ sin2 ๐œƒ)๐‘‘๐œƒ

๐œ‹2โ„

0

๐ผ = 4๐œ‹๐œŒ๐‘…4๐‘‘๐‘…(โˆซ cos ๐œƒ ๐‘‘๐œƒ

๐œ‹2โ„

0

โˆ’ โˆซ sin2 ๐œƒ cos ๐œƒ ๐‘‘๐œƒ)

๐œ‹2โ„

0

๐ผ = 4๐œ‹๐œŒ๐‘…4๐‘‘๐‘… |sin ๐œƒ โˆ’sin3 ๐œƒ

3|0

๐œ‹2โ„

= 4๐œ‹๐œŒ๐‘…4๐‘‘๐‘… (1 โˆ’1

3)

= 4๐œ‹๐œŒ๐‘…4๐‘‘๐‘… ร—2

3

=8

3๐œ‹๐œŒ๐‘…4๐‘‘๐‘…

Since the density of the hollow sphere is

๐œŒ =๐‘€

๐‘‰=

๐‘€

4๐œ‹๐‘…2๐‘‘๐‘…

Hence M.I of hollow sphere will be

๐ผ =2

3๐‘€๐‘…2

Page 107: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

107

Module No. 156

Inertia Matrix / Tensor of solid Cuboid

Problem Statement

Calculate the inertia matrix / inertia tensor of uniform solid cube at one of its corners.

Solution

Let the length of the edges be ๐‘Ž of each side and let the axes be chosenalong the edges as shown

in the figure.

By definition

๐ผ11 โ‰ก ๐ผ๐‘ฅ๐‘ฅ = โˆซ๐œŒ(๐‘Ÿ)(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘‰

Since the box is made of uniform material, the density ๐œŒ must be constant. Therefore

๐ผ๐‘ฅ๐‘ฅ = ๐œŒ โˆซ โˆซโˆซ(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘Ž

0

๐‘Ž

0

๐‘Ž

0

= ๐œŒ โˆซ โˆซ(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘Ž

0

๐‘Ž

0

โˆซ๐‘‘๐‘ฅ

๐‘Ž

0

= ๐œŒ๐‘Ž โˆซโˆซ(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘Ž

0

๐‘Ž

0

Page 108: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

108

= ๐œŒ๐‘Ž [โˆซ โˆซ๐‘ฆ2๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘Ž

0

๐‘Ž

0

+ โˆซ โˆซ๐‘ง2๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘Ž

0

๐‘Ž

0

]

= ๐œŒ (๐‘Ž4

3+

๐‘Ž4

3)

๐ผ๐‘ฅ๐‘ฅ = ๐œŒ๐‘Ž (2๐‘Ž4

3) = ๐œŒ (

2๐‘Ž5

3)

Since we know that for the cube

๐œŒ =๐‘€

๐‘Ž3

We obtain

๐ผ๐‘ฅ๐‘ฅ =2๐‘€

3๐‘Ž2

Similarly, due to symmetry, we can write

๐ผ๐‘ฆ๐‘ฆ =2๐‘€

3๐‘Ž2

๐ผ๐‘ง๐‘ง =2๐‘€

3๐‘Ž2

Now for the product of inertia, we have

๐ผ12 = โˆ’โˆซ๐œŒ๐‘ฅ๐‘ฆ๐‘‘๐‘‰

= โˆ’๐œŒ โˆซโˆซ โˆซ๐‘ฅ๐‘ฆ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘Ž

0

๐‘Ž

0

๐‘Ž

0

= โˆ’๐œŒ โˆซ๐‘ฅ๐‘‘๐‘ฅ โˆซ ๐‘ฆ๐‘‘๐‘ฆ โˆซ ๐‘‘๐‘ง

๐‘Ž

0

๐‘Ž

0

๐‘Ž

0

= โˆ’๐œŒ๐‘Ž๐‘Ž2

2

๐‘Ž2

2= โˆ’๐œŒ

๐‘Ž5

4

Again using

๐œŒ =๐‘€

๐‘Ž3

Page 109: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

109

We obtain

๐ผ12 = โˆ’๐‘€๐‘Ž2

4

Similarly,

๐ผ12 = โˆ’๐‘€๐‘Ž2

4

๐ผ12 = โˆ’๐‘€๐‘Ž2

4

The required inertia matrix / inertia tensor will be

๐ผ๐‘–๐‘— =

[ 2๐‘€

3๐‘Ž2 โˆ’

๐‘€๐‘Ž2

4โˆ’

๐‘€๐‘Ž2

4

โˆ’๐‘€๐‘Ž2

4

2๐‘€

3๐‘Ž2 โˆ’

๐‘€๐‘Ž2

4

โˆ’๐‘€๐‘Ž2

4โˆ’

๐‘€๐‘Ž2

4

2๐‘€

3๐‘Ž2

]

Page 110: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

110

Module No. 157

Inertia Matrix / Tensor of solid Cuboid

Problem Statement

Calculate the inertia matrix of uniform solid cuboid (parallelepiped) at one of its corner.

Solution

Let the length of the edges be ๐‘Ž, ๐‘, ๐‘ and let the axes be chosen along the edges as shown in the

figure.

By definition

๐ผ11 โ‰ก ๐ผ๐‘ฅ๐‘ฅ

= โˆซ๐œŒ(๐‘Ÿ)(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘‰

Since the box is made of uniform material, the density ๐œŒ must be constant. Therefore

๐ผ๐‘ฅ๐‘ฅ = ๐œŒ โˆซโˆซโˆซ(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘

0

๐‘

0

๐‘Ž

0

= ๐œŒ โˆซโˆซ(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘

0

๐‘

0

โˆซ๐‘‘๐‘ฅ

๐‘Ž

0

Page 111: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

111

= ๐œŒ๐‘Ž โˆซโˆซ(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘

0

๐‘

0

= ๐œŒ๐‘Ž [โˆซโˆซ๐‘ฆ2๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘

0

๐‘

0

+ โˆซโˆซ๐‘ง2๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘

0

๐‘

0

]

= ๐œŒ๐‘Ž (๐‘๐‘3

3+ ๐‘

๐‘3

3)

๐ผ๐‘ฅ๐‘ฅ = ๐œŒ๐‘Ž๐‘๐‘

3(๐‘2 + ๐‘2)

using relation

๐œŒ =๐‘€

๐‘Ž๐‘๐‘

๐ผ๐‘ฅ๐‘ฅ =๐‘€

3(๐‘2 + ๐‘2)

Similarly, due to symmetry, we can write

๐ผ๐‘ฆ๐‘ฆ =๐‘€

3(๐‘Ž2 + ๐‘2)

๐ผ๐‘ง๐‘ง =๐‘€

3(๐‘Ž2 + ๐‘2)

Now for the product of inertia, we have

๐ผ12 = โˆ’โˆซ๐œŒ๐‘ฅ๐‘ฆ๐‘‘๐‘‰

= โˆ’๐œŒ โˆซโˆซโˆซ๐‘ฅ๐‘ฆ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง

๐‘

0

๐‘

0

๐‘Ž

0

= โˆ’๐œŒ โˆซ๐‘ฅ๐‘‘๐‘ฅ โˆซ๐‘ฆ๐‘‘๐‘ฆ โˆซ๐‘‘๐‘ง

๐‘

0

๐‘

0

๐‘Ž

0

โˆ’๐œŒ๐‘๐‘Ž2

2

๐‘2

2= โˆ’๐œŒ

๐‘Ž2๐‘2๐‘

4

Again using

Page 112: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

112

๐œŒ =๐‘€

๐‘Ž๐‘๐‘

we get

๐ผ12 = โˆ’๐‘€๐‘Ž๐‘

4

Similarly,

๐ผ23 = โˆ’๐‘€๐‘๐‘

4

๐ผ31 = โˆ’๐‘€๐‘Ž๐‘

4

The required inertia matrix / inertia tensor will be

๐ผ๐‘–๐‘— =

[ ๐‘€

3(๐‘2 + ๐‘2) โˆ’

๐‘€๐‘Ž๐‘

4โˆ’

๐‘€๐‘Ž๐‘

4

โˆ’๐‘€๐‘Ž๐‘

4

๐‘€

3(๐‘Ž2 + ๐‘2) โˆ’

๐‘€๐‘๐‘

4

โˆ’๐‘€๐‘Ž๐‘

4โˆ’

๐‘€๐‘๐‘

4

๐‘€

3(๐‘Ž2 + ๐‘2)]

Page 113: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

113

Module No. 158

M.I of Hemi-Sphere โ€“ Derivation

Problem Statement

Find the moment of inertia of a uniform hemisphere of radius ๐‘Ž about its axis of symmetry.

Solution

We will use the spherical polar coordinates (๐‘Ÿ, ๐œƒ, ๐œ‘). Their use makes computational work

simpler.

Their range of variation for hemisphere will be

0 โ‰ค ๐‘Ÿ < ๐‘Ž

0 โ‰ค ๐œƒ โ‰ค ๐œ‹2โ„

0 โ‰ค ๐œ‘ โ‰ค 2๐œ‹

๐‘ฅ = ๐‘Ÿ sin ๐œƒ cos๐œ‘ ,

๐‘ฆ = ๐‘Ÿ sin ๐œƒ sin๐œ‘ , ๐‘ง = ๐‘Ÿ cos ๐œƒ

We choose the z-axis as the axis of symmetry.

Hence

Page 114: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

114

๐ผ๐‘ง๐‘ง = โˆซ๐œŒ(๐‘Ÿ)(๐‘ฅ2 + ๐‘ฆ2)๐‘‘๐‘‰

= ๐œŒ โˆซ(๐‘ฅ2 + ๐‘ฆ2)๐‘‘๐‘‰

Now calculate ๐‘ฅ2 + ๐‘ฆ2 in terms of sp. coordinates

๐‘ฅ2 + ๐‘ฆ2 = ๐‘Ÿ2(sin2 ๐œƒ cos2 ๐œ‘ + sin2 ๐œƒ sin2 ๐œ‘)

= ๐‘Ÿ2 sin2 ๐œƒ (cos2 ๐œ‘ + sin2 ๐œ‘)

= ๐‘Ÿ2 sin2 ๐œƒ

and the element of volume in spherical polar coordinates is given by

๐‘‘๐‘‰ = ๐‘‘๐‘Ÿ(๐‘Ÿ๐‘‘๐œƒ)(๐‘Ÿ sin ๐œƒ๐‘‘๐œ‘) = ๐‘Ÿ2 sin ๐œƒ ๐‘‘๐‘Ÿ๐‘‘๐œƒ๐‘‘๐œ‘

Therefore

๐ผ๐‘ง๐‘ง = ๐œŒ โˆซ โˆซ โˆซ ๐‘Ÿ4 sin3 ๐œƒ

2๐œ‹

0

๐œ‹2โ„

0

๐‘Ž

0

๐‘‘๐‘Ÿ๐‘‘๐œƒ๐‘‘๐œ‘

= โˆซ ๐‘Ÿ4๐‘‘๐‘Ÿ

๐‘Ž

0

โˆซ sin3 ๐œƒ ๐‘‘๐œƒ

๐œ‹2โ„

0

โˆซ ๐‘‘๐œ‘

2๐œ‹

0

= 2๐œ‹๐œŒ๐‘Ž5

5โˆซ sin3 ๐œƒ ๐‘‘๐œƒ

๐œ‹2โ„

0

= 2๐œ‹๐œŒ๐‘Ž5

5โˆซ

3 sin ๐œƒ โˆ’ sin 3๐œƒ

4๐‘‘๐œƒ

๐œ‹2โ„

0

= (2๐œ‹๐œŒ๐‘Ž5

5)1

4|โˆ’3 cos ๐œƒ +

cos 3๐œƒ

3|0

๐œ‹2โ„

= ๐œ‹๐œŒ๐‘Ž5

10[(0) โˆ’ (โˆ’3 + 1/3)]

= ๐œ‹๐œŒ๐‘Ž5

10(8

3)

Page 115: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

115

= 4๐œ‹๐œŒ๐‘Ž5

15

By using the relation for density

๐œŒ =๐‘€

23โ„ ๐œ‹๐‘Ž3

we obtain

๐ผ๐‘ง๐‘ง =2

5๐‘€๐‘Ž2

which is required expression for moment of inertia of hemisphere.

Page 116: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

116

Module No. 159

M.I. of Ellipsoid โ€“Derivation

Problem

Find the moment of inertia and product of inertia for the ellipsoid

๐‘ฅ2

๐‘Ž2+

๐‘ฆ2

๐‘2+

๐‘ง2

๐‘2= 1

w.r.to its axes of symmetry.

Solution

By definition

๐ผ11 โ‰ก ๐ผ๐‘ฅ๐‘ฅ

= โˆซ ๐œŒ(๐‘Ÿ)(๐‘ฆ2 + ๐‘ง2)๐‘‘๐‘‰

๐‘’๐‘™๐‘™๐‘–๐‘๐‘ ๐‘œ๐‘–๐‘‘

If we put

๐‘ฅ

๐‘Ž= ๐‘ฅโ€ฒ,

๐‘ฆ

๐‘= ๐‘ฆโ€ฒ,

๐‘ง

๐‘= ๐‘งโ€ฒ

then

๐‘ฅ = ๐‘Ž๐‘ฅโ€ฒ, ๐‘ฆ = ๐‘๐‘ฆโ€ฒ, ๐‘ง = ๐‘๐‘งโ€ฒ

โŸน ๐‘‘๐‘ฅ = ๐‘Ž๐‘‘๐‘ฅโ€ฒ, ๐‘‘๐‘ฆ = ๐‘๐‘‘๐‘ฆโ€ฒ, ๐‘‘๐‘ง = ๐‘๐‘‘๐‘งโ€ฒ

and

๐‘‘๐‘‰ = ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง = ๐‘Ž๐‘๐‘๐‘‘๐‘ฅโ€ฒ๐‘‘๐‘ฆโ€ฒ๐‘‘๐‘งโ€ฒ

Now under the above transformation, the given ellipsoid is transformed into the unit sphere S:

๐‘ฅโ€ฒ2 + ๐‘ฆโ€ฒ2 + ๐‘งโ€ฒ2 = 1

The integration is now over the region enclosed by the unit sphere.

Page 117: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

117

๐ผ11 = ๐œŒ โˆซ(๐‘2๐‘ฆโ€ฒ2 + ๐‘2๐‘งโ€ฒ2)๐‘Ž๐‘๐‘๐‘‘๐‘ฅโ€ฒ๐‘‘๐‘ฆโ€ฒ๐‘‘๐‘งโ€ฒ

๐‘…

or

๐ผ11 = ๐œŒ๐‘Ž๐‘3๐‘ โˆซ ๐‘ฆโ€ฒ2๐‘‘๐‘‰โ€ฒ + ๐œŒ๐‘Ž๐‘๐‘3 โˆซ ๐‘งโ€ฒ2๐‘‘๐‘‰โ€ฒ

๐‘…๐‘…

where ๐‘‘๐‘‰โ€ฒ = ๐‘‘๐‘ฅโ€ฒ๐‘‘๐‘ฆโ€ฒ๐‘‘๐‘งโ€ฒ

Now because of symmetry

โˆซ ๐‘ฆโ€ฒ2

๐‘…

๐‘‘๐‘‰โ€ฒ = โˆซ ๐‘งโ€ฒ2

๐‘…

๐‘‘๐‘‰โ€ฒ

Now we solve one integral.

We use the spherical polar coordinates (๐‘Ÿ, ๐œƒ, ๐œ‘).

