sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss...

71
CHAPTER 19: RESPIRATORY SYSTEM OBJECTIVES: 1. Fully explain the process (5 parts of) respiration. 2. Describe the significance of oxygen and carbon dioxide in human cells. 3. Explain the structure and function of mucous membranes that line most of the respiratory tract. 4. Locate the upper respiratory organs on a diagram, describe their structure and any specific functions they may have (both respiratory and other functions, if applicable). 5. Name the four skull bones that contain sinuses. 6. Name the three parts of the pharynx. 7. Explain the significance of the epiglottis and glottis. 8. Give the scientific name for the "Adam's Apple". 9. Describe how and where sound originates and how it is then converted into recognizable speech. 10. Locate the lower respiratory organs on a diagram, describe their structure and any specific functions they may have. 11. Define the terms C-ring, trachealis muscle, and carina. 12. Name the type of cartilage that composes the trachea. 13. Distinguish between a primary, secondary, and tertiary bronchus. 14. Explain what happens to the epithelial lining, cartilage and smooth muscle of the bronchi as they branch deep into the lungs to form terminal bronchioles. 15. Explain the effects that histamine and epinephrine have on terminal bronchioles. 16. Discuss the structure and function of the pleural membranes. 17. Distinguish between a lobe and lobule of the lung. 18. Discuss the microscopic anatomy of the lung. 19. Track a breath of air from the nose to an alveolus, noting what happens to the air as it meets each structure. 20. Distinguish between Type I and Type II Alveolar cells, in terms of structure and function. 21. Define the term surfactant and describe its important function.

Transcript of sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss...

Page 1: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

CHAPTER 19: RESPIRATORY SYSTEM

OBJECTIVES:

1. Fully explain the process (5 parts of) respiration.2. Describe the significance of oxygen and carbon dioxide in human cells.3. Explain the structure and function of mucous membranes that line most of the respiratory

tract.4. Locate the upper respiratory organs on a diagram, describe their structure and any

specific functions they may have (both respiratory and other functions, if applicable).5. Name the four skull bones that contain sinuses.6. Name the three parts of the pharynx.7. Explain the significance of the epiglottis and glottis.8. Give the scientific name for the "Adam's Apple".9. Describe how and where sound originates and how it is then converted into recognizable

speech.10. Locate the lower respiratory organs on a diagram, describe their structure and any

specific functions they may have.11. Define the terms C-ring, trachealis muscle, and carina.12. Name the type of cartilage that composes the trachea.13. Distinguish between a primary, secondary, and tertiary bronchus.14. Explain what happens to the epithelial lining, cartilage and smooth muscle of the bronchi

as they branch deep into the lungs to form terminal bronchioles.15. Explain the effects that histamine and epinephrine have on terminal bronchioles.16. Discuss the structure and function of the pleural membranes.17. Distinguish between a lobe and lobule of the lung.

18. Discuss the microscopic anatomy of the lung.

19. Track a breath of air from the nose to an alveolus, noting what happens to the air as it meets each structure.

20. Distinguish between Type I and Type II Alveolar cells, in terms of structure and function.

21. Define the term surfactant and describe its important function.

22. Sketch a diagram of the respiratory membrane and then describe its structure in terms of tissue components and thickness. Name the process that occurs through this membrane and explain this process in terms of what is being transported and how, using numerical values.

23. Define the term pulmonary ventilation, and describe its two actions in terms of forces, muscles, and membranes involved.

24. Starting with the diaphragm muscle in its relaxed position, describe, in order, the events that occur during inspiration.

25. Explain how Boyle's Law relates to ventilation.

26. Explain why the serous fluid between the pleural membranes has high surface tension.

Page 2: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

27. Define the term atelectasis, explain what is usually lacking within the alveoli when it occurs, and name the disease of premature newborns when it occurs.

28. Name the instrument used to measure lung volumes.

29. List, define, give estimate values, and correlate different lung volume measurements.

30. Define the term external respiration.

31. State Dalton's Law and explain its significance in respiration.

32. List the percentages of N2, O2, and CO2 in air.

33. Define what is meant by the partial pressure (pp) of a gas in a mixture and list the pp values of O2 and CO2 in air and in the lung capillaries.

34. Discuss the factors that influence the rate at which a gas diffuses.

35. Define the term internal respiration.

36. Discuss how oxygen, carbon monoxide and carbon dioxide are transported in the blood.

37. Discuss the factors that cause oxygen to be released from hemoglobin.

38. Define the term hypoxia, and describe how it occurs during carbon monoxide poisoning.

39. Write the chemical equation that involves carbon dioxide, water, carbonic acid, a hydrogen ion, and a bicarbonate ion, and explain its significance.

40. Locate the neural respiratory center on a diagram.

41. Distinguish between the medullary rhythmicity area and pneumotaxic area of the neural respiratory center.

42. Explain how respiration is affected by varying chemical (CO2 and O2) concentration in the blood.

Page 3: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

I. INTRODUCTION

A. Respiration: 5 parts:

1. Pulmonary ventilation* = breathing;2. External respiration* = air into lungs; gas exchange (O2 load/ CO2

unload); air out;3. Transport of respiratory gases = gases in blood transported from lungs

to body cells and back to lungs;4. Internal respiration = exchange of gases at body capillaries (O2

unload/CO2 load).5. Cellular respiration = use of oxygen by cells to produce energy

(production of CO2).

* Only these two portions are included in the respiratory system.

II. ORGANS OF THE RESPIRATORY SYSTEM: See Fig 19.1, page 733 and Summary Table 19.1, page 744.

A. Upper Respiratory Organs (UROs): See Fig 19.2, page 734.

1. The UROs are lined with mucous membranes:See Fig 19.3, page 734.

a. ET/CT with many goblet cells (mucus);b. Specifically, pseudostratified columnar ET in the trachea,

o The mucus functions to trap debris.o The cilia beats the debris to the pharynx to be swallowed

and destroyed by digestive enzymes. o This tissue also serves to warm and moisten incoming air.

2. Nose (external nares or nostrils)

a. bone & cartilage with internal hairs; b. traps large particles (i.e. filters air).

3. Nasal cavity (separated by nasal septum)a. bone & cartilage lined with mucous membranes;b. warms and moistens incoming air; c. olfactory reception;d. resonating chambers for speech.

II. ORGANS OF THE RESPIRATORY SYSTEM

Page 4: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

A. Upper Respiratory Organs (UROs): (continued)

4. Nasal conchae (within nasal cavity) See Fig 19.2, page 734.a. superior, middle & inferior;b. divide nasal cavity into a series of groove-like passageways;c. lined by mucous membranes;d. increase turbulence of incoming air (to better warm, moisten and

filter).

5. Paranasal sinuses Fig 9.4, page 736a. within 4 skull bones (frontal, ethmoid, sphenoid, maxillary);b. drain into nasal cavity;c. lined with mucous membranes;d. reduce weight of skull;e. resonating chambers for speech.

6. Pharynx (or throat) See Fig 19.2, page 734.a. wall of skeletal muscle lines with mucous membranes;b. passageway for air and food;c. resonant chamber for speech sounds;d. three parts:

o nasopharynx (uppermost);o oropharynx (middle);o laryngopharynx (lowest).

7. Larynx (or voice box) See Fig 19.5 and 19.6, pages 737. a. Anatomy (9 pieces of cartilage)

o thyroid cartilage (Adam's apple);o epiglottis closes off the airway during swallowing;o two pairs of vocal folds (false over true vocal cords);o glottis = triangular slit; opening between two pairs of vocal

cords.o cricoid cartilage = ring of hyaline cartilage attached to

first ring of trachea; site of tracheotomy.o arytenoid cartilages;o corniculate cartilages;o cuneiform cartilages.

Page 5: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

II. ORGANS OF THE RESPIRATORY SYSTEM

A. Upper Respiratory Organs (UROs): (continued)

7. Larynx (or voice box) See Fig 19.7, page 738.

b. Voice production

Mucous membranes form 2 pairs of folds:

o upper ventricular folds (false vocal cords);o lower vocal folds (true vocal cords);o space between them = glottis.

Sound originates from vibration of the vocal folds, but other structures (pharynx, mouth, nasal cavity, and paranasal sinuses) convert that sound into recognizable speech.

B. Lower Respiratory Organs:

1. Trachea (windpipe) See Fig 19.8, page 738.

a. Location = mediastinum; anterior to esophagus; extends from larynx to T5;

b. Structure:

o 16-20 incomplete rings of hyaline cartilage = C-rings; o Rings are completed by trachealis muscle and elastic CT

facing esophagus;See Fig 19.9, page 739.

o lined by mucous membranes (pseudostratified columnar ET);See Fig 19.10, page 739.

o Carina = point where trachea divides into right & left bronchus;

c. Function = support against collapse; continue to warm, moisten & filter air.

