!VASA ct-/05)',1

247
1111111111111111111111111111111111111111111111111111111111111111 3 1176 00161 4974 EARLY DOMESTIC DISSEMINATION Beca'i:1se of its significant early commercial p6tential. this informat"ion. which has been developed unei'er a U.S. Gov- ernment p;Bgram. is being disseminated within the United States in advance of general publication. This information may be used p{the recipient with the ex- press limitation that'rhnot.<be published. Release of this information to other parties by the recipient shall be made subject to th(se limifations. . // "'- Foreign relea;\vmay be made only"wilh prior NASA ap- proval and appropriate export legend shall -,," ;J\ be markedbn any reproduction of this info;ma ion in whole or in RzfI. / _ for general release ENERGY EFFICIENT ENGINE HIGH-PRESSURE TURBINE UNCOOLED RIG TECHNOLOGY REPORT prepared by W. B. Gardner, Program Manager Energy Efficient Engine Component Development and Integration Program UNITED TECHNOLOGIES CORPORATION Pratt & Whitney Aircraft Group Commercial Products Division !VASA ct-/05)',1 NASA CR-16514Q PWA-5594-92 NASA-CR-165149 19820024507 .NOV 1 O,9aO Because of their possible significant early connnercial value, these data dev- eloped under a U.S. Government contract are being disseminated within the U.S. in advance of general pUblication. These data may be duplicated and used by the recipient with the expressed limitations that the data will not be pub- lished nor will they be released to foreign parties without permission of Pratt & Whitney Aircraft Group and appropriate export licenses. Release of these data to other domestic parties by the recipient shall only be made sub- ject to the limitations contained in NASA Contract NAS3-20646. These limita- tions shall be considered void after two (2) years after date of such data. This legend shall be marked on any reproduction of these data in whole or in part. Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA-Lewis Research Center Contract NAS3-20646 111111111111111111111111111111111111111111111 NF02430

Transcript of !VASA ct-/05)',1

Page 1: !VASA ct-/05)',1

1111111111111111111111111111111111111111111111111111111111111111

3 1176 00161 4974

F~ EARLY DOMESTIC DISSEMINATION ~'. ~

Beca'i:1se of its significant early commercial p6tential. this informat"ion. which has been developed unei'er a U.S. Gov­ernment p;Bgram. is being disseminated within the United

~ ~,

States in advance of general publication. This information may be duplicate~a,rd used p{the recipient with the ex­press limitation that'rhnot.<be published. Release of this information to other dom~;~ parties by the recipient shall be made subject to th(se limifations.

. // "'-Foreign relea;\vmay be made only"wilh prior NASA ap-proval and appropriate export Iicenses~'This legend shall -,," ;J\ be markedbn any reproduction of this info;ma ion in whole or in RzfI. ",~

/ _ ~7"lew for general release

ENERGY EFFICIENT ENGINE HIGH-PRESSURE TURBINE UNCOOLED

RIG TECHNOLOGY REPORT

prepared by

W. B. Gardner, Program Manager Energy Efficient Engine Component

Development and Integration Program

UNITED TECHNOLOGIES CORPORATION Pratt & Whitney Aircraft Group

Commercial Products Division

!VASA ct-/05)',1 NASA CR-16514Q ~ PWA-5594-92

NASA-CR-165149 19820024507

.NOV 1 O,9aO

Because of their possible significant early connnercial value, these data dev­eloped under a U.S. Government contract are being disseminated within the U.S. in advance of general pUblication. These data may be duplicated and used by the recipient with the expressed limitations that the data will not be pub­lished nor will they be released to foreign parties without permission of Pratt & Whitney Aircraft Group and appropriate export licenses. Release of these data to other domestic parties by the recipient shall only be made sub­ject to the limitations contained in NASA Contract NAS3-20646. These limita­tions shall be considered void after two (2) years after date of such data. This legend shall be marked on any reproduction of these data in whole or in part.

Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-Lewis Research Center Contract NAS3-20646

111111111111111111111111111111111111111111111 NF02430

Page 2: !VASA ct-/05)',1

BEST

AVAILABLE \

COpy

Page 3: !VASA ct-/05)',1

1 Report No 2 Government Accession No

NASA-CR-165149 4 Title and Subtitle

Energy Efficient Engine - High-Pressure Turbine Uncooled Rig Technology Report

7 Author(s)

W.B.Gardner, et al

3 RecIpient's Catalog No

5 Report Date

October 1979 6 Performing Organization Code

8 Performing Organization Report No

PWA-5594 -92

1---------------------------1 10 Work Untt No 9 Performing Organization Name and Address

United Technol ogi es Corporati on Pratt & Whitney A ircraft Group - CPO

11 Contract or Grant No

NAS3-20646 E as t H artf ord, C onnec ti cut 06108 13 T f R P Co t--------...;.--------------------I ype 0 eport and ertod vered

12 SponsOrlnll Ajlency Name and Address National Aeronautics and Space Administration

Technology Report

Lewi s Research Center 14 Sponsoring Agency Code

21000 Brookpark Road, Rocky River, OH 44135 15 Supplementary Notes

NASA Project Manager, Mr. N. T. Saunders, NASA-Lewi s Research Center

16 Abstract

Results obtained from testing five perfonnance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 per­cent. This efficiency level was attained by increasing the rim speed and annu­lus area (AN2), and by increasing the turbine reaction level. The increase in AN2 resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.