Their range of variation will be

0 โ‰ค ๐‘Ÿ < 1, 0 โ‰ค ๐œƒ โ‰ค ๐œ‹, 0 โ‰ค ๐œ‘ โ‰ค 2๐œ‹

๐‘ฅ = ๐‘Ÿ sin ๐œƒ cos๐œ‘ , ๐‘ฆ = ๐‘Ÿ sin ๐œƒ sin ๐œ‘ , ๐‘ง = ๐‘Ÿ cos ๐œƒ

and

๐‘‘๐‘‰โ€ฒ = ๐‘‘๐‘Ÿ(๐‘Ÿ๐‘‘๐œƒ)(๐‘Ÿ sin ๐œƒ๐‘‘๐œ‘) = ๐‘Ÿ2 sin ๐œƒ ๐‘‘๐‘Ÿ๐‘‘๐œƒ๐‘‘๐œ‘

Thus

โˆซ ๐‘ฆโ€ฒ2

๐‘†

๐‘‘๐‘‰โ€ฒ = โˆซโˆซ โˆซ ๐‘Ÿ4 sin3 ๐œƒ

2๐œ‹

0

๐œ‹

0

1

0

sin2 ๐œ‘ ๐‘‘๐‘Ÿ๐‘‘๐œƒ๐‘‘๐œ‘

= โˆซ๐‘Ÿ4๐‘‘๐‘Ÿ

1

0

โˆซ sin3 ๐œƒ ๐‘‘๐œƒ

๐œ‹

0

โˆซ sin2 ๐œ‘ ๐‘‘๐œ‘

2๐œ‹

0

=1

5

1

4|โˆ’3 cos ๐œƒ +

cos 3๐œƒ

3|0

๐œ‹ 1

2|๐œ‘ โˆ’

sin 2๐œ‘

2|0

2๐œ‹

Thus

Page 118: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

118

โˆซ ๐‘ฆโ€ฒ2

๐‘†

๐‘‘๐‘‰โ€ฒ =2๐œ‹

15

Therefore on substitution

๐ผ11 = ๐œŒ๐‘Ž๐‘3๐‘2๐œ‹

15+ ๐œŒ๐‘Ž๐‘๐‘3

2๐œ‹

15

๐ผ11 = ๐œŒ๐‘Ž๐‘๐‘2๐œ‹

15(๐‘2 + ๐‘2)

=๐‘€

(4 3โ„ )๐œ‹๐‘Ž๐‘๐‘๐‘Ž๐‘๐‘ ร—

2๐œ‹

15(๐‘2 + ๐‘2)

๐ผ11 =๐‘€

10(๐‘2 + ๐‘2)

Similarly,

๐ผ22 =๐‘€

10(๐‘2 + ๐‘Ž2)

๐ผ33 =๐‘€

10(๐‘Ž2 + ๐‘2)

For product of inertia

๐ผ12 โ‰ก ๐ผ๐‘ฅ๐‘ฆ = โˆ’ โˆซ ๐‘ฅ๐‘ฆ๐‘‘๐‘‰

๐‘’๐‘™๐‘™๐‘–๐‘๐‘ ๐‘œ๐‘–๐‘‘

= โˆ’๐œŒ โˆซ ๐‘Ž๐‘ฅโ€ฒ๐‘๐‘ฆโ€ฒ(๐‘Ž๐‘๐‘๐‘‘๐‘ฅโ€ฒ๐‘‘๐‘ฆโ€ฒ๐‘‘๐‘งโ€ฒ

๐‘…

)

= โˆ’๐œŒ๐‘Ž2๐‘2๐‘ โˆญ๐‘ฅโ€ฒ๐‘ฆโ€ฒ๐‘‘๐‘ฅโ€ฒ๐‘‘๐‘ฆโ€ฒ๐‘‘๐‘งโ€ฒ

๐‘…

Using the polar coordinates (๐‘Ÿ, ๐œƒ, ๐œ‘)

๐ผ12 = โˆ’๐œŒ๐‘Ž2๐‘2๐‘ โˆซ โˆซ โˆซ๐‘Ÿ sin ๐œƒ cos๐œ‘(

1

0

๐œ‹

0

2๐œ‹

0

rsin ๐œƒ sin๐œ‘)๐‘Ÿ2 sin ๐œƒ ๐‘‘๐‘Ÿ๐‘‘๐œƒ๐‘‘๐œ‘

= 0

Page 119: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

119

Similarly, we can obtain

๐ผ23 = 0

๐ผ31 = 0

Page 120: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

120

Module No. 160

Example 1 of Moment of Inertia

Problem

Particles of masses 2๐‘š, 3๐‘š and 4๐‘š are held in a rigid light framework at points (0,1,1), (1,1,0)

and (โˆ’1, 0, 1) resp.

Show that the M. I. of the system about the ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆ’ axis are 11, 13, 12 respectively.

Solution

Since the masses are 2, 3 and 4 i.e. ๐‘š1 = 2, ๐‘š2 = 3 and ๐‘š3 = 4, and the points are given by

๐‘ƒ1(0,1,1), ๐‘ƒ2(1,1,0) and ๐‘ƒ3(โˆ’1,0,1).

We are required to find out the moment of inertia about x-axis, y-axis and z-axis i.e. ๐ผ๐‘ฅ๐‘ฅ, ๐ผ๐‘ฆ๐‘ฆ, ๐ผ๐‘ง๐‘ง .

๐ผ๐‘ฅ๐‘ฅ = โˆ‘๐‘š๐‘–(

๐‘–

๐‘ฆ๐‘–2 + ๐‘ง๐‘–

2)

= ๐‘š1(๐‘ฆ12 + ๐‘ง1

2) + ๐‘š2(๐‘ฆ22 + ๐‘ง2

2) + ๐‘š3(๐‘ฆ32 + ๐‘ง3

2)

= 2(1 + 1) + 3(1 + 0) + 4(1 + 0)

= 4 + 3 + 4 = 11

So,

๐ผ๐‘ฅ๐‘ฅ = 11

๐ผ๐‘ฆ๐‘ฆ = โˆ‘๐‘š๐‘–(

๐‘–

๐‘ฅ๐‘–2 + ๐‘ง๐‘–

2)

= ๐‘š1(๐‘ฅ12 + ๐‘ง1

2) + ๐‘š2(๐‘ฅ22 + ๐‘ง2

2) + ๐‘š3(๐‘ฅ32 + ๐‘ง3

2)

= 2(0 + 1) + 3(1 + 0) + 4(1 + 1)

= 2 + 3 + 8 = 1

So,

๐ผ๐‘ฆ๐‘ฆ = 13

Page 121: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

121

๐ผ๐‘ง๐‘ง = โˆ‘๐‘š๐‘–(๐‘ฅ๐‘–2 +

๐‘–

๐‘ฆ๐‘–2)

= ๐‘š1(๐‘ฆ12 + ๐‘ฅ1

2) + ๐‘š2(๐‘ฅ22 + ๐‘ฆ2

2) + ๐‘š3(๐‘ฅ32 + ๐‘ฆ3

2)

= 2(0 + 1) + 3(1 + 1) + 4(1 + 0)

= 2 + 6 + 4 = 12

So,

๐ผ๐‘ง๐‘ง = 12

Hence Showed

Page 122: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

122

Module No. 161

Example 2 of Moment of Inertia

Problem Statement

A boy of mass ๐‘€ = 30kg is running with a velocity of 3 m/sec on ground just tangentially

to a merry-go-round which is at rest. The boy suddenly jumps on the merry-go-round. Calculate

the angular velocity acquired by the system. The merry-go-round has a radius of ๐‘Ÿ = 2m and a

mass ๐‘š = 120kg and its moment of inertia is 120 kgmโˆ’2.

Solution

The merry-go-round rotates about an axis which we regard as passing through its c.m.

Letโ€™s give the following notations:

M.I of boy = ๐ผ1

M.I of merry go round = ๐ผ2

Vel. of boy = ๐‘ฃ1

Vel. of merry go round = ๐‘ฃ2

Angular vel. of boy = ๐œ”1

Angular vel. of merry go round = ๐œ”2

The moment of inertia ๐ผ1 of the boy about the axis of rotation can be found by

๐ผ1 = ๐‘€๐‘‘2 = 30 ร— 22 = 120๐‘˜๐‘”๐‘šโˆ’2

The moment of inertia ๐ผ2 of merry go round is given to be

๐ผ2 = 120๐‘˜๐‘”๐‘šโˆ’2

Since the velocity of the boy about the merry-go-round is ๐‘ฃ1 = 3msโˆ’1, therefore his angular

velocity ๐œ”1 about the axis of rotation is therefore

๐œ”1 =๐‘ฃ

๐‘‘=

3

2= 1.5 radian per second

Initially the merry go round is at rest, therefore ๐‘ฃ2 = 0, and thus its angular velocity ๐œ”2 = 0.

We ignore friction and therefore there is no external torque on the system.

Hence by the law of conservation of angular momentum

(๐ผ1 + ๐ผ2)๐œ” = ๐ผ1๐œ”1 + ๐ผ2๐œ”2

๐œ” =๐ผ1๐œ”1 + ๐ผ2๐œ”2

(๐ผ1 + ๐ผ2)

Page 123: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

123

where ๐œ” is the angular velocity of the system when the boy jumps on the merry-go-round.

๐œ” =120(5) + 0

120 + 120

= 0.75 radian per sec

Page 124: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

124

Module No. 162

Example 3 of Moment of Inertia

Problem Statement[1]

Two particles of masses ๐‘š1 and ๐‘š2 are connected by a rigid massless rod of length ๐‘™ and moves

freely in a plane. Show that the M. I. of the system about an axis perpendicular to the plane and

passing through the center of mass is ๐‘€๐‘™2 where

๐‘€ =๐‘š1๐‘š2

๐‘š1 + ๐‘š2

Solution

Let ๐‘Ÿ1 be the distance of mass ๐‘š1 from center of mass ๐ถ. Then ๐‘™ โˆ’ ๐‘Ÿ1 is the distance of the mass

๐‘š2 from ๐ถ.Since ๐ถ is the center of the mass.

So,

๐‘š1๐‘Ÿ1 = ๐‘š2(๐‘™ โˆ’ ๐‘Ÿ1)

โŸน ๐‘š1๐‘Ÿ1 = ๐‘š2๐‘™ โˆ’ ๐‘š2๐‘Ÿ1

โŸน (๐‘š1 + ๐‘š2)๐‘Ÿ1 = ๐‘š2๐‘™

โŸน ๐‘Ÿ1 =๐‘š2๐‘™

(๐‘š1 + ๐‘š2)

Page 125: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

125

โŸน ๐‘™ โˆ’ ๐‘Ÿ1 = ๐‘™ โˆ’๐‘š2๐‘™

(๐‘š1 + ๐‘š2)

โŸน ๐‘™ โˆ’ ๐‘Ÿ1 =๐‘š1๐‘™ + ๐‘š2๐‘™ โˆ’ ๐‘š2๐‘™

(๐‘š1 + ๐‘š2)

โŸน ๐‘™ โˆ’ ๐‘Ÿ1 =๐‘š1๐‘™

(๐‘š1 + ๐‘š2)

Thus the M.I. about an axis through ๐ถ is

๐‘š1๐‘Ÿ12 + ๐‘š2(๐‘™ โˆ’ ๐‘Ÿ1

2)2

= ๐‘š1 (๐‘š2๐‘™

๐‘š1 + ๐‘š2)2

+ ๐‘š2 (๐‘š1๐‘™

๐‘š1 + ๐‘š2)2

=๐‘š1๐‘š2๐‘™

2

(๐‘š1 + ๐‘š2)2(๐‘š1 + ๐‘š2) =

๐‘š1๐‘š2

๐‘š1 + ๐‘š2๐‘™2

๐ผ = ๐‘€๐‘™2

where

๐‘€ =๐‘š1๐‘š2

๐‘š1 + ๐‘š2

Hence showed.

Page 126: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

126

Module No. 163

Example 4 of Moment of Inertia

Problem (ยฉ engineering.unl.edu)

Calculate the moment of inertia of the shaded area given in figure about y-axis.

Solution

Here, we have

๐‘ฆ = ๐‘ฅ2/3 (1)

We consider an elementary strip from the shaded area whose M.I is

๐ผ๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘ =1

3๐‘ฅ2(๐‘ฅ๐‘‘๐‘ฆ) =

1

3๐‘ฅ3๐‘‘๐‘ฆ

Page 127: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

127

Then by integration, we obtain the moment of inertia of the whole shaded area

๐ผ๐‘ฆ = โˆš3โˆซ๐‘ฆ3

2โ„ ๐‘‘๐‘ฆ

4

1

= โˆš32

5|๐‘ฆ

52โ„ |

1

4

= โˆš32

5[(4)

52โ„ โˆ’ (1)

52โ„ ]

=2โˆš3

5[(4)

52โ„ โˆ’ (1)

52โ„ ]

=2โˆš3

5(32 โˆ’ 1)

= 21.5 inch4

Page 128: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

128

By using (1), we get

๐ผ๐‘ ๐‘ก๐‘Ÿ๐‘–๐‘ = โˆš3๐‘ฆ3

2โ„ ๐‘‘๐‘ฆ

Page 129: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

129

Module No. 164

Example 5 of Moment of Inertia

Problem

Determine the moment of inertia of the shaded area shown in figure with respect to each of the

coordinate axes.

Solution

Here we have

๐‘ฆ = ๐‘˜๐‘ฅ2 (1)

From fig. we have

๐‘ฅ = ๐‘Ž, ๐‘ฆ = ๐‘, then

๐‘ = ๐‘˜๐‘Ž2 โŸน ๐‘˜ =๐‘

๐‘Ž2

Substituting the value

of k in (1), we obtain

๐‘ฆ =๐‘

๐‘Ž2๐‘ฅ2 or ๐‘ฅ =

๐‘Ž

โˆš๐‘โˆš๐‘ฆ

Now the moment of inertia along x-axis will be

Page 130: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

130

๐ผ๐‘ฅ = โˆซ ๐‘ฆ2๐‘‘๐ด = โˆซ๐‘ฆ2(๐‘Ž โˆ’ ๐‘ฅ)๐‘‘๐‘ฆ

๐‘

0๐ด

= โˆซ๐‘ฆ2 (๐‘Ž โˆ’๐‘Ž

โˆš๐‘โˆš๐‘ฆ)๐‘‘๐‘ฆ

๐‘

0

= ๐‘Ž โˆซ๐‘ฆ2๐‘‘๐‘ฆ โˆ’๐‘Ž

โˆš๐‘โˆซ๐‘ฆ

52โ„ ๐‘‘๐‘ฆ

๐‘

0

๐‘

0

= ๐‘Ž |๐‘ฆ3

3|0

๐‘

โˆ’๐‘Ž

โˆš๐‘|2

7๐‘ฆ

72โ„ |

0

๐‘

=๐‘Ž๐‘3

3โˆ’

๐‘Ž

โˆš๐‘

2

7๐‘

72โ„

=๐‘Ž๐‘3

3โˆ’

2๐‘Ž๐‘3

7

๐ผ๐‘ฅ =๐‘Ž๐‘3

21

๐ผ๐‘ฆ = โˆซ ๐‘ฅ2๐‘‘๐ด = โˆซ ๐‘ฅ2๐‘ฆ๐‘‘๐‘ฅ

๐‘Ž

0๐ด

=๐‘

๐‘Ž2|๐‘ฅ5

5|0

๐‘Ž

=๐‘

๐‘Ž2

๐‘Ž5

5

๐ผ๐‘ฆ =๐‘Ž3๐‘

5

Hence

๐ผ๐‘ฅ =๐‘Ž๐‘3

21

and

๐ผ๐‘ฆ =๐‘Ž3๐‘

5

are moment of inertia about x-axis and y-axis respectively.

Page 131: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

131

Module No. 165

Example 5 of Moment of Inertia

Theorem Statement

The moment of inertia of a rigid body about a given axis is equal to the same about a parallel

axis through the centroid plus the moment of inertia due to the total mass placed at the centroid,

(the last quantity will be referred to as moment of inertia of the centroid).