Page 6: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

II. ORGANS OF THE RESPIRATORY SYSTEM

B. Lower Respiratory Organs:

2. Bronchial tree within lungs See Fig 19.12, page 740.

a. primary (1o) bronchus leads into each lung and then branches into

b. secondary (2o) bronchi, which branch to each lobe and then branch into

c. tertiary (3o) bronchi which each serve one of 10 lobules (bronchopulmonary segment); that divide into

d. bronchioles which branch several times into tubes called

e. terminal bronchioles.

3. Structure of the Respiratory Tubes

a. Each terminal bronchiole subdivides into microscopic branches called… Fig 19.14, page 741.

o respiratory bronchioles (lined by simple squamous epithelium), which subdivide into several (2-11)…

o alveolar ducts, which terminate into numerous…o alveoli and alveolar sacs (2-3 alveoli that share a common

opening).

With this extensive branching:

o Epithelium changes from ciliated pseudostratified columnar epithelium to non-ciliated simple columnar epithelium in terminal bronchioles;

o Cartilage decreases;

o Smooth muscle increases (innervated by ANS and hormones):

Parasympathetic and histamine constrict bronchioles (i.e. bronchoconstriction);

Sympathetic and epinephrine dilate bronchioles (i.e. bronchodilation).

II. ORGANS OF THE RESPIRATORY SYSTEM

Page 7: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

B. Lower Respiratory Organs:

4. Function of the Respiratory Tubes and Alveoli

a. ALVEOLI (microscopic air sacs)See Fig 19.15, page 741 & Fig 19.33, page 757.

o wall consists of two types of epithelial cells and macrophages; Type I Alveolar cells form a continuous simple

squamous lining of the alveolar wall; Type II Alveolar cells interrupt above lining and

secrete surfactant:1. complex mixture = detergent;2. lowers surface tension and prevents alveolar

collapse. Alveolar Macrophages remove dust particles and

other debris from alveolar spaces.o See scanning electron micrographs of alveoli on page 742.

b. Alveolar-Capillary (Respiratory) Membrane See Fig 19.33, page 757.o Composition:

simple squamous epithelium of alveolus; basement membrane of alveolus; endothelium of the lung capillary; basement membrane of lung cap.

o Structure = thin (0.5 um in thickness).o Function = allows for rapid diffusion of gases (from

[high] to [low]). External Respiration.

*The lungs contain more than 300 million alveoli = SA of 70m2 for gas exchange at one time!

o Blood Supply to Lungs (two fold): pulmonary circuit (deoxygenated blood); Oxygenated blood is delivered through bronchial

arteries (off thoracic aorta).

Page 8: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

II. ORGANS OF THE RESPIRATORY SYSTEM

B. Lower Respiratory Organs:

5. LUNGS See Fig 19.12, page 740.

a. Location = thoracic cavity;b. Description:

o paired, cone-shape organs;o covered by pleural (serous) membranes:

visceral pleura; parietal pleura; pleural cavity filled with serous fluid.

* In contrast to the lubrication function we attributed to serous fluid in the past, the pleural fluid has a very high surface tension that allows the two membranes to act as one.

c. Gross Anatomy: o Each lung is divided into lobes by fissures:

Right lung has 3 lobes; Left lung has 2 lobes.

o Each lobe: receives a secondary bronchus; is divided into lobules (bronchopulmonary segment)

o Each lobule: See Fig 19.14, page 741. is wrapped in elastic CT; contains a lymphatic vessel, an arteriole, a venule,

and a branch from a terminal bronchiole.

Page 9: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

III. PHYSIOLOGY OF RESPIRATION

Recall that the function of the respiratory system is to supply cells with oxygen and remove carbon dioxide. The three basic processes are pulmonary ventilation, external respiration and internal respiration.

A. Breathing Mechanism (Pulmonary Ventilation) Breathing involves two actions, inspiration & expiration.

1. Inspiration (inhalation) = breathing air in.

a. Force necessary is atmospheric pressure: Fig 19.21, page 746.o When the diaphragm is at rest (curved upward):

The air pressure outside the lungs is equal to the airpressure inside the lungs (1 atm or 760 mm Hg).

The thoracic cavity has a given size and volume.

o During inspiration: See Fig 19.23, page 747. The diaphragm muscle pushes downward; The size of thoracic cavity increases; The pressure in the thoracic cavity decreases (758

mm Hg) (Boyles' Law); The air pressure inside the thoracic cavity (lungs) is

less than the atmospheric pressure and therefore air rushes into lungs to equalize the pressure gradient.

o Pleural Membranes aid in inspiration:See Fig 19.20, page 744. Serous fluid between membranes primarily contains

water; The water in the serous fluid has great surface

tension and therefore, Membranes move together:

1. thoracic cage expands;2. parietal pleura expands;3. visceral pleura expands;4. lungs expand.

o Contraction of the external intercostal muscles also aid inspiration.

Page 10: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

III. PHYSIOLOGY OF RESPIRATION

A. Breathing Mechanism (Pulmonary Ventilation)

2. Expiration = breathing out depends on two factors:See Fig 19.25, page 749.

a. the elastic recoil of tissues that were stretched during inspiration (i.e. tissues bouncing back to shape).

b. the inward pull of surface tension due to the alveolar fluid.

* See Summary of inspiration and expiration in Table 19.2, page 747 and Table 19.3, paged 749.

3. Atelectasis (Collapsed Lung)

a. At the end of an expiration, the alveoli tend to recoil inward and collapse on themselves;

b. Surfactant (mixture of phospholipid & proteins) produced by Type II Alveolar cells decreases the surface tension in the lungs;

c. As the alveoli become smaller during expiration, the surfactant overcomes the pressure differential and allows the alveoli to remain inflated.

* Respiratory Distress Syndrome (RDS) in newborns (collapsed lungs) occurs due to the lack of surfactant in the alveoli.

* See purple box on page 747.

Page 11: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

III. PHYSIOLOGY OF RESPIRATION

A. Breathing Mechanism (Pulmonary Ventilation)

4. Respiratory Volumes and Capacities See Fig 19.26, page 749.a. are measured by a spirometer;b. include the following 4 volumes from which 4 capacities may be

calculated:

o Tidal Volume = amount (volume) of air that enters the lungs during normal inspiration and leaves the lungs during normal expiration; approximately 500 ml;

o Inspiratory Reserve Volume (IRV) = the amount of air the can be forcibly inhaled after a normal tidal inspiration; approximately 3000 ml;

o Expiratory Reserve Volume (ERV) = the amount of air that can be forcibly exhaled after a normal tidal expiration; approximately 1100 ml;

o Residual Volume (RV) = amount of air that always remains in lungs; 1200 ml;

o Vital Capacity (VC) = the maximum amount of air that can be exhaled after a maximum inhalation; VC = TV + IRV + ERV = 4600 ml.

o Inspiratory Capacity = total amount of air that can be inspired after a tidal expiration. IC = TV + IRV

o Functional Residual Capacity = amount of air left in the lungs after a tidal expiration. FRC = ERV + RV

o Total Lung Capacity = VC + RV; approximately 6 L.

See Summary Table 19.4, page 750.

5. Alveolar Ventilationa. Minute Ventilation (MV) = TV X RR (respiratory rate)

o Amount of air that enters and exits respiratory system in one minute

o About 6000mLb. Anatomic dead space (ADS) – air space in respiratory

passageways not involved in gas exchange = 150mLc. Alveolar ventilation = the actual amount of air involved in gas

exchangeo AV = (TV – ADS) X RRo AV = (500mL – 150mL) X 12 breaths per minuteo AV = 350mL X 12 b/mo AV = 4200mL

III. PHYSIOLOGY OF RESPIRATION

Page 12: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

A. Breathing Mechanism (Pulmonary Ventilation)

6. Non-Respiratory Air Movements Table 19.5, page 751Modified respiratory movements occur in addition to normal breathing; usually the result of reflexes.

a. Cough = sends blast of air through and clears lower respiratory tract;

b. Sneeze = forcefully expels air through nose & mouth;c. Laugh = a deep breath released in a series of short convulsive

expirations;d. Hiccup = spasmodic contraction of diaphragm;e. Yawn = deep inspiration through open mouth; (ventilates

alveoli).

IV. CONTROL OF BREATHING

A. Normal breathing = rhythmic; involuntary.

B. Nervous Control = Respiratory Center:

1. located in pons & medulla of brain stem;a. See Fig 19.28, page 753.

2. Medullary Rhythmicity area a. composed of dorsal respiratory group which controls the basic

rhythm of breathing; b. ventral respiratory group which controls forceful breathing.

3. Pneumotaxic area = pons:

a. controls rate of breathing.