17 Key Words (Suggested by Author(s))

U nco 01 ed Rig Reacti on Level Annul ar Cascade

Annulus area Stress Testing Rotating Rig

18 Distribution Statement

19 SecUrity Classlf (of this report) 20 Securtty Classlf (of this page) 21 No of Pages

242

• For sale by the NatIOnal Technical Information Service, Springfield, Virginia 22161

NASA-C-168 (Rev 10-75)

22 Price·

Page 4: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 5: !VASA ct-/05)',1

FOREOORD

The Energy Efficient Engine Component Development and Integration Program is being conducted under parallel National Aeronautics and Space Administration contracts to Pratt & Whitney Aircraft Group and General Electric Company. The overall project is under the direction of Mr. Neal T. Saunders. Mr. John W. Schaefer is the NASA Assistant Project Manager for the Pratt & Whitney Aircraft effort under NASA Contract NAS3-20646, and Mr. Michael Vanco is the NASA Project Engineer responsible for the portion of the project described in this report. Mr. William B. Gardner is manager of the Energy Efficient Engine project at Pratt & Whitney Aircraft Group.

iii

Page 6: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 7: !VASA ct-/05)',1

TABLE OF CONTENTS

Section

1.0 SUMMARY

2.0 INTRODUCTION

3.0 ANALYSIS AND DESIGN

4.0

3.1 Aerodynamic Design 3.2 Mechanical Design

3.2.1 Design of Rig Subsystems 3.2.2 Design of Test Rig

FABRICATION AND ASSEMBLY 4.1 Fabrication

4.1.1 Blades 4.1. 2 Vanes 4.1.3 Disks and Sideplates 4.1. 4 Cases 4.1.5 Shaft and Main Bearings

4.2 Assembly 4.2.1 Vanes 4.2.2 Rotor 4.2.3 Cases 4.2.4 Shaft and Main Bearings 4.2.5 Stand Instrumentation

5.0 TESTING 5.1 General Description

5.1.1 Test Facility 5.1.2 Test Rigs

5.2 Instrumentation 5.2.1 Annular Cascade Instrumentation 5.2.2 Rotating Rig Instrumentation

5.3 Test Procedures 5.3.1 Annular Cascade Test Conditions 5.3.2 Rotating Rig Test Conditions 5.3.3 Data Acquisition 5.3.4 Data Recording 5.3.5 Data Reduction 5.3.6 Shakedown Testing 5.3.7 Rotating Rig Stress Testing

6.0 RESULTS 6.1 Annular Cascades

6.1.1 Performance Discussion 6.1.2 Analysis Discussion

6.2 Rotating Rig 6.2.1 Performance Discussion 6.2.2 Blade Analysis Discussion

6.3 Summary

v

1

2

5 5 21 21 23

29 29 29 29 30 30 30 30 30 31 33 33 33

35 35 35 35 35 35 38 39 39 41 42 42 42 42 42

49 49 49 56 59 59 68 73

Page 8: !VASA ct-/05)',1

TABLE OF CONTENTS (Cont' d)

Section Page

7.0 CONCLUSIONS 77

APPENDIX A Airfoil Coordinates 79 B Build 1 Cascade Data 97 C Build 2 Cascade Data 117 D Build 3 Cascade Data 145 E Build 1 Rotating Rig Data 171 F Build 2 Rotating Rig Data 199

MAILING LIST 229 ~

vi

Page 9: !VASA ct-/05)',1

Figure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LIST OF ILLUSTRATIONS

Interaction of Uncooled Rig Supporting Technology Program with the High-pressure Turbine Component Effort