Proof

By definition, if ๐ผ denotes the M.I about the given axis, and ๐‘‘๐‘– denotes the distance of ๐‘–๐‘กโ„Ž particle

from the given axis, then

๐ผ = โˆ‘๐‘š๐‘–๐‘‘๐‘–2

๐‘–

If ๐‘’ is the unit vector in the direction of the axis, then we have the following result

๐‘‘๐‘–2 = (๐‘’ ร— ๐‘Ÿ๐‘–)

2

Let ๐‘Ÿ๐‘ denotes the position vector of the centroid and

๐‘Ÿ๐‘–โ€ฒ the position vector of the ๐‘–๐‘กโ„Ž particle w.r.t to the centroid, then

Page 132: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

132

๐‘Ÿ๐‘– = ๐‘Ÿ๐‘ + ๐‘Ÿ๐‘–โ€ฒ

On making substitutions, we obtain

๐ผ = โˆ‘๐‘š๐‘– [๐‘’ ร— (๐‘Ÿ๐‘ + ๐‘Ÿ๐‘–โ€ฒ)]

2

๐‘–

= โˆ‘๐‘š๐‘– [๐‘’ ร— ๐‘Ÿ๐‘ + ๐‘’ ร— ๐‘Ÿ๐‘–โ€ฒ]

2

๐‘–

= โˆ‘๐‘š๐‘–

๐‘–

[(๐‘’ ร— ๐‘Ÿ๐‘ )2 + (๐‘’ ร— ๐‘Ÿ๐‘–

โ€ฒ)2 + 2(๐‘’ ร— ๐‘Ÿ๐‘ ) . (๐‘’ ร— ๐‘Ÿ๐‘–โ€ฒ)]

= โˆ‘๐‘š๐‘–(๐‘’ ร— ๐‘Ÿ๐‘ )2 + โˆ‘๐‘š๐‘–

๐‘–

(๐‘’ ร— ๐‘Ÿ๐‘–โ€ฒ)2

๐‘–

+2(๐‘’ ร— ๐‘Ÿ๐‘ ) .โˆ‘๐‘š๐‘–(๐‘’ ร— ๐‘Ÿ๐‘–โ€ฒ)

๐‘–

= โˆ‘ ๐‘š๐‘–๐‘‘๐‘2 + โˆ‘๐‘š๐‘–

๐‘–

๐‘‘๐‘–โ€ฒ2 + 2(๐‘’ ร— ๐‘Ÿ๐‘ ) . ๐‘’ ร— โˆ‘๐‘š๐‘–๐‘Ÿ๐‘–

โ€ฒ

๐‘–๐‘–

But โˆ‘ ๐‘š๐‘–๐‘Ÿ๐‘–โ€ฒ

๐‘– = 0 (We studied in earlier module).

Therefore

๐ผ = (โˆ‘๐‘š๐‘–)๐‘‘๐‘2 + โˆ‘๐‘š๐‘–

๐‘–

๐‘‘๐‘–โ€ฒ2

๐‘–

= ๐‘€๐‘‘๐‘2 + ๐ผโ€ฒ

where

๐‘€ = โˆ‘๐‘š๐‘–

๐‘–

is the total mass of the system.

or

๐ผ = ๐ผ0 + ๐ผโ€ฒ

where ๐ผ0 denotes the moment of inertia of the centroid, and ๐ผโ€ฒ denotes the M.I of the system

w.r.to a parallel axis through the centroid.

Page 133: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

133

Module No. 166

Example 1 of Parallel Axis Theorem

Problem

Use the parallel axis theorem to find the moment of inertia of a solid circular cylinder about a

line on the surface of the cylinder and parallel to axis of cylinder.

Solution

Suppose the cross section of cylinder as in figure. Then the axis of the cylinder is passing

through the point ๐ถ, while the line on the surface of cylinder is passing through ๐ด. So, we have to

find out M.I of circular cylinder about a line passing through the point ๐ด whose radius is ๐‘Ž

(radius of circular cylinder) and mass is ๐‘€.

By parallel axis theorem

๐ผ๐ด = ๐ผ๐‘ + ๐‘€๐‘Ž2 (1)

Since ๐ผ๐ถ which is the moment of inertia of a solid circular cylinder about an axis passing from

the center of mass is defined by

๐ผ๐ถ = 1

2 ๐‘€๐‘Ž2 (2)

where ๐‘Ž is the radius of a solid circular cylinder.

By substituting equation (2) in equation (1) we have

๐ผ๐ด = 1

2 ๐‘€๐‘Ž2 + ๐‘€๐‘Ž2

Page 134: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

134

โŸน

๐ผ๐ด = (1

2+ 1) ๐‘€๐‘Ž2

๐ผ๐ด = 3

2๐‘€๐‘Ž2

Page 135: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

135

Module No. 167

Example 2 of Parallel Axis Theorem

Problem

Prove that the moment of inertia of a uniform right circular cone using parallel axis theorem of

mass ๐‘š, height โ„Ž and semi vertical angle ๐›ผ about a diameter of its base is

๐‘€โ„Ž2(3 tan2 ๐›ผ + 2) 20โ„

Solution

In the case of M.I about its diameter, we consider the elementary disc of mass ๐›ฟ๐‘š whose

moment of inertia about a diameter will be

๐›ฟ๐ผ0 =1

4๐‘Ÿ2๐›ฟ๐‘š

We note that the diameter passes through the center (which is also the centroid) of the

elementary disc.

Hence by parallel axis theorem, the M.I. ๐›ฟ๐ผ of the elementary disc about a parallel axis (parallel

diameter) at the base is given by

Page 136: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

136

๐›ฟ๐ผ = ๐›ฟ๐ผ0 + (๐›ฟ๐‘š)๐‘ง2

=1

4๐‘Ÿ2๐›ฟ๐‘š + ๐›ฟ๐‘š๐‘ง2 = ๐›ฟ๐‘š(

1

4๐‘Ÿ2 + ๐‘ง2)

= ๐œŒ๐œ‹๐‘Ÿ2๐›ฟ๐‘ง(1

4๐‘Ÿ2 + ๐‘ง2) = ๐œŒ๐œ‹ (

1

4๐‘Ÿ4 + ๐‘Ÿ2๐‘ง2) ๐›ฟ๐‘ง

From the similar triangles,

we have

๐‘Ÿ

๐‘Ž=

โ„Ž โˆ’ ๐‘ง

โ„Ž or ๐‘Ÿ = ๐‘Ž

โ„Ž โˆ’ ๐‘ง

โ„Ž

Therefore = ๐œŒ๐œ‹ [๐‘Ž4

4โ„Ž4 (โ„Ž โˆ’ ๐‘ง)4 +๐‘Ž2

โ„Ž2 (โ„Ž โˆ’ ๐‘ง)2๐‘ง2] ๐›ฟ๐‘ง

= ๐œŒ๐œ‹ [๐‘Ž4

4โ„Ž4(โ„Ž โˆ’ ๐‘ง)4 +

๐‘Ž2

โ„Ž2(โ„Ž2๐‘ง2 โˆ’ 2โ„Ž๐‘ง3 + ๐‘ง4)] ๐›ฟ๐‘ง

Therefore M.I of complete right circular cone about a diameter is given by

๐ผ = ๐œŒ๐œ‹ โˆซ{๐‘Ž4

4โ„Ž4(โ„Ž โˆ’ ๐‘ง)4 +

๐‘Ž2

โ„Ž2(โ„Ž2๐‘ง2 โˆ’ 2โ„Ž๐‘ง3 + ๐‘ง4)}

โ„Ž

0

๐›ฟ๐‘ง

๐ผ = ๐œŒ๐œ‹ (๐‘Ž4

4โ„Ž4

โ„Ž5

5+

๐‘Ž2

โ„Ž2

โ„Ž5

30)

Since we know that ๐œŒ =๐‘€

(1 3โ„ )๐œ‹๐‘Ž2โ„Ž

๐ผ =๐‘€

20(3๐‘Ž2 + 2โ„Ž2)

Page 137: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

137

Since the semi vertical angle of

the right circular cone is ๐›ผ,

So by right triangle AOB, we have

tan๐›ผ =๐ด๐‘‚

๐‘‚๐ต=

๐‘Ž

โ„Ž

๐‘Ž = โ„Ž tan๐›ผ

Therefore

๐ผ =๐‘€

20[3(htan๐›ผ)2 + 2โ„Ž2]

or

๐ผ =๐‘€โ„Ž2

20[3 tan2 ๐›ผ + 2]

Hence proved.

Page 138: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

138

Module No. 168

Example 3 of Parallel Axis Theorem

Problem[1]

Find the moment of inertia of a uniform circular cylinder of length ๐‘ and radius ๐‘Ž about an axis

through the center and perpendicular to the central axis, namely ๐ผ๐‘ฅ or ๐ผ๐‘ฆ.

Solution

Consider the elementary disc of mass ๐‘‘๐‘š and thickness ๐‘‘๐‘ง located at a distance ๐‘ง from the ๐‘ฅ๐‘ฆ

plane. Then the moment of inertia about a diameter will be

๐›ฟ๐ผ0 =1

4๐‘Ž2๐‘‘๐‘š

Then, using the parallel-axis theorem, moment of inertia of the thin disc about the ๐‘ฅ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  will

be

๐‘‘๐ผ๐‘ฅ =1

4๐‘Ž2๐‘‘๐‘š + ๐‘ง2๐‘‘๐‘š

where ๐‘‘๐‘š = ๐œŒ๐œ‹๐‘Ž2๐‘‘๐‘ง.

Thus

Page 139: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

139

๐ผ๐‘ฅ = ๐œŒ๐œ‹๐‘Ž2 โˆซ (1

4๐‘Ž2 + ๐‘ง2)

๐‘2โ„

โˆ’๐‘2โ„

๐‘‘๐‘ง

= ๐œŒ๐œ‹๐‘Ž2 (1

4๐‘Ž2๐‘ +

1

12๐‘3)

but the mass of the cylinder ๐‘š is ๐œŒ๐œ‹๐‘Ž2๐‘,

therefore

๐ผ๐‘ฅ = ๐‘š (1

4๐‘Ž2 +

1

12๐‘2)

Due to symmetry we have

๐ผ๐‘ฅ = ๐ผ๐‘ฆ = ๐‘š (1

4๐‘Ž2 +

1

12๐‘2)

Page 140: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

140

Module No. 169

Example 4 of Parallel Axis Theorem

Problem

Calculate the moment of inertia ๐ผ๐‘๐‘š for a uniform rod of length ๐‘™ and mass ๐‘€ rotating about an

axis through the center, perpendicular to the rod.

Solution

In order to calculate the moment of inertia through the center of mass c.m., we use parallel axes

theorem.

In a transparent notation

๐ผ๐‘™ = ๐ผ๐‘๐‘š + ๐‘€๐‘‘2 (1)

where ๐‘‘ is the distance between the origin and the center of mass and ๐‘‘ = ๐‘™2โ„ .

Also ๐ผ๐‘™ is the moment of inertia of rod about one of its end (which we calculated earlier).

Here

๐ผ๐‘™ =1

3๐‘€๐‘™2 (2)

From (1), we have

๐ผ๐‘๐‘š = ๐ผ๐‘™ โˆ’ ๐‘€๐‘‘2

Substituting value from (2) in (1)

๐ผ๐‘๐‘š =1

3๐‘€๐‘™2 โˆ’ ๐‘€ (

๐‘™

2)

2

=1

3๐‘€๐‘™2 โˆ’

1

4๐‘€๐‘™2

๐ผ๐‘๐‘š =1

12๐‘€๐‘™2

which is required moment of inertia about its center of mass.

Page 141: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

141

Module No. 170

Perpendicular Axis Theorem

Theorem Statement

The moment of inertia of a plane rigid body about an axis perpendicular to the body is equal to

the sum of the moment of inertia about two mutually perpendicular axis lying in the plane of the

body and meeting at the common point with the given axis.

Proof

We choose the coordinates such that ๐‘‹๐‘Œ axes lie in the plane of the rigid body and the ๐‘-axis is

perpendicular to it.

Then the theorem can be stated as

๐ผ33 = ๐ผ11 + ๐ผ22

๐‘œr

๐ผ๐‘ง๐‘ง = ๐ผ๐‘ฅ๐‘ฅ + ๐ผ๐‘ฆ๐‘ฆ

where ๐ผ11 = ๐ผ๐‘ฅ๐‘ฅ etc. are M.I about the ๐‘ฅ-axis etc.

Since the ๐‘ง-axis has been

chosen to be perpendicular

to the laminar body, therefore

๐ผ33 = ๐ผ๐‘ง๐‘ง = โˆ‘ ๐‘š๐‘–๐‘‘๐‘–2

๐‘–

Page 142: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

142

where ๐‘‘๐‘– is the distance of the ๐‘–๐‘กโ„Ž particle (lying in the ๐‘ฅ๐‘ฆ-plane) from the ๐‘ง-axis.

If we denote the coordinate of this particle by (๐‘ฅ๐‘–, ๐‘ฆ๐‘–), then

๐‘‘๐‘–2 = ๐‘ฅ๐‘–

2 + ๐‘ฆ๐‘–2

and therefore

๐ผ33 = ๐ผ๐‘ง๐‘ง = โˆ‘๐‘š๐‘–(

๐‘–

๐‘ฅ๐‘–2 + ๐‘ฆ๐‘–

2)

= โˆ‘๐‘š๐‘–๐‘ฅ๐‘–2

๐‘–

+ โˆ‘๐‘š๐‘–๐‘ฆ๐‘–2

๐‘–

= ๐ผ๐‘ฅ๐‘ฅ + ๐ผ๐‘ฆ๐‘ฆ

Hence the proof.

Page 143: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

143

Module No. 171

Example 1 of Perpendicular Axis Theorem

Problem Statement

Find the moment of inertia of a uniform circular plate (or disc) about any diameter.

Proof

Since we have deduced that moment of inertia of a uniform circular disc is

๐ผ๐‘‘๐‘–๐‘ ๐‘ = 1

2 M๐‘Ž2

which is about a line passing through center and perpendicular to the plane.

Considering the same axis with same terms in 3-dim body (i.e. ๐‘ง โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  passing through center

of mass and perpendicular to ๐‘ฅ๐‘ฆ โˆ’ ๐‘๐‘™๐‘Ž๐‘›๐‘’), we have using perpendicular axis theorem

๐ผ๐‘ง๐‘ง = ๐ผ๐‘ฅ๐‘ฅ + ๐ผ๐‘ฆ๐‘ฆ (1)

We have to find out M.I. of uniform circular plate (disc) about any of its diameters which are

along ๐‘ฅ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  and ๐‘ฆ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  (i.e. we have to find out ๐ผ๐‘ฅ๐‘ฅ ๐‘œ๐‘Ÿ ๐ผ๐‘ฆ๐‘ฆ both of them are equal to ๐ผ๐‘‘)

Since

๐ผ๐‘ฅ๐‘ฅ = ๐ผ๐‘‘ = ๐ผ๐‘ฆ๐‘ฆ

So equation (1) becomes

๐ผ๐‘ง๐‘ง = ๐ผ๐‘‘ + ๐ผ๐‘‘

Page 144: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

144

or

๐ผ๐‘ง๐‘ง = 2๐ผ๐‘‘

๐ผ๐‘‘ =1

2๐ผ๐‘ง๐‘ง

๐ผ๐‘‘ = 1

2(1

2 M๐‘Ž2)

(โˆด ๐ผ๐‘ง๐‘ง = ๐ผ๐‘‘๐‘–๐‘ ๐‘ = 1

2 M๐‘Ž2)

๐ผ๐‘‘ =1

4๐‘€๐‘Ž2

where ๐‘€ is the mass of disc and a is its radius.

Page 145: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

145

Module No. 172

Example 2 of Perpendicular Axis Theorem

Problem Statement

Find the M.I. of a uniform elliptical lamina with semi major axes and semi minor axes ๐‘Ž, ๐‘

respectively about respective axes (x, y, z-axis) using perpendicular axis theorem.

Proof

We consider the elliptical plate as

๐‘ฅ2

๐‘Ž2+

๐‘ฆ2

๐‘2= 1 (1)

with semi major axes along x-axis as shown in figure.

From (1) we have

๐‘ฆ = ยฑ๐‘

๐‘Žโˆš๐‘Ž2 โˆ’ ๐‘ฅ2

let ๐‘ฆ1 =๐‘

๐‘Žโˆš๐‘Ž2 โˆ’ ๐‘ฅ2

We consider a small element

of mass ๐›ฟ๐‘š of the elliptical

plate, then we will have

๐›ฟ๐‘š = ๐œŒ๐‘‘๐‘  = ๐œŒ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

Page 146: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

146

The moment of inertia of this element along x-axis will be equal to ๐ผ = ๐›ฟ๐‘š๐‘ฆ2.