* See Fig 19.29, page 754 for Summary of Nervous Control of Breathing

Page 13: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

IV. CONTROL OF BREATHING

C. Factors Affecting Breathing See Fig 19.30, page 755.

1. Chemoreceptors in carotid & aortic bodies of some arteries are sensitive to:a. Low levels of oxygen;b. High levels of CO2 ;

o affect chemosensitive areas (central chemoreceptors) of respiratory center and breathing rate and depth increases.

c. Effector Sites:

o diaphragm/intercostalso smooth muscle of terminal bronchioles

d. Hyperventilationo rapid, shallow breathing increases O2 level;o breathing into paper bag rich in CO2 normalizes gas

concentrations

D. Factors that influence breathing: See Table 19.6, page 756.

1. Stretch of Tissues; Inflation Reflex – prevent over inflation2. Low blood oxygen;3. High Blood carbon dioxide;4. Low pH;5. Others: temperature, pain, and irritation of airways.

Page 14: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

V. ALVEOLAR GAS EXCHANGES(External Respiration) See Fig 19.33, page 757, and Fig 19.35, page 758.

A. Definition = the exchange of oxygen and carbon dioxide between the alveoli and lung blood capillaries.

B. The pressure of gas determines the rate at which it will diffuse from region to region (Dalton's Law).

C. Air is a mixture of gases:1. 78% Nitrogen2. 21% Oxygen3. .04% Carbon Dioxide

D. In a mixture of gases, the amount of pressure that each gas creates = partial pressure.

In air: O2 = 21%; PO2 = 104 mm HgCO2 = .04%; PCO2 = 40 mm Hg

E. The partial pressure of a gas is directly related to the concentration of that gas in a mixture.(Dalton’s Law of Partial Pressure)

F. Diffusion of gases through the respiratory membrane proceeds from where a gas is at high pp low pp.

Alveolus

PCO2 = 40 mm Hg

PO2 = 104 mm Hg__________________________________________________________________

PCO2 = 45 mm Hg PO2 = 40 mm Hg

Capillary

Therefore, CO2 will flow from lung capillary alveolus & O2 will flow from alveolus lung capillary.

G. The rate of diffusion of gases also depends on a number of factors, including the following:1. gas exchange surface area;2. diffusion distance;3. breathing rate and depth.

Page 15: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

VI. INTERNAL RESPIRATION

A. Definition = the exchange of oxygen and carbon dioxide between tissue capillaries and tissue cells.

B. In tissue cell: pCO2 = 45; pO2 = 40;In tissue cap: pCO2 = 40; pO2 = 95.

See Figure 19.37, page 761.

C. Therefore, oxygen moves from the tissue cap into the tissue cell and carbon dioxide moves from the tissue cell into the tissue cap.

VII. GAS TRANSPORT (in Blood)

A. Oxygen

1. binds with hemoglobin (Hb) in red blood cells to form oxyhemoglobin;

2. A weak bond is formed so oxygen can be delivered (released into) to tissues when needed.

3. The release of oxygen from hemoglobin depends on many factors:a. high blood [CO2];b. low blood pH (acidity);c. high blood temperature.d. See oxyhemoglobin dissociation curves Figures 19.38, 19.39, page

761o To remember these conditions, think of what happens in a

skeletal muscle during exercise, when oxygen is required.

4. Carbon Monoxide (CO) binds to hemoglobin more efficiently than oxygen.

a. If the hemoglobin (that is suppose to bind with oxygen) is bound to CO, much less Hb is available to bind and transport oxygen to the tissues; Hypoxia results.

Page 16: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

VII. GAS TRANSPORT

B. Carbon Dioxide (CO2)

1. CO2 is transported in 3 forms:

a. dissolved CO2= 7%b. carbaminohemoglobin= 23%c. bicarbonate ions= 70%

2. In tissues, CO2 is produced by cellular respiration.

a. This CO2 combines with H2O to form H2CO3 (Carbonic acid) which then

b. dissociates under the influence of carbonic anhydrase to release

c. H+ and bicarbonate ion (HCO3-):

CO2 + H2O H2CO3 H+ + HCO3-

3. RXN is reversed in lungs & CO2 is expelled during expiration.

VIII. LIFE SPAN CHANGES

A. Exposure to pollutants, smoke, etc., increases the risk of developing respiratory illnesses.

B. Loss of cilia, thickening of mucus, and impaired macrophages increases the risk of infection as one ages.

C. Breathing becomes more difficult as one ages due to:1. calcified cartilage2. skeletal changes3. altered posture4. replacement of bronchiole smooth muscle by fibrous connective tissue.

D. Vital Capacity decreases with age.

IX. Homeostatic Imbalances: Disorders of the Respiratory System

Page 17: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

A. Deviated Septum. See purple box on page 733.B. Effects of Cigarette Smoking. See Clinical Application 19.1, pages 735.C. Epiglottitis. See purple box on page 739.D. Cystic Fibrosis. See purple box on page 743.E. Lung Irritants. See Clinical Application 19.2, page 745.F. Respiratory Distress Syndrome. See purple box on page 747.G. Pneumothorax. See purple box on page 748.H. Respiratory Disorders that Decrease Ventilation. See Clinical Application 19.3,

page 752.I. Disorders Impairing Gas Exchange. See Clinical Application 19.5, page 759.

X. Other Interesting Topics Concerning the Respiratory System

A. Tracheotomy. See page 739 and Fig 19.11, page 739.B. Bronchoscopy. See purple box on page 742.C. Artificial Respiration. See purple box on page 743.D. Exercise and Breathing. See Clinical Application 19.4, page 756.

XI. Clinical Terms Related to the Respiratory System See pages 764 and 766.

XII. Innerconnections of the Respiratory System See page 765.

Chapter 19 Respiratory System

1. Describe the general functions of the respiratory system.a. It functions to remove particles from incoming air and transport it from outside the body into and out of

the lungs.b. It houses the structures where gas exchange takes place between the air and the blood.

2. Distinguish between the upper and lower respiratory tracts.The upper respiratory tract includes the nose, nasal cavity, sinuses, pharynx, larynx, and the

upper portion of the trachea. The lower respiratory tract consists of the lower portion of the trachea, the bronchial tree, and the lungs.

3. Explain how the nose and nasal cavity filter incoming air.The nose contains internal hairs that help prevent the entrance of the relatively large particles

sometimes carried in the air. The nasal cavity is lined with a mucous membrane that has goblet cells that secrete sticky mucus. This mucus traps dust and other small particles entering with the air.

4. Name and describe the locations of the major sinuses, and explain how a sinus headache may occur.The major sinuses are located within, and named from, the maxillary, frontal, ethmoid, and

Page 18: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

sphenoid bones in the skull.Inflamed and swollen mucous membranes due to nasal infections or allergic reactions may block

mucous secretion drainage, causing pressure and a headache.5. Distinguish between the pharynx and the larynx.

The pharynx is located behind the oral cavity and between the nasal cavity and the larynx. It functions as a passageway for food from the oral cavity to the esophagus. It also serves as a passageway for air from the nasal cavity to the larynx. It also serves as a resonance chamber for producing the sounds of speech.

The larynx is an enlargement at the top of the trachea and below the pharynx. It serves as a passageway for air moving in and out of the trachea, functions to prevent foreign objects from entering the trachea, and houses the vocal cords.

6. Name and describe the locations and functions of the cartilages of the larynx.a. Thyroid cartilage—located in the front of the neck. Commonly called the Adam’s apple. Protects the

larynx.b. Cricoid cartilage—located below the thyroid cartilage. Marks the lowermost portion of the larynx.

Protects the larynx.c. Epiglottic cartilage—attached to the upper border of the thyroid cartilage and supports the epiglottis.

Allows for opening and closing of the epiglottis.d. Arytenoid cartilage—located above and on either side of the cricoid cartilage. Serves as an attachment

for muscles that regulate vocal cord tension for speech. Aids in closing the larynx for swallowing.e. Corniculate cartilage—attached to the tips of the arytenoid cartilages. Serves as an attachment for

muscles that regulate vocal cord tension for speech. Aids in closing the larynx for swallowing.f. Cuneiform cartilages—small structures in the mucous membrane between the epiglottic and the

arytenoid cartilages. They stiffen soft tissue in this region.7. Distinguish between the false vocal cords and the true vocal cords.

The false vocal cords are the upper folds of tissue found in the larynx. They are called false because they do not function in the production of sounds.

The true vocal cords are the lower folds of tissue found in the larynx. They contain muscle tissue and elastic fibers that are responsible for vocal sounds.

8. Compare the structure of the trachea with the structure of the branches of the bronchial tree.The trachea is a flexible cylindrical tube. There are about twenty C-shaped pieces of hyaline

cartilage one above the other. The open ends are directed posteriorly and the gaps are filled with smooth muscle and connective tissues. The branches of the bronchial tree are similar but the C-shaped cartilaginous rings are replaced with cartilaginous plates. As the branches become finer and finer, the amount of cartilage decreases and finally disappears in the bronchioles.