Reaction Level Versus Turbine Efficiency

Energy Efficient Engine Uncooled Rig Flowpath

Velocity Triangles for Low Reaction Design

Velocity Triangles for High Reaction Design

Energy Efficient Engine Uncooled Rig Build 1 Vane Root

Energy Efficient Engine Uncooled Rig Build 1 Vane Mean

Energy Efficient Engine Uncooled Rig Build 1 Vane Tip

Energy Efficient Engine Uncoo1ed Rig Build 1 Blade Root

Energy Efficient Engine Uncoo1ed Rig Build 1 Blade Mean

Energy Efficient Engine Uncoo1ed Rig Build 1 Blade Tip

Energy Efficient Engine Uncooled Rig Build 2 Vane Root

Energy Efficient Engine Uncoo1ed Rig Build 2 Vane Mean

Energy Efficient Engine Uncoo1ed Rig Build 2 Vane Tip

Energy Efficient Engine Uncoo1ed Rig Build 2 Blade Root

Energy Efficient Engine Uncooled Rig Build 2 Blade Mean

Energy Efficient Engine Uncoo1ed Rig Build 2 Blade Mean

vii

3

5

8

9

10

11

12

13

13

14

15

15

16

17

17

18

19

Page 10: !VASA ct-/05)',1

Figure

18

LIST OF ILLUSTRATIONS (Cont'd)

Energy Efficient Engine Uncooled Rig Build 3 Vane Root

19 Energy Efficient Engine Uncooled Rig Build 3 Vane Mean

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Energy Efficient Engine Uncooled Rig Build 3 Vane Tip

Uncooled Rig Resonance Diagram (Build 1 Low Reaction Blade)

Uncooled Rig Resonance Diagram (Build 2 High Reaction Blade)

Energy Efficient Engine High Pressure Turbine Uncooled Rig

Circumferentially Traversing Exit Instrumentation Ring

Uncooled Rig Modifications Required for Annular Cascade Testing

Uncooled Rig Critical Speed Characteristics

Energy Efficient Engine High-Pressure Turbine Uncooled Rig Vane Assembly

Energy Efficient Engine High-Pressure Turbine Uncooled Rig Rotor Assembly

Annular Cascade Rig

Rotating Rig

Energy Efficient Engine High-Pressure Turbine Uncooled Rig primary Performance Instrumentation

Typical Run For Rotating Rig Testing

Rig Wire Seal and Damper Locations

Strain Gage Location

Strain Gage Location

viii

19

20

21

22

23

24

25

26

27

31

32

36

37

38

41

43

44

46

Page 11: !VASA ct-/05)',1

LIST OF ILLUSTRATIONS (Cont'd)

Figure

36 Holographs From Blade Bench Tests

37 Stress Ratios From Blade Bench Tests

38 Rig Blade Resonance Diagram

39 Annular Cascade Pressure Loss vs Mach Number

40 Annular Cascade Pressure Loss vs Mach Number

41 Typical Vane Loss Contours at Design For Build 1

42 Typical Vane Loss Contours at Design For Build 2

43 Typical Vane Loss Contours at Design For Build 3

44 Vane Loss vs Percent Span

45 Vane Exit Angle Distribution

46 Deviation vs Mach Number

47 Flow Parameter vs Mach Number

48 Vane Surface Statics (50 percent span)

49 AN2 Increase

50 Efficiency vs Pressure Ratio

51 Outer Diameter Kielhead Efficiency Change with Clearance

52 Reaction vs Pressure Ratio

53 Efficiency Contours, Build 1

54 Efficiency Contours, Build 2

55 Efficiency vs Percent Span

56 Blade Exit Angle

57 Mass Averaged Blade Total Loss vs Pressure Ratio

58 Mach Triangles

ix

45

47

48

50

51

52

53

54

55

57

57

58

60

61

62

63

64

65

66

67

67

69

70

Page 12: !VASA ct-/05)',1

Figure

59

60

61

62

63

LIST OF ILLUSTRATIONS (Cont'd)

Total Blade Deviation (air angle at the exit plane minus the gage plane air angle)

Blade Surface Statics

Effect of Leakage Flow on Efficiency

Uncooled Rig Efficiency vs Pressure Ratio

Uncooled Rig Efficiency vs Pressure Ratio

x

71

72

73

74

75

Page 13: !VASA ct-/05)',1

Table

1

2

3

4

5

6

7

8

9

10

11

12

LIST OF TABLES

EFFICIENCY GOALS OF THE UN(J)OLED RIG PROGRAM

MAJOR TEST CONFIGURATIONS OF THE HIGH-PRESSURE TURBINE UN(J)OLED RIG

PRELIMINARY TURBINE DESIGN PARAMETERS

AERODYNAMIC PROPERl'IES

VANE THROAT AREA

BLADE THROAT AREA

ANNULAR CASCADE TEST INSTRUMENTATION

ROTATING RIG TEST INSTRUMENTATION

TYPICAL RUN FOR ANNULAR CASCADE TESTING

FLOW COMPARISCN

DESIGN POINT PERFORMANCE

COMPARISCN OF DESIGN AND EXPERIMENTAL MACH NUMBERS

xi

4

4

6

7

31

32

39

40

41

59

61

68

Page 14: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 15: !VASA ct-/05)',1