Then the moment of inertia of whole plate will be

๐ผ๐‘ฅ๐‘ฅ = โˆซ(๐›ฟ๐‘š)๐‘ฆ2 = โˆซ ๐œŒ๐‘‘๐‘ ๐‘๐‘™๐‘Ž๐‘ก๐‘’

๐‘ฆ2

= ๐œŒ โˆซ ( โˆซ ๐‘ฆ2๐‘‘๐‘ฆ

๐‘ฆ1

โˆ’๐‘ฆ1

)๐‘‘๐‘ฅ

๐‘Ž

โˆ’๐‘Ž

= ๐œŒ โˆซ2๐‘ฆ1

3

3๐‘‘๐‘ฅ

๐‘Ž

โˆ’๐‘Ž

=2๐œŒ

3โˆซ

๐‘3

๐‘Ž3(๐‘Ž2 โˆ’ ๐‘ฅ2)

32โ„ ๐‘‘๐‘ฅ

๐‘Ž

โˆ’๐‘Ž

due to symmetry, we can write it as

=4๐œŒ๐‘3

3๐‘Ž3โˆซ(๐‘Ž2 โˆ’ ๐‘ฅ2)

32โ„

๐‘Ž

0

๐‘‘๐‘ฅ

By making use of polar coordinates,

substitute ๐‘ฅ = ๐‘Ž sin ๐œƒ, then ๐‘‘๐‘ฅ = ๐‘Ž cos ๐œƒ this integral becomes

๐ผ๐‘ฅ๐‘ฅ =4๐œŒ๐‘3

3๐‘Ž3โˆซ ๐‘Ž3 cos3 ๐œƒ (๐‘Ž cos ๐œƒ

๐œ‹2โ„

0

)๐‘‘๐œƒ

=4๐œŒ๐‘Ž๐‘3

3โˆซ cos4 ๐œƒ

๐œ‹2โ„

0

๐‘‘๐œƒ

=1

4๐œŒ๐‘Ž๐‘3๐œ‹

for elliptical plate, we have

๐œŒ =๐‘€

๐œ‹๐‘Ž๐‘

Thus

๐ผ๐‘ฅ๐‘ฅ =1

4๐‘Ž๐‘3๐œ‹ ร—

๐‘€

๐œ‹๐‘Ž๐‘

Page 147: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

147

๐ผ๐‘ฅ๐‘ฅ =1

4๐‘€๐‘2

Similarly, about y-axis

๐ผ๐‘ฆ๐‘ฆ = โˆซ(๐›ฟ๐‘š)๐‘ฅ2 = โˆซ ๐œŒ๐‘‘๐‘ 

๐‘๐‘™๐‘Ž๐‘ก๐‘’

๐‘ฅ2

= ๐œŒ โˆซ( โˆซ ๐‘ฅ2๐‘‘๐‘ฅ

๐‘ฅ1

โˆ’๐‘ฅ1

)๐‘‘๐‘ฆ

๐‘

โˆ’๐‘

= ๐œŒ โˆซ2๐‘ฅ1

2

3๐‘‘๐‘ฆ

๐‘

โˆ’๐‘

=2๐œŒ

3โˆซ

๐‘3

๐‘Ž3(๐‘Ž2 โˆ’ ๐‘ฆ2)

32โ„ ๐‘‘๐‘ฆ

๐‘

โˆ’๐‘

due to symmetry, we can write it as

=4๐œŒ๐‘3

3๐‘Ž3โˆซ(๐‘Ž2 โˆ’ ๐‘ฆ2)

32โ„

๐‘

0

๐‘‘๐‘ฆ

Using polar coordinates, substitute ๐‘ฆ = ๐‘ sin ๐œƒ, then ๐‘‘๐‘ฆ = ๐‘ cos ๐œƒ ๐‘‘๐œƒ this integral becomes

๐ผ๐‘ฆ๐‘ฆ =4๐œŒ๐‘Ž3

3๐‘3โˆซ ๐‘3 cos3 ๐œƒ (๐‘ cos ๐œƒ

๐œ‹2โ„

0

)๐‘‘๐œƒ

=4๐œŒ๐‘Ž3๐‘

3โˆซ cos4 ๐œƒ

๐œ‹2โ„

0

๐‘‘๐œƒ

=4๐œŒ๐‘Ž3๐‘

3

3

8ร—

๐œ‹

2

=1

4๐œŒ๐‘Ž3๐‘๐œ‹

=1

4๐‘Ž3๐‘๐œ‹ ร—

๐‘€

๐œ‹๐‘Ž๐‘

๐ผ๐‘ฆ๐‘ฆ =1

4๐‘€๐‘Ž2

now using perpendicular axis theorem, we obtain

Page 148: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

148

๐ผ๐‘ง๐‘ง = ๐ผ๐‘ฅ๐‘ฅ + ๐ผ๐‘ฆ๐‘ฆ

=1

4๐‘€๐‘2 +

1

4๐‘€๐‘Ž2

๐ผ๐‘ง๐‘ง =1

4๐‘€(๐‘Ž2 + ๐‘2)

which is M.I. of elliptical lamina along z-axis

Page 149: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

149

Module No. 173

Example 3 of Perpendicular Axis Theorem

Problem

Find the moment of inertia of a rectangular plate with sides ๐‘Ž and ๐‘ about an axis perpendicular

to the plate and passing through a vertex using perpendicular axis theorem.

Solution

We consider a rectangular plate (lamina) of sides of length ๐‘Ž and ๐‘. We consider an element of

length ๐‘‘๐‘ฅ and ๐‘‘๐‘ฆ as shown in figure.

We find the M.I about ๐‘ฆ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘ .

The mass of selected element will be

๐‘‘๐‘š = ๐œŒ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

Itโ€™s moment of inertia about the ๐‘ฆ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  is

๐ผ๐‘’๐‘™๐‘’๐‘š๐‘’๐‘›๐‘ก = ๐œŒ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘ฅ2 = ๐œŒ๐‘ฅ2๐‘‘๐‘ฅ๐‘‘๐‘ฆ.

where ๐‘ฅ is the perpendicular distance from the element to the ๐‘ฆ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘ .

Page 150: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

150

Thus the total moment of inertia about y-axis is

๐ผ๐‘ฆ = โˆซ โˆซ ๐œŒ๐‘ฅ2๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐‘

๐‘ฆ=0

๐‘Ž

๐‘ฅ=0

= ๐œŒ๐‘ โˆซ๐‘ฅ2

๐‘Ž

0

= ๐œŒ๐‘ |๐‘ฅ3

3|0

๐‘Ž

=1

3๐œŒ๐‘๐‘Ž3

Since the density of the rectangular plate is

๐œŒ =๐‘€

๐‘Ž๐‘

the moment of inertia will be

๐ผ๐‘ฆ =1

3๐‘€๐‘Ž2

In the similar manner, we will calculate the moment of inertia about x-axis

The total moment of inertia about x-axis is

๐ผ๐‘ฅ = โˆซ โˆซ ๐œŒ๐‘ฆ2๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐‘

๐‘ฆ=0

๐‘Ž

๐‘ฅ=0

= ๐œŒ๐‘Ž โˆซ๐‘ฆ2๐‘‘๐‘ฆ

๐‘

0

= ๐œŒ๐‘ |๐‘ฆ3

3|0

๐‘

=1

3๐œŒ๐‘Ž๐‘3

Using the relation of the total mass of rectangular plate

๐‘€ = ๐œŒ๐‘Ž๐‘

Then the moment of inertia will be

๐ผ๐‘ฅ =1

3๐‘€๐‘2

Thus by using perpendicular axes theorem, we obtain the moment of inertia along z-axis

๐ผ๐‘ง = ๐ผ๐‘ฅ + ๐ผ๐‘ฆ

๐ผ๐‘ง =1

3๐‘€๐‘2 +

1

3๐‘€๐‘Ž2

Page 151: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

151

๐ผ๐‘ง =1

3๐‘€(๐‘Ž2 + ๐‘2)

which are the required moments of inertia of rectangle along ๐‘ฅ, ๐‘ฆ, ๐‘ง-axis.

Page 152: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

152

Module No. 174

Problem of Moment of Inertia

Problem

Find the moment of inertia about the line of an apparatus (as shown in figure) consisting of a sphere

of mass ๐‘€ and radius ๐‘ attached to a rod of length 2๐‘Ž & mass ๐‘š.

Solution

Since from the figure it is clear that ๐‘ is the radius of the sphere whose mass is ๐‘€ and is attached

to the rod of length 2๐‘Ž whose mass is ๐‘š.

Therefore

๐ผ๐ฟ = ๐ผ1๐ฟ + ๐ผ2๐ฟ

where ๐ผ1๐ฟ is the M.I. of a rod of length 2๐‘Ž about ๐ฟ and ๐ผ2๐ฟ is the M.I. of a sphere of radius ๐‘

about the line ๐ฟ, then

Page 153: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

153

๐ผ1๐ฟ = โˆซ ๐œŒ๐‘ฅ2๐‘‘๐‘ฅ

2๐‘Ž

0

= ๐œŒ |๐‘ฅ3

3|0

2๐‘Ž

= ๐œŒ8

3๐‘Ž3

using relation for ๐œŒ, we get

๐ผ1๐ฟ =4

3๐‘š๐‘Ž2 (2)

Now

๐ผ2๐ฟ = ๐ผโ€ฒ + ๐‘€๐‘‘2

where ๐ผโ€ฒ is the MI of sphere about its diameter

๐ผ2๐ฟ =2

5๐‘€๐‘2 + ๐‘€(2๐‘Ž + ๐‘)2 (3)

Substituting equation (2) & (3) in (1), we get

๐ผ๐ฟ =4

3๐‘š๐‘Ž2 +

2

5๐‘€๐‘2 + ๐‘€(2๐‘Ž + ๐‘)2

which is the required M.I. of the apparatus.

Page 154: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

154

Module No. 175

Existence of Principle Axes Introduction

The axes relative to which product of inertia are zero are called the principal axes and the

moment of inertia along these axes are called principal moment of inertia.

Theorem Statement

For a rigid body, there exist a set of three mutually orthogonal axes called principal axes

relative to which the product of inertia are zero and ๏ฟฝ๏ฟฝ and ๐ฟ are considered along the

same direction.

Proof

We assume that there exists an axis through a point ๐‘‚ of the rigid body such that angular velocity

๏ฟฝ๏ฟฝ and angular momentum ๐ฟ of the body are parallel to this axis. Then we can write

๐ฟ = ๐ผ๏ฟฝ๏ฟฝ (1)

where ๐ผ is a constant of proportionality.

Form equation (1), we have

๐ฟ1 = ๐ผ๐œ”1, ๐ฟ2 = ๐ผ๐œ”2, ๐ฟ3 = ๐ผ๐œ”3

Also from the general theory of angular momentum

๐ฟ๐‘– = โˆ‘ ๐ผ๐‘–๐‘—๐‘— ๐œ”๐‘— (2)

From equation (1) and (2), we have

๐ฟ1 = ๐ผ11๐œ”1 + ๐ผ12๐œ”2 + ๐ผ13๐œ”3 = ๐ผ๐œ”1

๐ฟ2 = ๐ผ21๐œ”1 + ๐ผ22๐œ”2 + ๐ผ23๐œ”3 = ๐ผ๐œ”2

๐ฟ3 = ๐ผ31๐œ”1 + ๐ผ32๐œ”2 + ๐ผ33๐œ”3 = ๐ผ๐œ”3

which can also be written as

(๐ผ11โˆ’๐ผ)๐œ”1 + ๐ผ12๐œ”2 + ๐ผ13๐œ”3 = 0

๐ผ21๐œ”1 + (๐ผ22โˆ’๐ผ)๐œ”2 + ๐ผ23๐œ”3 = 0

๐ผ31๐œ”1 + ๐ผ32๐œ”2 + (๐ผ33 โˆ’ ๐ผ)๐œ”3 = 0 (3)

Page 155: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

155

Equation (3) is a system of three homogeneous linear algebraic equation in the unknown

๐œ”1, ๐œ”2, ๐œ”3.

This system will have a non-trivial solution, i.e. (๏ฟฝ๏ฟฝ โ‰  0), if the determinant of the matrix of

coefficients is zero. i.e.

|๐ผ11 โˆ’ ๐ผ ๐ผ12 ๐ผ13

๐ผ21 ๐ผ22 โˆ’ ๐ผ ๐ผ23

๐ผ31 ๐ผ32 ๐ผ33 โˆ’ ๐ผ| = 0 (4)

This is a cubic equation in ๐ผ and will in general have three roots. Equation (4) is called

characteristic equation of the matrix (๐ผ๐‘–๐‘—).

The roots of equation (4) are called eigen values of the inertia matrix (๐ผ๐‘–๐‘—).

The problem of finding principal moment of inertia and directions of inertia has been reduced to

that of finding the eigenvalues and eigenvectors of a symmetric 3 ร— 3 matrix.

The following results from the eigenvalue theory of matrices will deduce further results about the

principal moments and directions (axes) of inertia.

Related Theorems

Theorem 1

A 3 ร— 3 symmetrical matrix has three real eigenvalues, which may be distinct or repeated.

Theorem 2

The eigenvectors of a symmetrical matrix corresponding to distinct eigenvalues are orthogonal.

Theorem 3

It is always possible to find three mutually orthogonal eigenvectors for a 3 ร— 3 symmetric

matrix, whether the eigenvalues are distinct or repeated.

Results

In the light of above theorems, we deduce the following results about the inertia matrix ๐ผ๐‘š๐‘Ž๐‘ก at

point ๐‘‚ of a rigid body.

i. The principal of moment of inertia are always real numbers. This is obviously physical

because the moment of inertia is defined as the quantity โˆ‘ ๐‘š๐‘–๐‘‘๐‘–2 ๐‘– where ๐‘š๐‘– and ๐‘‘๐‘– are

both real.

Page 156: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

156

ii. When all three principal moments ๐ผ1, ๐ผ2, ๐ผ3 are distinct, then by the theorem 2, three

mutually orthogonal principal axes can be found.

iii. When ๐ผ1 = ๐ผ2 but ๐ผ1 โ‰  ๐ผ3, then by the theorem 3, we can still determine three mutually

orthogonal principal axes, because the inertia matrix is symmetric.

Page 157: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

157

Module No. 176

Determination of Principal Axes of Other Two When One is known

In many instances a body possesses sufficient symmetry so that at least one principal axis can be

found by inspection, i.e;the axis can be chosen so as to make two of the three products of inertia

vanish.

We consider a plane rigid body i.e. a 2D body; for example a plate of uniform thickness. Such a

system can be regarded as a coplanar distribution of mass.

Since there are three mutually orthogonal principal axes, one of them must be perpendicular to

the plane of the body.

The other two axes will lie in the plane of lamina.

We choose ๐‘‹ and ๐‘Œ axes in the plane of lamina, and the ๐‘ axis perpendicular to its plane, as

shown in figure.

๐ผ๐‘ฅ๐‘ง = ๐ผ๐‘ฆ๐‘ง = 0 whereas ๐ผ๐‘ฅ๐‘ฆ โ‰  0 (1)

Since we have obtained the following equations for principal axes.

(๐ผ11 โˆ’ ๐ผ)๐œ”1 + ๐ผ12๐œ”2 + ๐ผ13๐œ”3 = 0

๐ผ21๐œ”1 + (๐ผ22 โˆ’ ๐ผ)๐œ”2 + ๐ผ23๐œ”3 = 0

๐ผ31๐œ”1 + ๐ผ32๐œ”2 + (๐ผ33 โˆ’ ๐ผ)๐œ”3 = 0 (2)

By making use of (1), and using the first two equations of (2), we obtain

(๐ผ11 โˆ’ ๐ผ)๐œ”1 + ๐ผ12๐œ”2 = 0

๐ผ21๐œ”1 + (๐ผ22 โˆ’ ๐ผ)๐œ”2 = 0

Since the principal axes perpendicular to the plane of lamina is supposed to be known, and we

are interested in determining the principal axes in XY-plane, therefore we didnโ€™t consider third

eq. of (2).

Let ๐‘‚๐‘ƒ1, ๐‘‚๐‘ƒ2 denote the principal axes in the XY-plane and let ๐œ‘ denote the angle between the

๐‘‚๐‘ƒ1 and the ๐‘‹ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘ .

Page 158: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

158

We define

tan๐œ‘ = ๐œ”2 ๐œ”1โ„

which can also be written as

๐œ”1

cos๐œ‘=

๐œ”2

sin ๐œ‘= ๐‘˜, (3)

where ๐‘˜ is any arbitrary constant.