9. List the successive branches of the bronchial tree, from the primary bronchi to the alveoli.Primary bronchi divide into secondary (lobar) bronchi. The secondary bronchi divide into

tertiary (segmental) bronchi. The tertiary bronchi divide into intralobular bronchioles. The intralobular bronchioles divide into terminal bronchioles. The terminal bronchioles divide into respiratory bronchioles. The respiratory bronchioles connect with the alveolar ducts. The ducts lead to alveolar sacs. Alveoli are the microscopic air sacs that make up the alveolar sac.

10. Describe how the structure of the respiratory tube changes as the branches become finer.The C-shaped cartilaginous rings are replaced with cartilaginous plates at the point where the

bronchi enter the lung. The amount of cartilage decreases as the tubes become finer and disappear in the bronchioles. As the cartilage decreases, the amount of smooth muscle surrounding the tube increases. The lining of the larger tubes consist of pseudostratified, ciliated columnar epithelium (PCCE) with a lot of goblet cells for mucus secretion. Along

Page 19: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

the way, the number of goblet cells and the height of the epithelial cells decline. Cilia become scarce. In the finer tubes, beginning with the respiratory bronchioles, the lining is cuboidal epithelium. In the alveoli, the lining consists of simple squamous epithelium.

11. Explain the functions of the respiratory tubes.The respiratory tubes filter the incoming air and distribute it to the alveoli in all parts of the lungs.

At the alveolar level, gas exchange can take place.12. Distinguish between the visceral pleura and the parietal pleura.

The visceral pleura is the lining that covers the outside of the lungs. The parietal pleura is the lining that covers the pleural cavity.

13. Name and describe the locations of the lobes of the lungs.The right lung consists of three lobes called the superior, middle, and inferior. It is located in the

right side of the chest. The left lung consists of two lobes called the superior and inferior. It is located on the left side of the chest.

14. Explain how normal inspiration and forced inspiration are accomplished.Normal inspiration is the result of the differing air pressures within the lung and in the

atmospheric pressure outside the lungs. When the pressure inside the lungs decreases, the air flows into the body by way of the atmospheric pressure.

Forced inspiration can be accomplished by further contraction of the diaphragm and the external intercostal muscles. Additional muscles, such as the pectoralis minors and sternocleidomastoids, can also be used to enlarge the thoracic cavity, thereby decreasing the internal pressure to a greater extent.

15. Define surface tension, and explain how it aids breathing mechanism.Surface tension is the great attraction for water molecules to attach to one another. This force is

used in breathing to hold the moist surfaces of the pleural membranes together. It also helps to expand the lung in all directions.

16. Define surfactant, and explain its function.Surfactant is a lipoprotein mixture continually secreted into the alveolar air spaces. It acts to

reduce the surface tension and decreases the tendency of the alveoli to collapse when the lung volume is low.

17. Define compliance.Compliance (distensibility) is the ease with which lungs can be expanded as a result of pressure

changes occurring during breathing.18. Explain how normal expiration and forced expiration are accomplished.

Normal expiration is accomplished by the elastic recoil of the lung tissues and the decrease in the diameter of the alveoli as a result of surface tension.

Forced expiration can be accomplished by contracting the internal intercostal muscles to pull the ribs and sternum downward and inward, increasing the pressure in the lungs. The abdominal wall muscles also can be used to squeeze the abdominal organs inward and increase the abdominal cavity pressure. This translates in forcing the diaphragm even higher against the lungs.

19. Distinguish between the vital capacity and total lung capacity.The vital capacity is the maximum amount of air a person can exhale after taking the deepest

breath possible. Total lung capacity is the vital capacity added to the residual volume. The residual volume is the amount of air that remains in the lungs even after forceful expiration.

20. Distinguish between anatomic, alveolar, and physiologic dead spaces.Anatomic dead space is the volume of air that remains in the trachea, bronchi, and bronchioles, as

these tubes do not participate in gas exchange. Alveolar dead space consists of air sacs in some regions of the lungs that are nonfunctional due to poor blood flow. Physiologic dead space is the combination of anatomic and alveolar dead spaces.

Page 20: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

21. Distinguish between minute respiratory volume and alveolar ventilation rate.The minute respiratory volume is the amount of new atmospheric air that is moved into the

respiratory passages each minute. This is ascertained by multiplying the tidal volume by the breathing rate. The alveolar ventilation rate is the volume of new air that does reach the alveoli and is available for gas exchange. This is calculated by subtracting the physiologic dead space from the tidal volume and then multiplying the result by the breathing rate.

22. Compare the mechanisms of coughing and sneezing, and explain the function of each.A cough involves taking a deep breath, closing the glottis, and forcing air upward from the lungs

against the closure. The glottis is then suddenly opened, and a blast of air is forced upward from the lower respiratory tract. This action clears the lower respiratory passages. A sneeze is usually initiated by a mild irritation in the linings of the nasal cavity, and in response, a blast of air is forced up through the glottis. This time the air is directed into the nasal passages by depressing the uvula, thus closing the opening between the pharynx and the oral cavity. This action clears the upper respiratory passages.

23. Explain the function of yawning.Yawning is thought to aid respiration by providing an occasional deep breath.

24. Describe the location of the respiratory center, and name its major components.The respiratory center is found widely scattered throughout the pons and medulla oblongata in the

brain stem. The two major components are the medullary rhythmicity center and the pneumotaxic area. The medullary rhythmicity center is further subdivided into the dorsal respiratory group and the ventral respiratory group.

25. Describe how the basic rhythm of breathing is controlled.The dorsal respiratory group controls the basic rhythm of breathing. The neurons emit bursts of

impulses that signal the diaphragm and other inspiratory muscles to contract. The neurons remain inactive during exhalation and then begin the bursts of impulses anew.

26. Explain the function of the pneumotaxic area of the respiratory center.The neurons in this area transmit impulses to the dorsal respiratory group continuously and regulate

the duration of the inspiratory bursts originating from the dorsal respiratory group. This is where rate of respiration is controlled.

27. Explain why increasing blood concentrations of carbon dioxide and hydrogen ions have similar effects on the respiratory center.

The similarity of the effects of carbon dioxide and hydrogen ions is a consequence of the fact that carbon dioxide combines with water in the cerebrospinal fluid to form carbonic acid. Carbonic acid then ionizes releasing hydrogen ions and bicarbonate ions. If these concentrations rise, the central chemoreceptors signal the respiratory center and the breathing rate increases.

28. Describe the function of the peripheral chemoreceptors in the carotid and aortic bodies of certain arteries.

The chemoreceptors, known as the peripheral chemoreceptors, function to detect changes in the blood oxygen concentrations. When changes are detected, impulses are transmitted to the respiratory center, and the breathing rate is increased. These are only triggered by an extremely low blood oxygen concentration. This seems to support the statement that oxygen seems to play only a minor role in the control of normal respiration.

29. Describe the inflation reflex.The inflation reflex occurs when the stretch receptors in the visceral pleura, bronchioles, and

alveoli are stimulated as a result of lung tissues being overstretched. Sensory impulses of this reflex travel via the vagus nerves to the pneumotaxic area of the respiratory center. This center causes the duration of the inspiratory movements to shorten. This reflex prevents overinflation of the lungs during forceful breathing.

Page 21: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

30. Discuss the effects of emotions on breathing. Strong emotional upset or sensory stimulation may alter the normal breathing pattern. Because

control of the respiratory muscles is voluntary, we can alter breathing patterns consciously or even stop it altogether for a short time.

31. Define hyperventilation, and explain how it affects the respiratory center.Hyperventilation is the action of breathing readily and deeply. This causes a lowered blood carbon

dioxide concentration. This can result in the ability to hold the breath longer, as it takes a longer time for the carbon dioxide levels to build up to a concentration that will overwhelm the respiratory center.

32. Define respiratory membrane, and explain its function.The respiratory membrane consists of at least two thicknesses of epithelial cells and a layer of

fused basement membranes separating the air in an alveolus from the blood in the capillaries. This membrane is the site at which gas exchange occurs between the blood and the alveolar air.

33. Explain the relationship between the partial pressure of a gas and its rate of diffusion.The partial pressure of a gas within the blood will use diffusion to equalize the pressure between

its blood concentration and its surroundings.34. Summarize the gas exchanges that occur through the respiratory membrane.

The PO2 level in the atmospheric pressure is higher than that in the blood. This allows for diffusion of oxygen into the blood. The PCO2 level is higher in the blood than in the atmosphere so diffusion occurs out of the blood into the atmosphere.

35. Describe how oxygen is transported in blood.Over 98% of the oxygen is transported in the blood on the hemoglobin molecules. The remainder is

dissolved in the blood plasma.36. List three factors that increase release of oxygen from the blood.

a. The blood concentration of carbon dioxide.b. The blood pH.c. The blood temperature.

37. Explain why carbon monoxide is toxic.The toxic effect of carbon monoxide occurs because it combines with the hemoglobin more

effectively than does oxygen. It also does not dissociate readily from hemoglobin, thereby leaving less hemoglobin available for oxygen transport.

38. List three ways that carbon dioxide is transported in blood.a. It can be dissolved in the blood plasma.b. It can combine with hemoglobin and form carbaminohemoglobin.c. It can be transported as part of a bicarbonate ion.

39. Explain the function of carbonic anhydrase.Carbonic anhydrase is an enzyme that catalyzes the reaction between carbon dioxide and water to

form carbonic acid.40. Define chloride shift.

Chloride shift is the movement of chloride ions from the blood plasma into the red blood cells as bicarbonate ions diffuse out of the red blood cells into the plasma.

41. Describe the changes that make it harder to breathe with advancing years.Cartilage between the sternum and ribs calcifies and stiffens.Changes in shape of thoracic cavity into a “barrel chest.”In the bronchioles, fibrous connective tissue replaces some smooth muscle, decreasing contractility.

Page 22: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

Chapter 19: Respiratory System

I. IntroductionA. The respiratory system consists of__________________________________________

_________________________________________________________________________

B. Respiration is called_____________________________________________________

C. Respiration consists of___________________________________________________

_________________________________________________________________________

D. Ventilation is___________________________________________________________

E. External respiration is____________________________________________________

F. Internal respiration is_____________________________________________________

G. Cellular respiration is____________________________________________________

II. Why We BreatheA. Respiration enables cells to________________________________________________

_________________________________________________________________________

B. Without oxygen as a final electron acceptor, much energy_______________________

_________________________________________________________________________

C. A metabolic waste of respiration is__________________________________________

D. Carbon dioxide, when it reacts with water, forms__________________________which

contributes to the pH of______________________________________________________

E. Too much carbon dioxide will lower_________________________________________

F. ________________________________________________________________explain

why we must obtain oxygen and get rid of carbon dioxide.

III. Organs of the Respiratory SystemA. Introduction

1. The upper respiratory tract includes___________________________________

2. The lower respiratory tract includes___________________________________

B. Nose

1. The nose is supported internally by

Page 23: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

2. Nostrils are3. Internal hairs of nostrils prevent

C. Nasal Cavity

1. The nasal cavity is_________________________________________________

2. The nasal septum is________________________________________________

3. The nasal cavity is separated from the cranial cavity by____________________

___________________ and from the oral cavity by________________________

4. Nasal conchae are located________________________________________and

divide the nasal cavity into_____________________________________________

5. Nasal conchae function to___________________________________________

___________________________________________________________________

6. The lining of the upper portion of the nasal cavity contains_________________

___________________________________________________________________

7. Most of the nasal cavity conducts air___________________________________

8. The mucous membrane lining the nasal cavity contains____________________

___________________________________________________________________

9. The functions of the mucous membrane of the nasal cavity are______________

___________________________________________________________________

10. Cilia of the nasal cavity function to___________________________________

___________________________________________________________________

D. Sinuses

1. Sinuses are_______________________________________________________

2. Bones that contain sinuses are________________________________________

___________________________________________________________________

3. The functions of sinuses are__________________________________________

___________________________________________________________________

E. Pharynx

1. The pharynx is located______________________________________________

___________________________________________________________________

Page 24: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

2. Functions of the pharynx are_________________________________________

___________________________________________________________________

F. Larynx

1. The larynx is_____________________________________________________

___________________________________________________________________

2. The functions of the larynx are_______________________________________

___________________________________________________________________

3. The larynx is composed of___________________________________________

___________________________________________________________________

4. The cartilages of the larynx are_______________________________________

5. The thyroid cartilage is located_______________________________________

6. The cricoid cartilage is located_______________________________________

7. The epiglottic cartilage is located_____________________________________

___________________________________________________________________

8. The epiglottis is___________________________________________________

9. The functions of the epiglottis are_____________________________________

___________________________________________________________________

10. The arytenoid cartilages are located__________________________________

11. The corniculate cartilages are located_________________________________

12. The arytenoids and corniculate cartilages are attachment sites for___________

___________________________________________________________________

13. The cuneiform cartilages are located__________________________________

and function to______________________________________________________

14. False vocal cords are located_____________________________________and

are composed of_____________________________________________________

15. The function of the false vocal cords is________________________________

___________________________________________________________________

16. The true vocal cords are located___________________________________and

are composed of_____________________________________________________

17. The functions of the true vocal cords are_______________________________

___________________________________________________________________

18. A higher pitch of the voice is produced by_____________________________

Page 25: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

and a lower pitch is produced by________________________________________

19. The loudness of a vocal sound depends on_____________________________

___________________________________________________________________

20. The glottis is_____________________________________________________

21. The mucous membrane that lines the larynx continues to filter incoming air by

___________________________________________________________________

___________________________________________________________________

G. Trachea

1. The trachea is andis located

2. The trachea splits into______________________________________________

3. The inner wall of the trachea is lined with_______________________________

___________________________________________________________________

4. The mucous membrane of the trachea functions to________________________

___________________________________________________________________

5. The wall of the trachea is composed of_________________________________

___________________________________________________________________

6. The cartilaginous rings of the trachea prevent____________________________

___________________________________________________________________

7. The soft tissues that complete the rings in the back of the trachea allow_______

___________________________________________________________________

8. A blocked trachea causes____________________________________________

9. A tracheostomy is_________________________________________________

H. Bronchial Tree

1. Introduction

a. The bronchial tree consists of__________________________________

_____________________________________________________________

b. Primary bronchi are__________________________________________

c. The carina is________________________________________________

Page 26: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

d. Each bronchus, accompanied by________________________________,

enters its respective lung.

2. Branches of the Bronchial Tree

a. Primary bronchi branch into____________________________________

b. Secondary bronchi branch into_________________________________

c. Tertiary bronchi branch into____________________________________

d. A bronchopulmonary segment is________________________________

e. Intralobular bronchioles branch into_____________________________

f. Terminal bronchioles branch into________________________________

g. Respiratory bronchioles branch into_____________________________

h. Alveolar ducts give rise to_____________________________________

i. Alveolar sacs are_____________________________________________

j. Alveoli are_________________________________________________

3. Structure of the Respiratory Tubes

a. The structure of a bronchus is similar to that of the trachea except_____________________

____________________________________________________________________________

b. Finer branches of the respiratory tree have decreased amounts of______

__________________ and increased amounts of_____________________

c. _________________________fibers are scattered throughout the lungs.

d. Other changes in the tubes of the respiratory tree as they get smaller are

_____________________________________________________________

_____________________________________________________________

4. Functions of the Respiratory Tubes and Alveoli

a. The branches of the bronchial tree function to______________________

_____________________________________________________________

b. The alveoli function to________________________________________

_____________________________________________________________

I. Lungs

1. The lungs are _____________ shaped and located________________________

2. The right and left lungs are separated by________________________________

Page 27: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

______________ and enclosed by______________________________________

3. The hilus of the lung is______________________________________________

4. Visceral pleura is__________________________________________________

5. Parietal pleura is___________________________________________________

6. The pleural cavity is________________________________________________

7. The functions of serous fluid in the pleural cavity are______________________

___________________________________________________________________

8. The lobes of the right lung are________________________________________

9. The lobes of the left lung are_________________________________________

10. Lobules of the lungs are____________________________________________

IV. Breathing MechanismA. Introduction

1. Breathing or ventilation is2. Inspiration is______________________________________________________

3. Expiration is______________________________________________________

B. Inspiration

1. The force that moves air into the lungs is_______________________________

2. If the pressure inside the lungs and alveoli decreases, outside air will_________

___________________________________________________________________

3. The diaphragm is located_________________________________________and

is composed of______________________________________________________

4. The nerves that stimulate the diaphragm are_____________________________

5. When the diaphragm contracts it moves_____________________________and

the thoracic cavity____________________________________________________

6. When the thoracic cavity enlarges, the intra-alveolar pressure_______________

7. When intra-alveolar pressure falls, air is________________________________

8. The action of external intercostals muscles is____________________________

_________________________ which___________________________the size of

the thoracic cavity.