Substituting for ๐œ”1, ๐œ”2 from equation (3) in (2) we have, after simplification

(๐ผ11 โˆ’ ๐ผ) cos๐œ‘ + ๐ผ12 sin๐œ‘ = 0

๐ผ21 cos๐œ‘ + (๐ผ22 โˆ’ ๐ผ) sin๐œ‘ = 0

These equations can be put in the form

๐ผ11 โˆ’ ๐ผ = โˆ’๐ผ12

sin๐œ‘

cos๐œ‘, ๐ผ22 โˆ’ ๐ผ = โˆ’๐ผ12

cos๐œ‘

sin๐œ‘

Page 159: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

159

Module No. 177

Determination of Principal Axes by Diagonalizing the Inertia Matrix

Introduction

Suppose a rigid body has no axis of symmetry. Even so, the tensor that represents the moment of

inertia of such a body, is characterized by a real, symmetric 3 ร— 3 matrix that can be

diagonalized. The resulting diagonal elements are the values of the principal moments of inertia

of the rigid body.

The axes of the coordinate system, in which this matrix is diagonal, are the principal axes of the

body, because all products of inertia have vanished.

Thus, finding the principal axes and corresponding moments of inertia of any rigid body,

symmetric or not, is virtually the same as to diagonalzing its moment of inertia matrix.

Explanation

There are a number of ways to diagonalize a real, symmetric matrix. We present here a way that

is quite standard.

First, suppose that we have found the coordinate system (principal axes) in which all products of

inertia vanish and the resulting moment of inertia tensor is now represented by a diagonal matrix

whose diagonal elements are the principal moments of inertia.

Let ๐‘’๐‘– be the unit vectors that represent this coordinate system, that is, they point along the

direction along the three principal axes of the rigid body.

If the moment of inertia tensor is "dotted" with one of these unit vectors, the result is equivalent

to a simple multiplication of the unit vector by a scalar quantity, i.e.

๐ผ๐‘’๐‘– = ๐œ†๐‘’๐‘– (1)

The quantities ๐œ†๐‘– are just the principal M.I about their respective principal axes.The problem of

finding the principal axes is one of finding those vectors ๐‘’๐‘– that satisfy the condition

(๐ผ โˆ’ ๐œ†๐ผ)๐‘’๐‘– = 0 (2)

In general this condition is not satisfied for any arbitrary set of orthonormal unit vectors ๐‘’๐‘–. It is

satisfied only by a set of unit vectors aligned with the principal axes of the rigid body.

Page 160: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

160

Any arbitrary ๐‘ฅ๐‘ฆ๐‘ง coordinate system can always be rotated such that the coordinate axes line up

with the principal axes. The unit vectors specifying these coordinate axes then satisfy the

condition in eq (2). This condition is equivalent to vanishing of the following determinant

|๐ผ โˆ’ ๐œ†๐ผ| = 0 (3)

Explicitly, this equation reads

|๐ผ11 โˆ’ ๐ผ ๐ผ12 ๐ผ13

๐ผ21 ๐ผ22 โˆ’ ๐ผ ๐ผ23

๐ผ31 ๐ผ32 ๐ผ33 โˆ’ ๐ผ| = 0

It is a cubic in ๐œ†, namely,

โˆ’ ๐œ†3 + ๐ด๐œ†2 + ๐ต๐œ† + ๐ถ = 0 (4)

in which ๐ด, ๐ต, and ๐ถ are functions of the ๐ผ's. The three roots ๐œ†1, ๐œ†2 and ๐œ†3 are the three

principal moments of inertia.

We now have the principal moments of inertia, but the task of specifying the components of the

unit vectors representing the principal axes in terms of our initial coordinate system remains to

be solved.

Here we can make use of the fact that when the rigid body rotates about one of its principal axes;

the angular momentum vector is in the same direction as the angular velocity vector.

Let the angles of one of the principal axes relative to the initial ๐‘ฅ๐‘ฆ๐‘ง coordinate system be

๐›ผ, ๐›ฝ and ๐›พ and let the body rotate about this axis. Therefore, a unit vector pointing in the

direction of this principal axis has components (cos ๐›ผ, cos ๐›ฝ, cos ๐›พ).

Using eq (1),

๐ผ๐‘’1 = ๐œ†1๐‘’1

where ๐œ†1, the first principal moment of the three (๐œ†1, ๐œ†2, ๐œ†3), is obtained by solving eq (4).

In matrix form

[

๐ผ11 โˆ’ ๐œ†1 ๐ผ12 ๐ผ13

๐ผ21 ๐ผ22 โˆ’ ๐œ†1 ๐ผ23

๐ผ31 ๐ผ32 ๐ผ33 โˆ’ ๐œ†1

] [

cos ๐›ผcos ๐›ฝcos ๐›พ

] = 0

The direction cosines may be found by solving the above equations.

The solutions are not independent. They are subject to the constraint

Page 161: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

161

cos2 ๐›ผ + cos2 ๐›ฝ + cos2 ๐›พ = 1

In other words the resultant vector ๐‘’1 specified by these components is a unit vector.

Page 162: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

162

Module No. 178

Relation of Fixed and Rotating Frames of Reference

In order to derive the relationship between fixed and rotating frames of reference, we will study

the following theorem[1,2].

Rotating Axes Theorem

Theorem Statement

If a time dependent vector function ๐ด is represented by ๐ด๐‘“ and ๐ด๐‘Ÿ in fixed and rotating coordinate

system, then

(๐‘‘๐ด

๐‘‘๐‘ก)

๐‘“

= (๐‘‘๐ด

๐‘‘๐‘ก)

๐‘Ÿ

+ ๐œ” ร— ๐ด๐‘Ÿ

where it is understood that the origins of the two systems coincide at ๐‘ก = 0

Proof

We denote the fixed and rotating coordinate systems by ๐‘‚๐‘‹0๐‘Œ0๐‘0 and ๐‘‚๐‘‹๐‘Œ๐‘ and denote the

associated unit vectors by {๐‘–0, ๐‘—0, ๐‘˜0} and {๐‘–, ๐‘—, ๐‘˜}.

Consider a vector ๐ด which is changing with time. To an observer fixed relative to ๐‘‚๐‘‹๐‘Œ๐‘ system,

the time rate of change of ๐ด = ๐ด1๐‘– + ๐ด2๐‘— + ๐ด3๏ฟฝ๏ฟฝ will be

๐‘‘

๐‘‘๐‘ก๐ด๐‘Ÿ =

๐‘‘

๐‘‘๐‘ก๐ด1๐‘– +

๐‘‘

๐‘‘๐‘ก๐ด2๐‘— +

๐‘‘

๐‘‘๐‘ก๐ด3๏ฟฝ๏ฟฝ

where ๐‘‘๐ด๐‘Ÿ

๐‘‘๐‘ก denotes the time derivative of ๐ด relative to the rotating frame of reference.

However, the time rate of change of ๐ด relative to the fixed system ๐‘‚๐‘‹0๐‘Œ0๐‘0 symbolized by the ๐‘‘๐ด๐‘“

๐‘‘๐‘ก needs to be found.

To the fixed observer the unit vectors ๐‘–, ๐‘—, ๐‘˜ actually change with time.

Thus

Page 163: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

163

๐‘‘

๐‘‘๐‘ก๐ด๐‘“ =

๐‘‘

๐‘‘๐‘ก(๐ด1๐‘– + ๐ด2๐‘— + ๐ด3๏ฟฝ๏ฟฝ)

=๐‘‘๐ด1

๐‘‘๐‘ก๐‘– +

๐‘‘๐ด2

๐‘‘๐‘ก๐‘— +

๐‘‘๐ด3

๐‘‘๐‘ก๏ฟฝ๏ฟฝ + ๐ด1

๐‘‘๐‘–

๐‘‘๐‘ก+ ๐ด2

๐‘‘๐‘—

๐‘‘๐‘ก+ ๐ด3

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก

๐‘‘๐ด๐‘“

๐‘‘๐‘ก=

๐‘‘๐ด๐‘Ÿ

๐‘‘๐‘ก+ ๐ด1

๐‘‘๐‘–

๐‘‘๐‘ก+ ๐ด2

๐‘‘๐‘—

๐‘‘๐‘ก+ ๐ด3

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก (1)

Since ๐‘– is a unit vector, ๐‘‘๐‘–/๐‘‘๐‘ก is perpendicular to ๐‘–. Then ๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก must lie in the plane of ๐‘— and ๏ฟฝ๏ฟฝ.

Therefore

๐‘‘๐‘–

๐‘‘๐‘ก= ๐›ผ1๐‘— + ๐›ผ2๏ฟฝ๏ฟฝ (2)

Similarly,

๐‘‘๐‘—

๐‘‘๐‘ก= ๐›ผ3๏ฟฝ๏ฟฝ + ๐›ผ4๐‘– (3)

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก= ๐›ผ5๐‘– + ๐›ผ6๐‘— (4)

Form ๐‘–. ๐‘— = 0, differentiation yields

๐‘–.๐‘‘๐‘—

๐‘‘๐‘ก+ ๐‘—.

๐‘‘๐‘–

๐‘‘๐‘ก= 0 โŸน ๐‘–.

๐‘‘๐‘—

๐‘‘๐‘ก= โˆ’๐‘—.

๐‘‘๐‘–

๐‘‘๐‘ก

But from (2), we have

๐‘—.๐‘‘๐‘–

๐‘‘๐‘ก= ๐›ผ1 and ๐‘–.

๐‘‘๐‘—

๐‘‘๐‘ก= ๐›ผ4

โŸน ๐›ผ4 = โˆ’๐›ผ1

Similarly form ๐‘–. ๏ฟฝ๏ฟฝ = 0 we obtain

๐‘–.๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก+ ๏ฟฝ๏ฟฝ.

๐‘‘๐‘–

๐‘‘๐‘ก= 0 โŸน ๐‘–.

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก= โˆ’๏ฟฝ๏ฟฝ.

๐‘‘๐‘–

๐‘‘๐‘ก

From (3), we have

๏ฟฝ๏ฟฝ.๐‘‘๐‘–

๐‘‘๐‘ก= ๐›ผ2 and ๏ฟฝ๏ฟฝ.

๐‘‘๐‘—

๐‘‘๐‘ก= ๐›ผ5

โŸน ๐›ผ5 = โˆ’๐›ผ2

Page 164: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

164

and from ๐‘—. ๏ฟฝ๏ฟฝ = 0 we obtain

๐‘—.๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก+ ๏ฟฝ๏ฟฝ.

๐‘‘๐‘—

๐‘‘๐‘ก= 0 โŸน ๐‘—.

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก= โˆ’๏ฟฝ๏ฟฝ.

๐‘‘๐‘—

๐‘‘๐‘ก

From (4), we have

๏ฟฝ๏ฟฝ.๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก= ๐›ผ2 and ๐‘—.

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก= ๐›ผ5

โŸน ๐›ผ6 = โˆ’๐›ผ3

Then

๐‘‘๐‘–

๐‘‘๐‘ก= ๐›ผ1๐‘— + ๐›ผ2๏ฟฝ๏ฟฝ

๐‘‘๐‘—

๐‘‘๐‘ก= ๐›ผ3๏ฟฝ๏ฟฝ โˆ’ ๐›ผ1๐‘–

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก= โˆ’๐›ผ2๐‘– โˆ’ ๐›ผ3๐‘—

follows that

๐ด1

๐‘‘๐‘–

๐‘‘๐‘ก+ ๐ด2

๐‘‘๐‘—

๐‘‘๐‘ก+ ๐ด3

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก= (โˆ’๐›ผ1๐ด2 โˆ’ ๐›ผ2๐ด3)๐‘– + (โˆ’๐›ผ1๐ด1 โˆ’ ๐›ผ3๐ด3)๐‘— + (โˆ’๐›ผ2๐ด1 โˆ’ ๐›ผ3๐ด2)๏ฟฝ๏ฟฝ

where

๏ฟฝ๏ฟฝ = ๐œ”1๐‘– + ๐œ”2๐‘— + ๐œ”3๏ฟฝ๏ฟฝ

The vector quantity ๏ฟฝ๏ฟฝ is the angular velocity of the moving system relative to the fixed system.

Thus from (1) and (5), we obtain

(๐‘‘๐ด

๐‘‘๐‘ก)

๐‘“

= (๐‘‘๐ด

๐‘‘๐‘ก)

๐‘Ÿ

+ ๐œ” ร— ๐ด

Page 165: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

165

Module No. 179

Equation of Motion in Rotating Frame of Reference

There are two cases to be discussed in this article. Frist is when the origins of fixed and rotating

coordinate system coincide and other is when the origins of two system are distant.

Case I

In this case we consider the origins of the fixed and rotating coordinate system coincide. This

case was earlier discussed in detail, where it was found that:

To an observer fixed relative to ๐‘‚๐‘‹๐‘Œ๐‘ system, the time rate of change of ๐‘Ÿ = ๐‘Ÿ1๐‘– + ๐‘Ÿ2๐‘— + ๐‘Ÿ3๏ฟฝ๏ฟฝ

will be

๐‘‘

๐‘‘๐‘ก๐‘Ÿ๐‘Ÿ =

๐‘‘

๐‘‘๐‘ก๐‘Ÿ1๐‘– +

๐‘‘

๐‘‘๐‘ก๐‘Ÿ2๐‘— +

๐‘‘

๐‘‘๐‘ก๐‘Ÿ3๏ฟฝ๏ฟฝ (1)

where ๐‘‘๐‘Ÿ๐‘Ÿ

๐‘‘๐‘ก denotes the time derivative of ๐‘Ÿ relative to the rotating frame of reference.

However, the time rate of change of ๐‘Ÿ relative to fixed system ๐‘‚๐‘‹0๐‘Œ0๐‘0 symbolized by ๐‘‘๐‘Ÿ๐‘“

๐‘‘๐‘ก will

be

๐‘‘๐‘Ÿ๐‘“

๐‘‘๐‘ก= (

๐‘‘๐‘Ÿ

๐‘‘๐‘ก)๐‘“

= (๐‘‘๐‘Ÿ

๐‘‘๐‘ก)๐‘Ÿ+ ๐œ” ร— ๐‘Ÿ (2)

or in operator form, we can write

(๐‘‘

๐‘‘๐‘ก)๐‘“

= (๐‘‘

๐‘‘๐‘ก)๐‘Ÿ+ ๐œ” ร—

Page 166: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

166

Differentiating both sides of (2) w.r.t the fixed coordinate system, we have

(๐‘‘

๐‘‘๐‘ก)๐‘“๐‘ฃ๐‘“ = (

๐‘‘

๐‘‘๐‘ก)๐‘“(๐‘ฃ๐‘Ÿ + ๐œ” ร— ๐‘Ÿ)

by applying operator, we have

(๐‘‘

๐‘‘๐‘ก)๐‘“๐‘ฃ๐‘“ = (

๐‘‘

๐‘‘๐‘ก+ ๐œ” ร—)

๐‘Ÿ(๐‘ฃ๐‘Ÿ + ๐œ” ร— ๐‘Ÿ)

= ๐‘Ž๐‘Ÿ + 2๐œ” ร—๐‘‘๐‘Ÿ

๐‘‘๐‘ก+ ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ + ๐œ” ร— (๐œ” ร— ๐‘Ÿ)

or

๐‘Ž๐‘“ = ๐‘Ž๐‘Ÿ + 2๐œ” ร— ๐‘ฃ๐‘Ÿ + ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ + ๐œ” ร— (๐œ” ร— ๐‘Ÿ)

(3)

where

๐‘Ž๐‘“ =๐‘‘๐‘ฃ๐‘“

๐‘‘๐‘ก, ๐‘Ž๐‘Ÿ =

๐‘‘๐‘ฃ๐‘Ÿ

๐‘‘๐‘ก

are the acceleration in the fixed and rotating coordinate systems. The relation (3) is referred as

Coriolis theorem. The term 2๐œ” ร— ๐‘ฃ๐‘Ÿ is called Coriolis acceleration, whereas the term ๐œ” ร— (๐œ” ร—

๐‘Ÿ) is called centripetal acceleration.

The equations of motion in fixed and moving/ rotating coordinate system are

๐น = ๐‘š๐‘Ž๐‘“ , ๐นโ€ฒ = ๐‘š๐‘Ž๐‘Ÿ

where F and ๐นโ€ฒ are the total forces in the fixed and the rotating coordinate systems.