9. When intercostals muscles move the thoracic wall upward and outward, the

________________________ and_________________________________move.

Page 28: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

10. Movement of the parietal and visceral pleura upward and outward expands

___________________________________________________________________

11. Surface tension is_________________________________________________

12. Surfactant is located____________________________________________and

functions to_________________________________________________________

13. If a person needs to take a deeper than normal breath, the diaphragm and

external intercostals muscles____________________________________________

14. Other muscles that can be used to enlarge the thoracic cavity are____________

___________________________________________________________________

15. Compliance is____________________________________________________

16. In a normal lung, compliance___________________________as lung volume

increases because____________________________________________________

___________________________________________________________________

17. Factors that lead to a decrease in lung compliance are____________________

___________________________________________________________________

C. Expiration

1. The forces responsible for normal expiration come from___________________

___________________________________________________________________

2. As the diaphragm and external intercostals muscles relax, the elastic tissues

cause the lungs to____________________________________________________

3. Air is forced out of respiratory passageways because______________________

___________________________________________________________________

4. Muscles that aid in a more forceful exhalation than normal are______________

___________________________________________________________________

D. Respiratory Volumes and Capacities

1. Spirometry is_____________________________________________________

2. A respiratory cycle is_______________________________________________

3. Tidal volume is___________________________________________________

4. Inspiratory reserve volume is_________________________________________

5. Expiratory reserve volume is_________________________________________

6. Residual volume is_________________________________________________

7. Vital capacity is___________________________________________________

Page 29: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

8. Inspiratory capacity is______________________________________________

9. Functional residual capacity is________________________________________

10. Total lung capacity is______________________________________________

11. Anatomic dead space is____________________________________________

12. Alveolar dead space is_____________________________________________

13. Physiologic dead space is___________________________________________

14. A spirometer measures_____________________________________________

15. Respiratory volumes and capacities are used to evaluate__________________

___________________________________________________________________

E. Alveolar Ventilation

1. Minute ventilation is andequals

2. The volume of air that reaches alveoli is calculated by_____________________

___________________________________________________________________

3. Alveolar ventilation rate is________________________________________and

is a major factor affecting______________________________________________

F. Nonrespiratory Air Movements

1. Nonrespiratory air movements are_____________________________________

2. Examples of nonrespiratory air movements are___________________________

___________________________________________________________________

3. Nonrespiratory air movements usually result from________________________

___________________________________________________________________

4. Coughing involves_________________________________________________

___________________________________________________________________

5. The function of a sneeze is___________________________________________

6. Laughing involves_________________________________________________

___________________________________________________________________

7. A hiccup is caused by______________________________________________

___________________________________________________________________

Page 30: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

8. The function of a yawn is____________________________________________

___________________________________________________________________

V. Control of BreathingA. Respiratory Center

1. The respiratory center is2. The functions of the respiratory center are

3. The components for the respiratory center are located

4. The medullary rhythmicity includes

5. The dorsal respiratory group is responsible for

6. The functions of the ventral respiratory center are

7. The functions of the pneumotaxic area are

B. Factors Affecting Breathing

1. Partial pressure of a gas is___________________________________________

___________________________________________________________________

2. High concentrations of carbon dioxide in blood are detected by______________

___________________________________________________________________

3. In response to high carbon dioxide levels, the respiratory center triggers_______

___________________________________in alveolar ventilation, which decreases

___________________________________________________________in blood.

4. High concentrations of hydrogen ions in blood or cerebrospinal fluid are

detected by_________________________________________________________

5. In response to high hydrogen ion levels, the respiratory center triggers________

___________________________________in alveolar ventilation, which decreases

___________________________________________________________in blood.

Page 31: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

6. Low concentrations of oxygen in blood are detected by____________________

___________________________________________________________________

7. When blood levels of oxygen are low, ventilation______________________and

the concentration of oxygen in blood_____________________________________

8. The inflation reflex helps regulate_____________________________________

___________________________________________________________________

9. The inflation reflex occurs when______________________________________

___________________________________________________________________

10. The inflation reflects prevents_______________________________________

___________________________________________________________________

11. Hyperventilation is_____________________________________________and

it lowers____________________________________________________________

VII. Alveolar Gas ExchangesA. Alveoli

1. Alveoli are_______________________________________________________

___________________________________________________________________

2. An alveolus consists of_____________________________________________

___________________________________________________________________

3. Alveolar pores are_________________________________________________

___________________________________________________________________

4. Alveolar macrophages are________________________________________and

function to__________________________________________________________

B. Respiratory Membrane

1. The respiratory membrane is composed of______________________________

___________________________________________________________________

2. The respiratory membrane is the site of_________________________________

___________________________________________________________________

C. Diffusion Through the Respiratory Membrane

1. Molecules diffuse from_____________________________________________

Page 32: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

2. Carbon dioxide diffuses from blood in pulmonary capillaries to alveolar air

because____________________________________________________________

___________________________________________________________________

3. Oxygen diffuses from alveolar air to blood in pulmonary capillaries because

___________________________________________________________________

4. Factors that affect diffusion across the respiratory membrane are____________

___________________________________________________________________

5. Diseases that harm respiratory membranes are___________________________

___________________________________________________________________

6. Breath analysis can detect alcohol in the blood because____________________

___________________________________________________________________

VIII. Gas Transport

A. Introduction

1. The blood transports oxygen and carbon dioxide between__________________

___________________________________________________________________

2. As oxygen and carbon dioxide enter blood, they__________________________

___________________________________________________________________

B. Oxygen Transport

1. Almost all the oxygen carried in blood is bound to________________________

2. A small amount of oxygen is carried in blood dissolved____________________

3. Hemoglobin consists of_____________________________________________

4. Each heme group contains an________________________________________

5. Oxyhemoglobin is_________________________________________________

6. Deoxyhemoglobin is_______________________________________________

7. Factors that promote the release of oxygen from hemoglobin are_____________

___________________________________________________________________

C. Carbon Dioxide Transport

1. Blood flowing through capillaries gains carbon dioxide because_____________

___________________________________________________________________

2. Carbon dioxide is transported to lungs in one of the following three forms:____

___________________________________________________________________

3. Carbaminohemoglobin is____________________________________________

Page 33: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

___________________________________________________________________

4. Hemoglobin can carry oxygen and carbon dioxide at the same time because

___________________________________________________________________

5. The most important carbon dioxide transport mechanism involves___________

___________________________________________________________________

6. Carbon dioxide forms__________________________when it reacts with water.

7. Carbonic anhydrase is___________________________________________and

is located___________________________________________________________

8. Carbonic acid dissociates into________________________________________

9. The chloride shift is_____________________________________________and

functions to_________________________________________________________

10. When blood reaches the pulmonary capillaries,_________________________

_____________________ recombine to form_____________________________

11. In the pulmonary capillaries, carbonic acid becomes______________________

___________________________________________________________________

12. In the lungs, carbon dioxide diffuses__________________________________

___________________________________________________________________

IX. Life-Span Changes

A. Changes in the respiratory system over a lifetime reflect_________________________

_________________________________________________________________________

B. People who have been exposed to foul air are more likely to develop_______________

_________________________________________________________________________

C. The factors that change the ability of the respiratory system to clear pathogens from

The lungs are______________________________________________________________

_________________________________________________________________________

D. Factors that contribute to an overall increase in effort required to breathe are________

_________________________________________________________________________

E. The microscopic changes that occur in the lungs are____________________________

_________________________________________________________________________

Page 34: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

Chapter 19: Respiratory System

I. IntroductionA. The respiratory system consists of passages that filter incoming air and transport it to

the body, into the lungs, and to the many microscopic air sacs where gases are

exchanged.

B. Respiration is the entire process o exchanging gases between the atmosphere and

body cells.

C. Respiration consists of ventilation, external respiration, transport of gases be the

blood between lungs and body cells, internal respiration, and cellular respiration.

D. Ventilation is the movement of air in and out of the lungs.

E. External respiration is the exchange of gases between the air in the lungs and the

blood

F. Internal respiration is the exchange of gases between the blood and the body cells.

G. Cellular respiration is oxygen utilization and production of carbon dioxide in body

cells.

II. Why We BreatheA. Respiration enables cells to harness the energy held in chemical bonds of nutrient

molecules.

B. Without oxygen as a final electron acceptor, much energy remains locked in nutrients.

C. A metabolic waste of respiration is carbon dioxide.

D. Carbon dioxide, when it reacts with water, forms carbonic acid which contributes to

the pH of blood.

E. Too much carbon dioxide will lower blood pH.

F. Cellular respiration and control of blood pH explain why we must obtain oxygen and

get rid of carbon dioxide.

III. Organs of the Respiratory SystemA. Introduction

1. The upper respiratory tract includes nose, nasal cavity, sinuses, and pharynx.

Page 35: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

2. The lower respiratory tract includes larynx, trachea, bronchial tree, and lungs.

B. Nose

1. The nose is supported internally by muscle, bone, and cartilage.2. Nostrils are openings through which air can enter and leave the nasal

cavity.3. Internal hairs of nostrils prevent entry of large particles carried in air.

C. Nasal Cavity

1. The nasal cavity is a hollow space behind the nose.

2. The nasal septum is a structure that divides the nasal cavity into left and right

halves.

3. The nasal cavity is separated from the cranial cavity by the cribiform plate of

the ethmoid bone and from the oral cavity by by the hard palate.

4. Nasal conchae are located on the lateral walls of the nasal cavity and divide the

nasal cavity into superior, inferior, and middle meatuses.

5. Nasal conchae function to support the mucous membranes that line the nasal

cavity and to increase the surface area of the nasal cavity.

6. The lining of the upper portion of the nasal cavity contains olfactory receptors.

7. Most of the nasal cavity conducts air to and from the nasopharynx.

8. The mucous membrane lining the nasal cavity contains pseudostratified

ciliated epithelium that is rich in mucous-secreting goblet cells.

9. The functions of the mucous membrane of the nasal cavity are to warm the air,

to moisten the air, and to trap small particles entering the nasal cavity.

10. Cilia of the nasal cavity function to move mucous and any entrapped particles

toward the pharynx.

D. Sinuses

1. Sinuses are air-filled spaces located within skull bones.

2. Bones that contain sinuses are maxillae, frontal, ethmoid, and sphenoid.

3. The functions of sinuses are to reduce the weight of the skull and to serve as

resonant chambers that affect the quality of the voice.

E. Pharynx

1. The pharynx is located posterior to the oral cavity and between the nasal cavity

and the larynx.

2. Functions of the pharynx are to move food into the esophagus, to move air into

Page 36: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

the larynx, and to aid in the production of sound.

F. Larynx

1. The larynx is an enlargement in the airway superior to the trachea and inferior

to the pharynx.

2. The functions of the larynx are to move air into the trachea, prevent foreign

objects from entering the trachea, and to house vocal cords.

3. The larynx is composed of a framework of muscles and cartilages bound by

elastic tissue.

4. The cartilages of the larynx are thyroid, cricoid, and epiglottic.

5. The thyroid cartilage is located just superior to the thyroid gland.

6. The cricoid cartilage is located inferior to the thyroid cartilage.

7. The epiglottic cartilage is located attached to the upper border of the thyroid

cartilage.

8. The epiglottis is flaplike structure supported by the epiglottic cartilage.

9. The functions of the epiglottis are to prevent foods and liquids from entering

the air passages and to allow air to pass into the trachea.

10. The arytenoid cartilages are located superior to and on either side of the

cricoid cartilage.

11. The corniculate cartilages are located attached to the tips of the arytenoid

cartilages.

12. The arytenoids and corniculate cartilages are attachments sites for muscles

that help regulate tension on the vocal cords during speech and aid in closing the

larynx during swallowing.

13. The cuneiform cartilages are located between the epiglottic and arytenoid

cartilages and function to stiffen soft tissue in this region.

14. False vocal cords are located inside the larynx and are composed of muscle

tissue and connective tissue with a covering of mucous membrane.

15. The function of the false vocal cords is to help close the larynx during

swallowing.

16. The true vocal cords are located inferior to the false vocal cords and are

composed of elastic fibers.

17. The functions of the true vocal cords are to produce sounds of speech.

Page 37: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

18. A higher pitch of the voice is produced by increasing tension on true vocal

cords and a lower pitch is produced by decreasing the tension on the cords.

19. The loudness of a vocal sound depends on upon the force of air passing over

the vocal cords.

20. The glottis is the opening between vocal cords.

21. The mucous membrane that lines the larynx continues to filter incoming air

by entrapping particles and moving them toward the pharynx by ciliary action.

G. Trachea

1. The trachea is a flexible cylindrical tube and is located anterior to the esophagus in the thoracic cavity.

2. The trachea splits into right and left bronchi.

3. The inner wall of the trachea is lined with a ciliated mucous membrane that

contains many goblet cells.

4. The mucous membrane of the trachea functions to filter incoming air and to

move entrapped particles upward into the pharynx where the mucous can be

swallowed.

5. The wall of the trachea is composed of C shaped pieces of hyaline cartilage,

smooth muscle, and connective tissues.

6. The cartilaginous rings of the trachea prevent the trachea from collapsing and

blocking the airway.

7. The soft tissues that complete the rings in the back of the trachea allow the

esophagus to expand as food moves through it on the way to the stomach.

8. A blocked trachea causes asphyxiation.

9. A tracheostomy is the production of a temporary hole in the trachea.

H. Bronchial Tree

1. Introduction

a. The bronchial tree consists of branched airways leading from the

trachea to the microscopic air sacs in the lungs.

b. Primary bronchi are the first branches of the trachea.

c. The carina is ridge of cartilage that separates the primary bronchi.

d. Each bronchus, accompanied by blood vessels and nerves, enters its

respective lung.

Page 38: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

2. Branches of the Bronchial Tree

a. Primary bronchi branch into secondary bronchi.

b. Secondary bronchi branch into tertiary bronchi.

c. Tertiary bronchi branch into intralobular bronchioles.

d. A bronchopulmonary segment is a portion of a lung supported by a

tertiary segment.

e. Intralobular bronchioles branch into terminal bronchioles.

f. Terminal bronchioles branch into respiratory bronchioles.

g. Respiratory bronchioles branch into alveolar ducts.

h. Alveolar ducts give rise to alveolar sacs.

i. Alveolar sacs are thin-walled, closely packed outpouchings of the

alveolar ducts.

j. Alveoli are thin-walled, microscopic air sacs that open to an alveolar

sac.

3. Structure of the Respiratory Tubes

a. The structure of a bronchus is similar to that of the trachea except the C shaped

cartilaginous rings are replaced with cartilaginous plates where the bronchus enters the lung.

b. Finer branches of the respiratory tree have decreased amounts of

cartilage and increased amounts of smooth muscle.

c. Elastic fibers are scattered throughout the lungs.

d. Other changes in the tubes of the respiratory tree as they get smaller are

the changes in cells types that line the airways.

4. Functions of the Respiratory Tubes and Alveoli

a. The branches of the bronchial tree function to filter incoming air and

distribute it to the alveoli in all parts of the lungs.

b. The alveoli function to provide a large surface area of thin epithelial

cells through which gas exchanges can occur.

I. Lungs

1. The lungs are cone shaped and located the thoracic cavity.

2. The right and left lungs are separated by the heart and the mediastinum and

enclosed by the diaphragm and thoracic cage.

Page 39: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

3. The hilus of the lung is an indention on the medial surface of a lung.

4. Visceral pleura are serous membranes attached to the surfaces of the lungs.

5. Parietal pleura is a serous membrane that lines the thoracic cavity.

6. The pleural cavity is the potential space between the visceral pleura and

parietal pleura.

7. The functions of serous fluid in the pleural cavity are to lubricate serous

membranes and reduce friction during lung movements.

8. The lobes of the right lung are superior, middle, and inferior.

9. The lobes of the left lung are superior and inferior.

10. Lobules of the lungs are divisions of lung lobes.

IV. Breathing MechanismA. Introduction

1. Breathing or ventilation is the movement of air from outside the body into the bronchial tree and alveoli, followed by a reversal of this air movement.

2. Inspiration is inhalation.

3. Expiration is exhalation.

B. Inspiration

1. The force that moves air into the lungs is atmospheric pressure.

2. If the pressure inside the lungs and alveoli decreases, outside air will flow into

the airways.

3. The diaphragm is located just inferior to the lungs and is composed of skeletal

muscle.

4. The nerves that stimulate the diaphragm are the phrenic nerves.

5. When the diaphragm contracts it moves inferiorly and the thoracic cavity

enlarges.

6. When the thoracic cavity enlarges, the intra-alveolar pressure decreases.

7. When intra-alveolar pressure falls, air is moved into the airways.

8. The action of external intercostals muscles is to raise the ribs and elevates the

sternum, which increases the size of the thoracic cavity.

9. When intercostals muscles move the thoracic wall upward and outward, the

Page 40: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

parietal pleura and visceral pleura move.

10. Movement of the parietal and visceral pleura upward and outward expands

the lungs in all directions.

11. Surface tension is the attraction certain molecule to each other.

12. Surfactant is located in alveolar spaces and functions to reduce the alveoli’s

tendency to collapse.

13. If a person needs to take a deeper than normal breath, the diaphragm and

external intercostals muscles may contract to a greater extent.

14. Other muscles that can be used to enlarge the thoracic cavity are the

pectoralis minors and sternocleidomastoids.

15. Compliance is the ease at which the lungs can expand as a result of pressure

changes occurring during breathing.

16. In a normal lung, compliance decreases as lung volume increases because an

inflated lung is more difficult to expand that a lung at rest.

17. Factors that lead to a decrease in lung compliance are conditions that obstruct

air passages, destroy lung tissue, or impede lung expansion in other ways.

C. Expiration

1. The forces responsible for normal expiration come from elactic recoil of lung

tissues and from surface tension.

2. As the diaphragm and external intercostals muscles relax, the elastic tissues

cause the lungs to recoil.

3. Air is forced out of respiratory passageways because intra-alveolar pressure

rises above atmospheric pressure.

4. Muscles that aid in a more forceful exhalation than normal are internal

intercostal muscles and abdominal wall muscles.

D. Respiratory Volumes and Capacities

1. Spirometry is the measure of air volumes.

2. A respiratory cycle is one inspiration plus the following expiration.

3. Tidal volume is the amount of air that enters of leaves during a respiratory

cycle.