On making substitution for ๐‘Ž๐‘“ from (3) in equation ๐น = ๐‘š๐‘Ž๐‘“ , we obtain

These forces are called fictitious or apparent or inertial forces. They do not have physical forces

and do not arise from interactions of the particles.

Case II

In this case we consider the origins of fixed and rotating coordinate systems are not coincident.

We have

(๐‘Ÿ)๐‘“ = ๐‘… = (๐‘Ÿ)๐‘Ÿ + ๐‘Ÿ0

= ๐‘ฅ๐‘– + ๐‘ฆ๐‘— + ๐‘ง๏ฟฝ๏ฟฝ + ๐‘Ÿ0

Page 167: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

167

where ๐‘Ÿ0 is the position vector of the origin of the rotating system w.r.t the origin of the fixed

system.

Therefore

(๐‘‘๐‘Ÿ

๐‘‘๐‘ก)๐‘“

=๐‘‘๐‘Ÿ0๐‘‘๐‘ก

+๐‘‘

๐‘‘๐‘ก(๐‘ฅ๐‘– + ๐‘ฆ๐‘— + ๐‘ง๏ฟฝ๏ฟฝ)

๐‘ฃ๐‘“ = ๐‘ฃ0 + (๏ฟฝ๏ฟฝ๐‘– + ๏ฟฝ๏ฟฝ๐‘— + ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ) + ๐‘ฅ๐‘‘๐‘–

๐‘‘๐‘ก+ ๐‘ฆ

๐‘‘๐‘—

๐‘‘๐‘ก+ ๐‘ง

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก

๐‘ฃ๐‘“ = ๐‘ฃ0 + ๐‘ฃ๐‘Ÿ + ๐œ” ร— ๐‘Ÿ

where ๐‘Ÿ โ‰ก (๐‘Ÿ)๐‘Ÿ.

Similarly the acceleration in the two systems will be related by

๐‘Ž๐‘“ = ๐‘Ž0 + ๐‘Ž๐‘Ÿ + 2๐œ” ร— ๐‘ฃ๐‘Ÿ + ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ + ๐œ” ร— (๐œ” ร— ๐‘Ÿ)

Page 168: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

168

Module No. 180

Example 1 of Equation of Motion in Rotating Frame of Reference

Problem Statement

The angular velocity of a rotating coordinate system ๐‘‚๐‘‹๐‘Œ๐‘ relative to a fixed coordinate system

๐‘‚๐‘‹0๐‘Œ0๐‘0 is

๏ฟฝ๏ฟฝ = 2๐‘ก๐‘– โˆ’ ๐‘ก2๐‘— + (2๐‘ก + 4)๏ฟฝ๏ฟฝ

where ๐‘ก is the time and {๐‘–, ๐‘—, ๏ฟฝ๏ฟฝ} unit vectors associated with ๐‘‚๐‘‹๐‘Œ๐‘. The position vector of a

particle at time ๐‘ก in the body system (๐‘‚๐‘‹๐‘Œ๐‘ system) is given by

๐‘Ÿ = (๐‘ก2 + 1)๐‘– โˆ’ 6๐‘ก๐‘— + 4๐‘ก3๏ฟฝ๏ฟฝ

To Find

i. The apparent and true velocities at time ๐‘ก = 1.

ii. The apparent and true acceleration at time ๐‘ก = 1

Solution

The apparent velocity is given by

๐‘ฃ๐‘Ÿ = (๐‘‘๐‘Ÿ

๐‘‘๐‘ก)๐‘Ÿ

=๐‘‘

๐‘‘๐‘ก[(๐‘ก2 + 1)๐‘– โˆ’ 6๐‘ก๐‘— + 4๐‘ก3๏ฟฝ๏ฟฝ]

= ๐‘–๐‘‘

๐‘‘๐‘ก(๐‘ก2 + 1) โˆ’ ๐‘—

๐‘‘

๐‘‘๐‘ก6๐‘ก + ๏ฟฝ๏ฟฝ

๐‘‘

๐‘‘๐‘ก4๐‘ก3

= 2๐‘ก๐‘– โˆ’ 6๐‘— + 12๐‘ก2๏ฟฝ๏ฟฝ

Therefore the apparent velocity at time ๐‘ก = 1 is given by

๐‘ฃ๐‘Ÿ(๐‘ก = 1) = 2๐‘– โˆ’ 6๐‘— + 12๏ฟฝ๏ฟฝ

The true velocity at any time t is given by

๐‘ฃ๐‘“ = ๐‘ฃ๐‘Ÿ + ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ

Page 169: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

169

= 2๐‘– โˆ’ 6๐‘— + 12๏ฟฝ๏ฟฝ + |๐‘– ๐‘— ๏ฟฝ๏ฟฝ

2๐‘ก โˆ’๐‘ก2 2๐‘ก + 4๐‘ก2 + 1 โˆ’6๐‘ก 4๐‘ก3

|

Therefore

๐‘ฃ๐‘“(๐‘ก = 1) = 2๐‘– โˆ’ 6๐‘— + 12๏ฟฝ๏ฟฝ + |๐‘– ๐‘— ๏ฟฝ๏ฟฝ2 โˆ’1 62 โˆ’6 4

|

= 34๐‘– โˆ’ 2๐‘— + 2๏ฟฝ๏ฟฝ

ii. For apparent acceleration

๐‘Ž๐‘Ÿ =๐‘‘๐‘ฃ๐‘Ÿ

๐‘‘๐‘ก=

๐‘‘

๐‘‘๐‘ก(2๐‘ก๐‘– โˆ’ 6๐‘— + 12๐‘ก2๏ฟฝ๏ฟฝ)

= 2๐‘– + 24๐‘ก๏ฟฝ๏ฟฝ

Therefore

๐‘Ž๐‘Ÿ(๐‘ก = 1) = 2๐‘– + 24๏ฟฝ๏ฟฝ

For true acceleration we have

๐‘Ž๐‘“ = ๐‘Ž๐‘Ÿ + 2๐œ” ร— ๐‘ฃ๐‘Ÿ + ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ + ๐œ” ร— (๐œ” ร— ๐‘Ÿ)

(1)

now

๐œ”(๐‘ก = 1) = 2๐‘– โˆ’ ๐‘— + 6๏ฟฝ๏ฟฝ

and

๏ฟฝ๏ฟฝ = 2๐‘– โˆ’ 2๐‘ก๐‘— + 2๏ฟฝ๏ฟฝ

๏ฟฝ๏ฟฝ(๐‘ก = 1) = 2๐‘– โˆ’ 2๐‘— + 2๏ฟฝ๏ฟฝ

Since ๐‘Ÿ = (๐‘ก2 + 1)๐‘– โˆ’ 6๐‘ก๐‘— + 4๐‘ก3๏ฟฝ๏ฟฝ and

๐‘ฃ๐‘Ÿ = 2๐‘ก๐‘– โˆ’ 6๐‘— + 12๐‘ก2๏ฟฝ๏ฟฝ, therefore

๏ฟฝ๏ฟฝ ร— ๐‘Ÿ = |๐‘– ๐‘— ๏ฟฝ๏ฟฝ2 โˆ’2 22 โˆ’6 4

| = 4๐‘– โˆ’ 4๐‘— โˆ’ 8๏ฟฝ๏ฟฝ

and

Page 170: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

170

2๐œ” ร— ๐‘ฃ๐‘Ÿ = 2 |๐‘– ๐‘— ๏ฟฝ๏ฟฝ2 โˆ’1 62 โˆ’6 12

|

= 2(24๐‘– โˆ’ 12๐‘— โˆ’ 10๏ฟฝ๏ฟฝ)

Also since

๐œ” ร— ๐‘Ÿ = |๐‘– ๐‘— ๏ฟฝ๏ฟฝ2 โˆ’1 62 โˆ’6 4

| = 32๐‘– + 4๐‘— โˆ’ 10๏ฟฝ๏ฟฝ

Therefore

๐œ” ร— (๐œ” ร— ๐‘Ÿ) = |๐‘– ๐‘— ๏ฟฝ๏ฟฝ2 โˆ’1 632 4 โˆ’10

|

= โˆ’14๐‘– + 212๐‘— + 40๏ฟฝ๏ฟฝ

Hence on making substitution, we have

๐‘Ž๐‘“ = (2๐‘– + 24๐‘ก๏ฟฝ๏ฟฝ) + (4๐‘– โˆ’ 4๐‘— โˆ’ 8๏ฟฝ๏ฟฝ) + 2(24๐‘– โˆ’ 12๐‘— โˆ’ 10๏ฟฝ๏ฟฝ) + (โˆ’14๐‘– + 212๐‘— + 40๏ฟฝ๏ฟฝ)

= 40๐‘– + 184๐‘— + 36๏ฟฝ๏ฟฝ

which is required true acceleration.

Page 171: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

171

Module No. 181

Example 2 of Equation of Motion in Rotating Frame of Reference

Problem Statement

A coordinate system OXYZ rotates with angular velocity ๏ฟฝ๏ฟฝ = 2๐‘– โˆ’ 3๐‘— + 5๏ฟฝ๏ฟฝ relative to the fixed

coordinate system O๐‘‹0๐‘Œ0๐‘0 both systems having the same origin. If ๐ด = sin ๐‘ก ๐‘– โˆ’ cos ๐‘ก ๐‘— + ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ

where ๐‘–, ๐‘—, ๏ฟฝ๏ฟฝ refer to the rotating coordinate system OXYZ then find ๐‘‘๐ด

๐‘‘๐‘ก and

๐‘‘2๐ด

๐‘‘๐‘ก2 w.r.to

i. Fixed system

ii. The rotating system

Solution

i. To find ๐‘‘๐ด

๐‘‘๐‘ก and

๐‘‘2๐ด

๐‘‘๐‘ก2 in the fixed system, we have to apply the following formulas

(๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก)๐‘“

= (๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก)๐‘Ÿ+ ๏ฟฝ๏ฟฝ ร— ๐ด (1)

(๐‘‘2๏ฟฝ๏ฟฝ

๐‘‘๐‘ก2)๐‘“

= (๐‘‘2๏ฟฝ๏ฟฝ

๐‘‘๐‘ก2)๐‘Ÿ+ 2๏ฟฝ๏ฟฝ ร—

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก+

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘กร— ๐ด + ๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐ด) (2)

(๐‘‘๐ด

๐‘‘๐‘ก)

๐‘Ÿ

= [๐‘‘๐ด

๐‘‘๐‘ก]๐‘Ÿ

=๐‘‘๐ด๐‘Ÿ

๐‘‘๐‘ก

=๐‘‘

๐‘‘๐‘ก(sin ๐‘ก ๐‘– โˆ’ cos ๐‘ก ๐‘— + ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ)

= cos ๐‘ก ๐‘– + sin ๐‘ก ๐‘— โˆ’ ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ

๏ฟฝ๏ฟฝ ร— ๐ด = |๐‘– ๐‘— ๏ฟฝ๏ฟฝ2 โˆ’3 5

sin ๐‘ก โˆ’ cos ๐‘ก ๐‘’โˆ’๐‘ก

|

๏ฟฝ๏ฟฝ ร— ๐ด = (โˆ’3๐‘’โˆ’๐‘ก + 5 cos ๐‘ก)๐‘– โˆ’ (2๐‘’โˆ’๐‘ก โˆ’ 5 sin ๐‘ก)๐‘— + (โˆ’2 cos ๐‘ก + 3 sin ๐‘ก)๏ฟฝ๏ฟฝ

(๐‘‘๐ด

๐‘‘๐‘ก)

๐‘“

= cos ๐‘ก ๐‘– + sin ๐‘ก ๐‘— โˆ’ ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ + (โˆ’3๐‘’โˆ’๐‘ก + 5 cos ๐‘ก)๐‘– โˆ’ (2๐‘’โˆ’๐‘ก โˆ’ 5 sin ๐‘ก)๐‘—

+ (โˆ’2 cos ๐‘ก + 3 sin ๐‘ก)๏ฟฝ๏ฟฝ

Page 172: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

172

= (cos ๐‘ก + 5 cos ๐‘ก โˆ’ 3๐‘’โˆ’๐‘ก)๐‘– + (5 sin ๐‘ก + sin ๐‘ก โˆ’ 2๐‘’โˆ’๐‘ก)๐‘— + (โˆ’๐‘’โˆ’๐‘ก โˆ’ 2 cos ๐‘ก + 3 sin ๐‘ก)๏ฟฝ๏ฟฝ

= (6 cos ๐‘ก โˆ’ 3๐‘’โˆ’๐‘ก)๐‘– + (6 sin ๐‘ก โˆ’ 2๐‘’โˆ’๐‘ก)๐‘— + (โˆ’๐‘’โˆ’๐‘ก โˆ’ 2 cos ๐‘ก + 3 sin ๐‘ก)๏ฟฝ๏ฟฝ

Now for solving equation (2), we proceed as follows

(๐‘‘2๐ด

๐‘‘๐‘ก2)

๐‘Ÿ

=๐‘‘

๐‘‘๐‘ก(๐‘‘๐ด

๐‘‘๐‘ก)

๐‘Ÿ

=๐‘‘

๐‘‘๐‘ก(cos ๐‘ก ๐‘– + sin ๐‘ก ๐‘— โˆ’ ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ)

= (โˆ’sin ๐‘ก ๐‘– + cos ๐‘ก ๐‘— + ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ)

2๏ฟฝ๏ฟฝ ร— (๐‘‘๐ด

๐‘‘๐‘ก)

๐‘Ÿ

= 2(2๐‘– โˆ’ 3๐‘— + 5๏ฟฝ๏ฟฝ) ร— (cos ๐‘ก ๐‘– + sin ๐‘ก ๐‘— โˆ’ ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ)

= (4๐‘– โˆ’ 6๐‘— + 10๏ฟฝ๏ฟฝ) ร— (cos ๐‘ก ๐‘– + sin ๐‘ก ๐‘— โˆ’ ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ)

= |๐‘– ๐‘— ๏ฟฝ๏ฟฝ4 โˆ’6 10

cos ๐‘ก sin ๐‘ก โˆ’๐‘’โˆ’๐‘ก

|

2๏ฟฝ๏ฟฝ ร— (๐‘‘๐ด

๐‘‘๐‘ก)

๐‘Ÿ

= (6๐‘’โˆ’๐‘ก โˆ’ 10 sin ๐‘ก)๐‘– + (4๐‘’โˆ’๐‘ก + 10 cos ๐‘ก)๐‘— + (4 sin ๐‘ก + 6 cos ๐‘ก)๏ฟฝ๏ฟฝ

๏ฟฝ๏ฟฝ = 2๐‘– โˆ’ 3๐‘— + 5๏ฟฝ๏ฟฝ โŸน ๏ฟฝ๏ฟฝ =๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก= 0

So,

๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘กร— ๐ด = 0 ร— (sin ๐‘ก ๐‘– โˆ’ cos ๐‘ก ๐‘— + ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ) = 0

๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐ด) = (2๐‘– โˆ’ 3๐‘— + 5๏ฟฝ๏ฟฝ) ร— [(2๐‘– โˆ’ 3๐‘— + 5๏ฟฝ๏ฟฝ) ร— (sin ๐‘ก ๐‘– โˆ’ cos ๐‘ก ๐‘— + ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ)]

= (2๐‘– โˆ’ 3๐‘— + 5๏ฟฝ๏ฟฝ) ร— [(โˆ’3๐‘’โˆ’๐‘ก + 5 cos ๐‘ก)๐‘– โˆ’ (2๐‘’โˆ’๐‘ก โˆ’ 5 sin ๐‘ก)๐‘— + (โˆ’2 cos ๐‘ก + 3 sin ๐‘ก)๏ฟฝ๏ฟฝ]

= |๐‘– ๐‘— ๏ฟฝ๏ฟฝ2 โˆ’3 5

โˆ’3๐‘’โˆ’๐‘ก + 5 cos ๐‘ก โˆ’2๐‘’โˆ’๐‘ก + 5 sin ๐‘ก โˆ’2 cos ๐‘ก + 3 sin ๐‘ก

|

= (6 cos ๐‘ก โˆ’ 9 sin ๐‘ก โˆ’ 25 sin ๐‘ก + 10๐‘’โˆ’๐‘ก)๐‘– + (4 cos ๐‘ก โˆ’ 6 sin ๐‘ก โˆ’ 15๐‘’โˆ’๐‘ก + 25 cos ๐‘ก)๐‘— + (4๐‘’โˆ’๐‘ก