4. Inspiratory reserve volume is the additional quantity of air after the resting

tidal volume that can enter the lungs.

Page 41: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

5. Expiratory reserve volume is the additional quantity of air that can exit the

lungs after a resting tidal volume.

6. Residual volume is the amount of air that remains in the lungs after a forceful

expiration.

7. Vital capacity is maximum amount of air that can be exhaled after taking the

deepest breath possible.

8. Inspiratory capacity is maximum volume of air that can be inhaled following

exhalation of tidal volume.

9. Functional residual capacity is volume of air that remains in the lungs

following exhalation of tidal volume.

10. Total lung capacity is total volume of air that the lungs can hold.

11. Anatomic dead space is the space in airways.

12. Alveolar dead space is space in alveoli that do not carry out gas exchange due

to poor blood flow.

13. Physiologic dead space is anatomical dead space plus alveolar dead space.

14. A spirometer measures respiratory air volumes.

15. Respiratory volumes and capacities are used to evaluate the course of

respiratory illnesses.

E. Alveolar Ventilation

1. Minute ventilation is the amount of new atmospheric air that is moved into the respiratory passages each minute and equals the tidal volume multiplied by the breathing rate.

2. The volume of air that reaches alveoli is calculated by subtracting the

physiologic dead space from the tidal volume.

3. Alveolar ventilation rate is the volume of air that reaches alveoli multiplied by

breathing rate and is a major factor affecting the concentrations of oxygen and

carbon dioxide in alveoli.

F. Nonrespiratory Air Movements

1. Nonrespiratory air movements are air movements that occur in addition to

breathing.

2. Examples of nonrespiratory air movements are coughing, sneezing, crying and

laughing.

3. Nonrespiratory air movements usually result from reflexes.

Page 42: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

4. Coughing involves take a deep breath, closing the glottis, and forcing air

upward from the lungs against the closure. Then the glottis is suddenly opened,

and a blast of air is forced upward from the lower respiratory tract.

5. The function of a sneeze is to clear the upper respiratory passages.

6. Laughing involves taking a deep breath and releasing it in a series of short

expirations.

7. A hiccup is caused by sudden inspiration due to a spasmodic contraction of the

diaphragm while the glottis is closed.

8. The function of a yawn is to aid respiration by providing an occasional deep

breath.

V. Control of BreathingA. Respiratory Center

1. The respiratory center is composed of groups of neurons in the brainstem which controls breathing.

2. The functions of the respiratory center are to cause inhalation and exhalation, and to adjust the rate and depth of breathing.

3. The components for the respiratory center are located widely scattered throughout the pons and medulla oblongata.

4. The medullary rhythmicity area includes two groups of neurons that extend throughout the length of the medulla oblongata.

5. The dorsal respiratory group is responsible for the basic rhythm of breathing.

6. The functions of the ventral respiratory center are to generate impulses for more forceful breathing movements.

7. The functions of the pneumotaxic area are to regulate the duration of inspiratory bursts originating from the dorsal group. This area basically controls the rate of breathing.

B. Factors Affecting Breathing

1. Partial pressure of a gas is amount of pressure each gas contributes.

2. High concentrations of carbon dioxide in blood are detected by central

chemoreceptors.

3. In response to high carbon dioxide levels, the respiratory center triggers an

increase in alveolar ventilation, which decreases carbon dioxide levels and

hydrogen ions levels in blood.

4. High concentrations of hydrogen ions in blood or cerebrospinal fluid are

Page 43: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

detected by central chemoreceptors.

5. In response to high hydrogen ion levels, the respiratory center triggers an

increase in alveolar ventilation, which decreases hydrogen ions in blood.

6. Low concentrations of oxygen in blood are detected by peripheral

chemoreceptors.

7. When blood levels of oxygen are low, ventilation increases and the

concentration of oxygen in blood increases.

8. The inflation reflex helps regulate the depth of breathing.

9. The inflation reflex occurs when stretch receptors in the visceral pleura,

bronchioles, and alveoli are stimulated as lung tissues are stretched.

10. The inflation reflex prevents overinflation of the lungs.

11. Hyperventilation is rapid and deep breathing and it lowers the blood

concentration of carbon dioxide.

VII. Alveolar Gas ExchangesA. Alveoli

1. Alveoli are microscopic air sacs clustered at the distal ends of the finest

respiratory tubes.

2. An alveolus consists of a tiny space surrounded by a thin wall that separates it

from adjacent alveoli.

3. Alveolar pores are tiny openings in the walls of some alveoli.

4. Alveolar macrophages are phagocytic cells and function to destroy airborne

agents that reach alveoli.

B. Respiratory Membrane

1. The respiratory membrane is composed of two layers of epithelial cells and

two basement membranes.

2. The respiratory membrane is the site of gas exchange between alveolar air and

the blood.

C. Diffusion Through the Respiratory Membrane

1. Molecules diffuse from regions where they are in higher concentration toward

regions where they are in lower concentration.

Page 44: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

2. Carbon dioxide diffuses from blood in pulmonary capillaries to alveolar air

because the partial pressure of carbon dioxide is higher in the blood of pulmonary

capillaries than in alveolar air.

3. Oxygen diffuses from alveolar air to blood in pulmonary capillaries because

the partial pressure of oxygen is higher in alveolar air than in the blood of

pulmonary capillaries.

4. Factors that affect diffusion across the respiratory membrane are surface area,

distance, solubility of gases, partial pressure gradients, and diseases.

5. Diseases that harm respiratory membranes are pneumonia and emphysema.

6. Breath analysis can detect alcohol in the blood because the respiratory

membrane is so thin that alcohol can diffuse into alveolar air and be exhaled.

VIII. Gas Transport

A. Introduction

1. The blood transports oxygen and carbon dioxide between the lungs and the

body cells.

2. As oxygen and carbon dioxide enter blood, they dissolve in plasma or combine

chemically with other atoms or molecules.

B. Oxygen Transport

1. Almost all the oxygen carried in blood is bound to hemoglobin.

2. A small amount of oxygen is carried in blood dissolved in plasma.

3. Hemoglobin consists of two types of components called heme and globin.

4. Each heme group contains an atom of iron.

5. Oxyhemoglobin is the combination of oxygen and hemoglobin.

6. Deoxyhemoglobin is hemoglobin that is not carrying oxygen.

7. Factors that promote the release of oxygen from hemoglobin are a decrease in

the partial pressure of oxygen, increasing blood concentrations of carbon dioxide,

acidity, and increased temperatures.

C. Carbon Dioxide Transport

1. Blood flowing through capillaries gain carbon dioxide because the tissues have

a high partial pressure of carbon dioxide.

2. Carbon dioxide is transported to lungs in one of the following three forms:

bound to hemoglobin, dissolved in plasma, or as bicarbonate ions.

Page 45: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an

3. Carbaminohemoglobin is the combination of carbon dioxide and hemoglobin.

4. Hemoglobin can carry oxygen and carbon dioxide at the same time because

they bind at different sites on hemoglobin.

5. The most important carbon dioxide transport mechanism involves the

formation of bicarbonate ions.

6. Carbon dioxide forms carbonic acid when it reacts with water.

7. Carbonic anhydrase is an enzyme that speeds up the reaction between carbon

dioxide and water and is located inside red blood cells.

8. Carbonic acid dissociates into hydrogen ions and bicarbonate ions.

9. The chloride shift is the exchange of chloride ions and bicarbonate ions across

the red blood cell membrane and functions to maintain the ionic balance between

the red blood cells and the plasma.

10. When blood reaches the pulmonary capillaries, hydrogen ions and

bicarbonate ions recombine to form carbonic acid.

11. In the pulmonary capillaries, carbonic acid becomes carbon dioxide and water.

12. In the lungs, carbon dioxide diffuses out of the blood until equilibrium is

established between the partial pressure of carbon dioxide of the blood and that of

the alveolar air.

IX. Life-Span Changes

A. Changes in the respiratory system over a lifetime reflect both the accumulation of

environmental influences and the effects of aging in other organ systems.

B. People who have been exposed to foul air are more likely to develop chronic

bronchitis, emphysema, or lung cancer.

C. The factors the change the ability of the respiratory system to clear pathogens from

the lungs are a decreases in activity of cilia, thickening of mucus, and the slowing of

swallowing, gagging and coughing reflexes.

D. Factors that contribute to an overall increase in effort required to breathe are

calcification of cartilage between the sternum and ribs and changes in skeletal structure

of the thoracic cavity.

E. The microscopic changes that occur in the lungs are expansion of alveolar walls, an

increase in the amount of collagen, and a decreased amount of elastin.

Page 46: sophiasapiens.chez.comsophiasapiens.chez.com/medecine/Human-Anatomy-and... · Web view18.Discuss the microscopic anatomy of the lung. 19.Track a breath of air from the nose to an