โˆ’ 10 sin ๐‘ก + 9๐‘’โˆ’๐‘ก โˆ’ 15 cos ๐‘ก)๏ฟฝ๏ฟฝ

Page 173: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

173

= (6 cos ๐‘ก โˆ’ 34 sin ๐‘ก + 10๐‘’โˆ’๐‘ก)๐‘– + (29 cos ๐‘ก โˆ’ 6 sin ๐‘ก โˆ’ 15๐‘’โˆ’๐‘ก)๐‘—

+ (โˆ’4๐‘’โˆ’๐‘ก + 10 sin ๐‘ก + 9๐‘’โˆ’๐‘ก โˆ’ 15 cos ๐‘ก)๏ฟฝ๏ฟฝ

= (โˆ’ sin ๐‘ก ๐‘– + cos ๐‘ก ๐‘— + ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ) + (6๐‘’โˆ’๐‘ก โˆ’ 10 sin ๐‘ก)๐‘– + (4๐‘’โˆ’๐‘ก + 10 cos ๐‘ก)๐‘— + (4 sin ๐‘ก + 6 cos ๐‘ก)๏ฟฝ๏ฟฝ

+ 0 + (6 cos ๐‘ก โˆ’ 34 sin ๐‘ก + 10๐‘’โˆ’๐‘ก)๐‘– + (29 cos ๐‘ก โˆ’ 6 sin ๐‘ก โˆ’ 15๐‘’โˆ’๐‘ก)๐‘— + (10 sin ๐‘ก

โˆ’ 13๐‘’โˆ’๐‘ก + 15 cos ๐‘ก)๏ฟฝ๏ฟฝ

(๐‘‘2๐ด

๐‘‘๐‘ก2)

๐‘“

= (6 cos ๐‘ก โˆ’ 45 sin ๐‘ก + 16๐‘’โˆ’๐‘ก)๐‘– + (40 cos ๐‘ก โˆ’ 6 sin ๐‘ก โˆ’ 11๐‘’โˆ’๐‘ก)๐‘—

+ (14 sin ๐‘ก โˆ’ 12๐‘’โˆ’๐‘ก + 21 cos ๐‘ก)๏ฟฝ๏ฟฝ

ii. The rotating system

(๐‘‘๐ด

๐‘‘๐‘ก)

๐‘Ÿ

= [๐‘‘๐ด

๐‘‘๐‘ก]๐‘Ÿ

=๐‘‘๐ด๐‘Ÿ

๐‘‘๐‘ก

=๐‘‘

๐‘‘๐‘ก(sin ๐‘ก ๐‘– โˆ’ cos ๐‘ก ๐‘— + ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ)

= cos ๐‘ก ๐‘– + sin ๐‘ก ๐‘— โˆ’ ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ

(๐‘‘2๐ด

๐‘‘๐‘ก2)

๐‘Ÿ

=๐‘‘

๐‘‘๐‘ก(๐‘‘๐ด

๐‘‘๐‘ก)

๐‘Ÿ

=๐‘‘

๐‘‘๐‘ก(cos ๐‘ก ๐‘– + sin ๐‘ก ๐‘— โˆ’ ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ)

= (โˆ’sin ๐‘ก ๐‘– + cos ๐‘ก ๐‘— + ๐‘’โˆ’๐‘ก๏ฟฝ๏ฟฝ)

Page 174: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

174

Module No. 182

Example 3 of Equation of Motion in Rotating Frame of Reference

Problem Statement

A bead slides on a smooth helix whose central axis is vertical. The helix is forced to rotate about

its central axis with constant angular speed ๐œ”. Find the equation of motion of the bead relative to

the helix.

Solution

We choose a coordinate ๐‘‚๐‘‹๐‘Œ๐‘ fixed in the helix such that ๐‘-axis is coincident with the axis of

the helix.

Then the parametric eqs. of the helix are given by

๐‘ฅ = ๐‘Ž cos ๐œƒ , ๐‘ฆ = ๐‘Ž sin ๐œƒ,

๐‘ง = ๐‘๐œƒ

In vector form these can be written as

๐‘Ÿ = ๐‘Ž cos ๐œƒ ๐‘– + ๐‘Ž sin ๐œƒ ๐‘— + ๐‘๐œƒ๏ฟฝ๏ฟฝ

where ๐‘–, ๐‘—, ๏ฟฝ๏ฟฝ point along the coordinate axis. Here ๏ฟฝ๏ฟฝ is constant but ๐‘–, ๐‘— are variable.

Page 175: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

175

The equation of motion in the rotating coordinate system is given by

๐‘š๐‘Ž๐‘Ÿ = ๐น โˆ’ 2๐‘š๐œ” ร— ๐‘ฃ๐‘Ÿ โˆ’ ๐‘š๏ฟฝ๏ฟฝ ร— ๐‘Ÿ โˆ’ ๐‘š๐œ” ร— (๐œ” ร— ๐‘Ÿ) (1)

In this problem, since ๐œ” is constant,

๐œ” = ๐œ”๏ฟฝ๏ฟฝ , ๏ฟฝ๏ฟฝ = 0 (2)

Also

๐‘ฃ๐‘Ÿ = ๏ฟฝ๏ฟฝ = (โˆ’๐‘Ž sin ๐œƒ ๐‘– + ๐‘Ž cos ๐œƒ ๐‘— + ๐‘๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ (3)

and

๐‘Ž๐‘Ÿ = ๏ฟฝ๏ฟฝ =๐‘‘

๐‘‘๐‘ก[(โˆ’๐‘Ž sin ๐œƒ ๐‘– + ๐‘Ž cos ๐œƒ ๐‘— + ๐‘๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ]

๐‘Ÿ

= (โˆ’๐‘Ž sin ๐œƒ ๐‘– + ๐‘Ž cos ๐œƒ ๐‘— + ๐‘๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ +(โˆ’๐‘Ž cos ๐œƒ ๐‘– โˆ’ ๐‘Ž sin ๐œƒ ๐‘—)๏ฟฝ๏ฟฝ2 (4)

If ๐น denotes the external force in the fixed (space) coordinate system, then

๐น = โˆ’๐‘š๐‘”๏ฟฝ๏ฟฝ + ๐‘… (5)

where ๐‘… is the reaction of the helix on the bead.

Before making substitution from equation (2-5) into equation (1), we obtain simplified

expression for the second, and the fourth terms of (1), (the third term being zero).

๐œ” ร— ๐‘ฃ๐‘Ÿ = ๐œ”๏ฟฝ๏ฟฝ ร— (โˆ’๐‘Ž sin ๐œƒ ๐‘– + ๐‘Ž cos ๐œƒ ๐‘— + ๐‘๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ

= ๐œ”๐‘Ž(โˆ’ sin ๐œƒ ๐‘— โˆ’ cos ๐œƒ ๐‘–)๏ฟฝ๏ฟฝ (6)

and

๐œ” ร— ๐‘Ÿ = ๐œ”๏ฟฝ๏ฟฝ ร— (๐‘Ž cos ๐œƒ ๐‘– + ๐‘Ž sin ๐œƒ ๐‘— + ๐‘๐œƒ๏ฟฝ๏ฟฝ)

= ๐œ”๐‘Ž(cos ๐œƒ ๐‘— โˆ’ sin ๐œƒ ๐‘–)

๐œ” ร— (๐œ” ร— ๐‘Ÿ) = ๐œ”2๐‘Ž๏ฟฝ๏ฟฝ ร— (cos ๐œƒ ๐‘— โˆ’ sin ๐œƒ ๐‘–)

= ๐œ”2๐‘Ž(โˆ’cos ๐œƒ ๐‘– โˆ’ sin ๐œƒ ๐‘—) (7)

Therefore on making substitutions from (4), (5), (6) and (7) into (1), we obtain

๐‘š(โˆ’๐‘Ž sin ๐œƒ ๐‘– + ๐‘Ž cos ๐œƒ ๐‘— + ๐‘๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ โˆ’ ๐‘š๐‘Ž(cos ๐œƒ ๐‘– + sin ๐œƒ ๐‘—) = โˆ’๐‘š๐‘”๏ฟฝ๏ฟฝ + ๐‘… + 2๐‘š๐œ”๐‘Ž(sin ๐œƒ ๐‘— +

cos ๐œƒ ๐‘–) + ๐‘š๐‘Ž๐œ”2(cos ๐œƒ ๐‘– + sin ๐œƒ ๐‘—)

Page 176: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

176

๐‘š(โˆ’๐‘Ž sin ๐œƒ ๐‘– + ๐‘Ž cos ๐œƒ ๐‘— + ๐‘๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ โˆ’ ๐‘š๐‘Ž(cos ๐œƒ ๐‘– + sin ๐œƒ ๐‘—) = โˆ’๐‘š๐‘”๏ฟฝ๏ฟฝ + ๐‘… + (2๐‘š๐œ”๐‘Ž +

๐‘š๐‘Ž๐œ”2) (sin ๐œƒ ๐‘— + cos ๐œƒ ๐‘–) (8)

Now if we write

๐‘ฃ๐‘Ÿ = (โˆ’๐‘Ž sin ๐œƒ ๐‘– + ๐‘Ž cos ๐œƒ ๐‘— + ๐‘๏ฟฝ๏ฟฝ)๏ฟฝ๏ฟฝ = ๐‘ข๏ฟฝ๏ฟฝ

Then it is clear that the vector ๐‘ข is tangent to the helix. Since ๐‘… is normal to the helix,

๐‘…. ๐‘ฃ๐‘Ÿ = ๐‘…. ๐‘ข๏ฟฝ๏ฟฝ = 0

Rewriting (8) in terms of ๐‘ข (after eliminating the common factor ๐‘š), we have

๐‘ข๏ฟฝ๏ฟฝ โˆ’ ๐‘Ž(cos ๐œƒ ๐‘– + sin ๐œƒ ๐‘—)๏ฟฝ๏ฟฝ2 = โˆ’๐‘”๐‘˜ + ๐‘… + (2๐œ”๐‘Ž + ๐‘Ž๐œ”2)(cos๐œƒ ๐‘– + sin ๐œƒ ๐‘—) (9)

Taking dot product of both sides of (9) with u, we have

๐‘ข. ๐‘ข๏ฟฝ๏ฟฝ โˆ’ ๐‘Ž๐‘ข. (cos ๐œƒ ๐‘– + sin ๐œƒ ๐‘—)๏ฟฝ๏ฟฝ2 = โˆ’๐‘”๐‘˜. ๐‘ข + ๐‘…. ๐‘ข + (2๐œ”๐‘Ž + ๐‘Ž๐œ”2)(cos๐œƒ ๐‘– + sin ๐œƒ ๐‘—). ๐‘ข (10)

Now

๐‘ข. ๐‘ข = ๐‘Ž2 sin2 ๐œƒ + ๐‘Ž2 cos2 ๐œƒ + ๐‘2 = ๐‘Ž2 + ๐‘2

๏ฟฝ๏ฟฝ. ๐‘ข = ๏ฟฝ๏ฟฝ. (โˆ’๐‘Ž sin ๐œƒ ๐‘– + ๐‘Ž cos ๐œƒ ๐‘— + ๐‘๏ฟฝ๏ฟฝ) = ๐‘

๐‘…. ๐‘ข = 0

(sin ๐œƒ ๐‘— + cos ๐œƒ ๐‘–). ๐‘ข = (sin ๐œƒ ๐‘— + cos ๐œƒ ๐‘–). (โˆ’๐‘Ž sin ๐œƒ ๐‘– + ๐‘Ž cos ๐œƒ ๐‘— + ๐‘๏ฟฝ๏ฟฝ)

= ๐‘Ž cos ๐œƒ sin ๐œƒ โˆ’ ๐‘Ž cos ๐œƒ sin ๐œƒ

= 0

Therefore (10) reduces to

(๐‘Ž2 + ๐‘2)๏ฟฝ๏ฟฝ = โˆ’๐‘”๐‘

or

๏ฟฝ๏ฟฝ = โˆ’๐‘”๐‘

(๐‘Ž2 + ๐‘2)

Page 177: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

177

Module No. 183

Example 4 of Equation of Motion in Rotating Frame of Reference

Problem Statement

Prove that the centrifugal force acting on a particle of mass ๐‘š on the earthโ€™s surface is the vector

directed away from the earthโ€™s center and perpendicular to the angular velocity vector ๏ฟฝ๏ฟฝ.

i. Show that its magnitude is ๐‘š๐œ”2๐‘Ÿ๐‘’ cos ๐œ†.

ii. Determine the places on the surface of the earth where centrifugal force will be maximum

or minimum.

Solution

i. Since centrifugal force is โˆ’๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’).

We have to show that itโ€™s vector is directed away from center of the earth and perpendicular to

the angular velocity vector ๏ฟฝ๏ฟฝ and its magnitude is ๐‘š๐œ”2๐‘Ÿ๐‘’ cos ๐œ†

where ๐œ† is the latitude as shown in figure and ๐‘Ÿ๐‘’ is the radius of the earth.

It is quite clear that the particle is moving away from the center of earth and centrifugal force is

produced in the opposite direction of the path of the particle.

Page 178: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

178

It can be observed from the given figure that the movement of the particle (i.e. ๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’)) is

perpendicular to the angular velocity ๏ฟฝ๏ฟฝ and vector ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’ , becomes centrifugal force in the

opposite direction of the particle, so its centrifugal force is also perpendicular to ๏ฟฝ๏ฟฝ and ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’ .

Now we move onto the proof of magnitude of centrifugal force, since

๏ฟฝ๏ฟฝ๐‘๐‘“ = โˆ’๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’)

We need to show that

|๏ฟฝ๏ฟฝ๐‘๐‘“| = |โˆ’๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’)| = ๐‘š๐œ”2๐‘Ÿ๐‘’ cos ๐œ†

Now we assume that the motion takes place in the ๐‘‹๐‘-plane.

Then,

๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ cos ๐œƒ + ๐‘– sin ๐œƒ

= ๏ฟฝ๏ฟฝ cos(๐œ‹ 2โ„ โˆ’ ๐œ†) + ๐‘– sin(๐œ‹ 2โ„ โˆ’ ๐œ†)

๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ sin ๐œ† + ๐‘– cos ๐œ†

Consider the centrifugal force

= โˆ’๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’)

If ๏ฟฝ๏ฟฝ denotes a unit vector along the NS-axis, then we can write ๏ฟฝ๏ฟฝ = ๐œ”๏ฟฝ๏ฟฝ and the expression

becomes ๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’) = ๐œ”2๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’)

โˆ’๐œ”2๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’) = โˆ’๐œ”2[(๏ฟฝ๏ฟฝ. ๐‘Ÿ๐‘’)๏ฟฝ๏ฟฝ โˆ’ (๏ฟฝ๏ฟฝ. ๏ฟฝ๏ฟฝ)๐‘Ÿ๐‘’]

= โˆ’๐œ”2[(๏ฟฝ๏ฟฝ. ๐‘Ÿ๐‘’)๏ฟฝ๏ฟฝ โˆ’ ๐‘Ÿ๐‘’]

Now

๏ฟฝ๏ฟฝ. ๐‘Ÿ๐‘’ = (๏ฟฝ๏ฟฝ sin ๐œ† + ๐‘– cos ๐œ†). ๐‘Ÿ๐‘’๏ฟฝ๏ฟฝ

= ๐‘Ÿ๐‘’ cos ๐œƒ = cos(๐œ‹ 2โ„ โˆ’ ๐œ†) = ๐‘Ÿ๐‘’ sin ๐œ†

So expression (1) becomes

โˆ’๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’) = โˆ’๐œ”2๐‘Ÿ๐‘’ sin ๐œ† (๏ฟฝ๏ฟฝ sin ๐œ† + ๐‘– cos ๐œ†) + ๐œ”2๐‘Ÿ๐‘’๏ฟฝ๏ฟฝ

= (โˆ’๐œ”2๐‘Ÿ๐‘’ sin2 ๐œ† + ๐œ”2๐‘Ÿ๐‘’)๏ฟฝ๏ฟฝ โˆ’ ๐œ”2๐‘Ÿ๐‘’ sin ๐œ† cos ๐œ† ๐‘–

= (โˆ’๐œ”2๐‘Ÿ๐‘’(1 โˆ’ cos2 ๐œ†) + ๐œ”2๐‘Ÿ๐‘’)๏ฟฝ๏ฟฝ โˆ’ ๐œ”2๐‘Ÿ๐‘’ sin ๐œ† cos ๐œ† ๐‘–

Page 179: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

179

|๏ฟฝ๏ฟฝ๐‘๐‘“| = |โˆ’๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’)| = |โˆ’๐‘š((โˆ’๐œ”2๐‘Ÿ๐‘’(1 โˆ’ cos2 ๐œ†) + ๐œ”2๐‘Ÿ๐‘’)๏ฟฝ๏ฟฝ โˆ’ ๐œ”2๐‘Ÿ๐‘’ sin ๐œ† cos ๐œ† ๐‘–)|

= |โˆ’๐‘š(๐œ”2๐‘Ÿ๐‘’ cos2 ๐œ†)๏ฟฝ๏ฟฝ + ๐‘š๐œ”2๐‘Ÿ๐‘’ sin ๐œ† cos ๐œ† ๐‘–)|

= ๐‘šโˆš(๐œ”2๐‘Ÿ๐‘’ cos2 ๐œ†)2 + (๐œ”2๐‘Ÿ๐‘’ sin ๐œ† cos ๐œ†)2

= ๐‘šโˆš๐œ”4๐‘Ÿ๐‘’2 cos4 ๐œ† + ๐œ”4๐‘Ÿ๐‘’2 cos2 ๐œ† sin2 ๐œ†

= ๐‘šโˆš๐œ”4๐‘Ÿ๐‘’2 cos4 ๐œ† + ๐œ”4๐‘Ÿ๐‘’2 cos2 ๐œ† (1 โˆ’ cos2 ๐œ†)

= ๐‘šโˆš๐œ”4๐‘Ÿ๐‘’2 cos4 ๐œ† + ๐œ”4๐‘Ÿ๐‘’2 cos2 ๐œ† โˆ’ ๐œ”4๐‘Ÿ๐‘’2 cos4 ๐œ†

= ๐‘šโˆš๐œ”4๐‘Ÿ๐‘’2 cos2 ๐œ†

|๏ฟฝ๏ฟฝ๐‘๐‘“| = ๐‘š๐œ”2๐‘Ÿ๐‘’ cos ๐œ†

Hence the required result.

The centrifugal force will be maximum at ๐œ† = 0, where cos ๐œ† = 1 (maximum) i.e. at equator

and minimum will be at NS-poles i.e. at ๐œ† = ๐œ‹2โ„ where cos ๐œ† = 0 (minimum).

Page 180: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

180

Page 181: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

181

Module No. 184

Example 5 of Equation of Motion in Rotating Frame of Reference

Problem Statement

A coordinate system ๐‘‚๐‘‹๐‘Œ๐‘ is rotating with angular velocity ๏ฟฝ๏ฟฝ = 5๐‘– โˆ’ 4๐‘— โˆ’ 10๏ฟฝ๏ฟฝ relative to fixed

coordinate system ๐‘‚๐‘‹0๐‘Œ0๐‘0 both systems having the same origin. Find the velocity of the

particle at rest in the ๐‘‚๐‘‹๐‘Œ๐‘ system at the point (3,1, โˆ’2) as seen by an observer in the fixed

system.

Solution

Since the given angular velocity is

๏ฟฝ๏ฟฝ = 5๐‘– โˆ’ 4๐‘— โˆ’ 10๏ฟฝ๏ฟฝ

and the point P(3,1, โˆ’2) at rest in ๐‘‚๐‘‹๐‘Œ๐‘ system.

Then

๐‘‚๐‘ƒ = ๐‘Ÿ = 3๐‘– + ๐‘— โˆ’ 2๏ฟฝ๏ฟฝ

Also, we know the equation of motion in case when the origins of the coordinate systems

coincide each other

๐‘ฃ๐‘“ = ๐‘ฃ๐‘Ÿ + ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ

But we have to find out the velocity of the particle at rest in ๐‘‚๐‘‹๐‘Œ๐‘ system at P(3,1, โˆ’2).

i.e.

๐‘ฃ๐‘“ = ๐‘ฃ0 + ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ

๐‘ฃ๐‘“ = (0,0,0) + (5๐‘– โˆ’ 4๐‘— โˆ’ 10๏ฟฝ๏ฟฝ) ร— (3๐‘– + 1๐‘— โˆ’ 2๏ฟฝ๏ฟฝ)

= (0๐‘– + 0๐‘— + 0๏ฟฝ๏ฟฝ) + |๐‘– ๐‘— ๏ฟฝ๏ฟฝ5 โˆ’4 โˆ’103 1 โˆ’2

|

= (0๐‘– + 0๐‘— + 0๏ฟฝ๏ฟฝ) + ((8 + 10)๐‘– โˆ’ (โˆ’10 + 30)๐‘— + (5 + 12)๏ฟฝ๏ฟฝ)

Page 182: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

182

= (0๐‘– + 0๐‘— + 0๏ฟฝ๏ฟฝ) + (18๐‘– โˆ’ 20๐‘— + 17๏ฟฝ๏ฟฝ)

Hence

๐‘ฃ๐‘“ = 18๐‘– โˆ’ 20๐‘— + 17๏ฟฝ๏ฟฝ

is the required velocity of the system.

Page 183: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

183

Module No. 185

General Motion of a Rigid Body

In general motion of the body, (i.e. no point of the body is fixed in space), let ๐‘ญ๐‘’๐‘ฅ๐‘ก be the total

external force on the rigid body and ๐บ๐‘๐‘’๐‘ฅ๐‘ก the total external torque about its center of mass (i.e.

centroid). Then the equations of motion are

๐‘€๐’‚๐‘ =๐‘ญ๐‘’๐‘ฅ๐‘ก (1)

and

๐‘ณ๏ฟฝ๏ฟฝ = ๐‘ฎ๐‘๐‘’๐‘ฅ๐‘ก (2)

where ๐’‚๐‘ is the acceleration of the c.m. and ๐‘ณ๐‘ is the total angular momentum about it.

Now we resolve the vectors ๐’‚๐‘,๐‘ญ๐‘’๐‘ฅ๐‘ก,๐‘ฎ๐‘๐‘’๐‘ฅ๐‘กand ๐‘ณ along the unit vector ๐‘–, ๐‘—, ๐‘˜ taken along the

principal axes at the mass center.

The triad of vectors ๐‘–, ๐‘—, ๐‘˜ may be inferred to as a principal triad. It will be assumed to be

permanently a principal triad.

Let ฮฉ be its angular velocity. If the triad is fixed in the body then ฮฉ = ฯ‰, the angular velocity of

the body.

Now using the operator: (๐‘‘

๐‘‘๐‘ก)๐‘“

= (๐‘‘

๐‘‘๐‘ก)๐‘Ÿ+ ๐œ” ร—

(๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก)

๐‘“

= (๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก)

๐‘Ÿ

+ ฯ‰ ร— ๏ฟฝ๏ฟฝ

which relates the rate of change of a vector in a fixed (i.e. inertial) frame and a rotating frame,

we have (on dropping the suffix r)

๐‘Ž๐‘“ โ‰ก (๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก)

๐‘“

=๐‘‘๏ฟฝ๏ฟฝ

๐‘‘๐‘ก+ ฮฉ ร— ๏ฟฝ๏ฟฝ (โˆด ๐’—๐‘Ÿ = ๐’—)

or ๐‘Ž๐‘“ = ๐‘‘๐‘ฃ

๐‘‘๐‘ก + ฮฉ x ๏ฟฝ๏ฟฝ (3)

where ๐‘ฃ = ๐‘ฃ1๐‘– + ๐‘ฃ2๐‘— + ๐‘ฃ3๐‘˜ is the velocity of the mass center (in the rotating coordinate system).

Substituting for ๐‘Ž๐‘“ = ๐‘Ž๐‘ from equation (3) into (1), we obtain

Page 184: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

184

๐‘€(๐‘‘๐’—

๐‘‘๐‘ก+ ฮฉ ร— ๐’—) = ๐‘ญ๐‘’๐‘ฅ๐‘ก

which is equivalent to

๐‘€(๐‘ฃ1 + ฮฉ2๐‘ฃ3 + ฮฉ3๐‘ฃ2) = ๐น1

๐‘€(๐‘ฃ2 + ฮฉ3๐‘ฃ1 + ฮฉ1๐‘ฃ3) = ๐น2

๐‘€(๐‘ฃ3 + ฮฉ1๐‘ฃ2 + ฮฉ2๐‘ฃ1) = ๐น3

} (4)

From (2), on using

(๐‘‘๐ฟ

๐‘‘๐‘ก)๐‘“ =

๐‘‘๐ฟ

๐‘‘๐‘ก+ ๐›บ x ๐ฟ

and the relation ๐ฟ = ๐ผ1๐œ”1๐‘– + ๐ผ2๐œ”2๐‘— + ๐ผ3๐œ”3๏ฟฝ๏ฟฝ, we obtain the equations

๐ผ1ฯ‰1 ๐‘– + ๐ผ2ฯ‰2 ๐‘— + ๐ผ3ฯ‰3 ๏ฟฝ๏ฟฝ + (ฮฉ2๐ฟ3 โˆ’ ฮฉ3๐ฟ2)๐‘– + (ฮฉ2๐ฟ1 โˆ’ ฮฉ1๐ฟ3)๐‘— + (ฮฉ1๐ฟ2 โˆ’ ฮฉ2๐ฟ1)๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ

From this vector equation we obtain the following three scalar equations

๐ผ1ฯ‰1 + ฮฉ2๐ฟ3 โˆ’ ฮฉ3๐ฟ2 = ๐บ1

๐ผ2ฯ‰2 + ฮฉ3๐ฟ1 โˆ’ ฮฉ1๐ฟ3 = ๐บ2

and

๐ผ3ฯ‰3 + ฮฉ1๐ฟ2 โˆ’ ฮฉ2๐ฟ1 = ๐บ3

where on using the results

๐ฟ1 = ๐ผ1ฯ‰1, ๐ฟ2 = ๐ผ2ฯ‰2, ๐ฟ3 = ๐ผ3ฯ‰3

we have

๐ผ1ฯ‰1 + ฯ‰3ฮฉ2I3 โˆ’ ฯ‰2ฮฉ3I2 = ๐บ1

๐ผ2ฯ‰2 + ฯ‰1ฮฉ3I1 โˆ’ ฯ‰3ฮฉ1I3 = ๐บ2

๐ผ3ฯ‰3 + ฯ‰2ฮฉ1I2 โˆ’ ฯ‰1ฮฉ2I1 = ๐บ3

} (5)

where ๐ผ1, ๐ผ2, ๐ผ3 denote principal M.I at the centroid of the body.

The set of eqs (4) and (5) constitute six equations for the components of velocity of centroid and

the components of angular velocity of the body.

Page 185: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

185

Module No. 186

Equation of Motion Relative to Coordinate System Fixed on Earth

We derived the equation of motion when the origins of fixed and rotating coordinate systems are

distant.

๏ฟฝ๏ฟฝ๐‘“ = ๏ฟฝ๏ฟฝ0 + ๏ฟฝ๏ฟฝ๐‘Ÿ + 2๏ฟฝ๏ฟฝ ร— ๏ฟฝ๏ฟฝ๐‘Ÿ + ๏ฟฝ๏ฟฝ ร— ๐‘Ÿ + ๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ) (1)

From (1) the most general from of the equation of motion in a moving frame can be written as

๐‘š (๐‘‘2๐‘Ÿ

๐‘‘๐‘ก2)๐‘Ÿ

= ๏ฟฝ๏ฟฝ โˆ’ ๐‘š๏ฟฝ๏ฟฝ ร— ๐‘Ÿ โˆ’ 2๐‘š๏ฟฝ๏ฟฝ ร— ๐‘ฃ๐‘Ÿ โˆ’ ๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ) โˆ’ ๐‘š๏ฟฝ๏ฟฝ0 (2)

where the subscript ๐‘Ÿ refers to the rotating frame, ๏ฟฝ๏ฟฝ is the total external force in the fixed

coordinate system and ๏ฟฝ๏ฟฝ0 is the acceleration of the origin ๐‘‚ in moving (rotating) coordinate

system, ๐‘‚๐‘‹๐‘Œ๐‘. In the case of the earth, which is a rotating coordinate system, we choose the

origin as a point fixed on the earth.

We choose the fixed coordinate system at the center ๐ถ of the earth and denote it by ๐ถ๐‘‹0๐‘Œ0๐‘0 .

For a particle near the surface of the earth

๏ฟฝ๏ฟฝ = ๐‘š๏ฟฝ๏ฟฝ (3)

where ๏ฟฝ๏ฟฝ is the acceleration due to gravity.

๏ฟฝ๏ฟฝ0, the acceleration of the origin ๐‘‚ is the centripetal acceleration of ๐‘‚ due to the rotation of the

earth. It may be represented as

๏ฟฝ๏ฟฝ0 = ๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’) (4)

Therefore on substitution from (3) and (4) into (2), we obtain

๐‘š (๐‘‘2๐‘Ÿ

๐‘‘๐‘ก2)๐‘Ÿ

= ๐‘š๏ฟฝ๏ฟฝ โˆ’ ๐‘š๏ฟฝ๏ฟฝ ร— ๐‘Ÿ โˆ’ 2๐‘š๏ฟฝ๏ฟฝ ร— ๐‘ฃ๐‘Ÿ โˆ’ ๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ) โˆ’ ๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’) (5)

which gives the full equation of motion for a particle of mass ๐‘š w.r.t. a coordinate system fixed

on the earth.

Next we obtain a simple form of (5) taking into account the fact that the angular velocity ๏ฟฝ๏ฟฝ of

the earth is nearly constant both in magnitude and direction, (which is along NS i.e. North-South

polar line), and of small magnitude. In fact

Page 186: Virtual University of Pakistan Pakistan...1 ๐‘‡ Energy of S.H.M If T is the kinetic energy, V the potential energy and = ๐‘‡ + the total energy of a simple harmonic oscillator, then

186

๐œ” = |๏ฟฝ๏ฟฝ| =2๐œ‹ radian

24 hours

=2๐œ‹

86400 radian per second

= 7.27 ร— 10โˆ’5rad/sec

Since ๏ฟฝ๏ฟฝ may be taken as constant, ๏ฟฝ๏ฟฝ = 0. Since the fourth term on R.H.S. of (5) has the

magnitude ๐‘š๐œ”2r (where r is the distance of the particle from the NS-axis), is negligibly small

because of ๐œ”2. However the fifth term ๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’), the last term of equation (5) is not

negligible because |๐‘Ÿ๐‘’| (the magnitude of the radius of the earth) is very large.

Hence equation (5) can be written as

๐‘š (๐‘‘2๐‘Ÿ

๐‘‘๐‘ก2)

๐‘Ÿ

= ๐‘š๏ฟฝ๏ฟฝ โˆ’ 2๐‘š๏ฟฝ๏ฟฝ ร— ๐‘ฃ๐‘Ÿ โˆ’ ๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’)

which is a second order differential equation in ๐‘Ÿ and may also written as

๐‘š๐‘‘2๐‘Ÿ

๐‘‘๐‘ก2 + 2๐‘š๏ฟฝ๏ฟฝ ร—๐‘‘๐‘Ÿ

๐‘‘๐‘ก= ๐‘š๏ฟฝ๏ฟฝ โˆ’ ๐‘š๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’) (6)

where we have dropped the subscript ๐‘Ÿ, it being understood that the terms on L.H.S of (6) refer

to the rotating coordinate system.

If ๏ฟฝ๏ฟฝ denotes a unit vector along the NS-axis, then we can write ๏ฟฝ๏ฟฝ = ๐œ”๏ฟฝ๏ฟฝ, and equation of motion

takes the form

๏ฟฝ๏ฟฝ + 2๐œ”๏ฟฝ๏ฟฝ ร— ๐‘Ÿ = ๏ฟฝ๏ฟฝ โˆ’ ๐œ”2๏ฟฝ๏ฟฝ ร— (๏ฟฝ๏ฟฝ ร— ๐‘Ÿ๐‘’)