A annulus area, in2 bx axial chord, in cx axial flow velocity, fps

LIST OF SYMBOLS

g force-mass conversion constant, 32.174 f/s2 h specific enthalpy, Btu/lb

J work equivalent,

M Mach number

ft-lbs Btu

N mechanical speed, RPM P pressure, in of mercury T temperature, OF or ~ U tangential wheel speed, fps W mass flow, lbs/sec x axial distance, in. y tangential distance, in. a absolute angle, degree P relative angle, degrees

Subscripts

a air AA area-averaged m metal MA mass-averaged S static condition T total state

xiii

Page 16: !VASA ct-/05)',1

1.0 SUMMARY

To achieve the goal efficiency for the Energy Efficient Engine high-pressure turbine component, a single stage turbine was designed to produce a high ratio of wheel speed to specific work, velocity ratio, and a low ratio of through flow to wheel speed (Cx/U). This aerodynamic concept was limited structurally by allowable blade stress, typified by parameter AN2 (product of annulus area and wheel speed squared). This design reduced turbine Mach numbers at the expense of airfoil turning, and was predicted to increase high-pressure tur­bine performance by 1.1 percent. The actual performance improvement, 1.15 percent, is in excellent agreement with the predicted value.

In addition to high velocity ratio and low Cx/U feature, design trade studies indicated that a 0.5 percent increase in turbine efficiency could be attained by increasing the turbine reaction level from a balanced Mach number design to a design with a subsonic vane. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent, 0.8 percent higher than the lower reaction rig.

The results obtained by canting the vane 13 degrees in the direction of rota­tion showned that the canted vane configuration had the lowest mass averaged total loss of all of the airfoils tested.

These results have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent and have verified the feasibility of the Energy Efficient Engine high-pressure turbine aerodynamic design concepts.

Page 17: !VASA ct-/05)',1

2.0 INTRODUCTION

The objective of the NASA Energy Efficient Engine Development and Integration program is to develop, evaluate, and demonstrate the technology for achieving lower installed fuel consumption and lower operating costs in future commer­cial turbofan engines. NASA has set minimum goals of 12 percent reduction in thrust specific fuel consumption (TSFC), 5 percent reduction in direct opera­ting cost (DOC), and 50 percent reduction in performance degradation for the Energy Efficient Engine (flight engine) relative to the JT9D-7A reference en­gine. In addition, environmental goals on emissions (meet the proposed EPA 1981 regulation) and noise (meet ~R 36-1978 standards) have been established.

The Pratt & Whitney Aircraft Energy Efficient Engine high-pressure turbine is a single-stage design. A single-stage design has certain advantages when com­pared to its multi-stage counterpart. Single stage turbines require no inter­stage seals, require fewer cooled airfoils, and contain fewer leakage paths. The inherent design simplicity of the single stage reduces engine initial cost, maintenance material cost, and overall engine weight.

The purpose of the Energy Efficient Engine high-pressure turbine uncooled rig program was to (1) establish the uncooled aerodynamic efficiency base for the high-pressure turbine component and (2) verify the aerodynamic design assump­tions for this component. The program was conducted to ensure timely interac­tion with the high-pressure turbine component effort, as summarized in Figure 1. The efficiency goals are presented in Table 1, and the major test configur­ations are summarized in Table 2.

Five performance builds (three vane cascades and two rotating rigs) of the un­cooled turbine rig were tested to establish the Energy Efficient Engine tur­bine efficiency base and to verify the advanced aerodynamic design concepts of the program. The first rotating rig (Build 1) and its companion cascade had a design reaction level of 35 percent and examined the effects of high AN2 (low Cx/U and high velocity ratio) on turbine efficiency. The second rotating rig (Build 2) and its companion cascade examined the effects of stage reaction on stage efficiency. This build of the rotating rig was also used to evaluate blade vibratory stress levels. The tests with the third annular cascade rig investigated the effects of a l3-degree vane tangential cant on cascade losses.

Thiq report describes the design of the two transonic single stage turbines and the test results obtained in the annular cascade and rotating rig test programs.

2

Page 18: !VASA ct-/05)',1

HIGH-PRESSURE TURBINE COMPONENT DESIGN AND FABR ICATION

UNCOOLED RIG PROGRAM

1.1 2

V

9

*0 Program critical decisIon point

1978

I 3 r 4

PDR 1 2

V 1]-

3 ,-

1979 1980

1 I 2 I 3 I 4 1 I :1 1 3 I *0

-9 ,.

l' 4 I

f-l 9

2

3

Component prellm1nary des1gn effort completed, prel1m1nary des1gn review (PDR) held.

Componpnt detailed design pffort inItIated on non-aerodynamic act1vlties.

Build 1 rotating stage tests completed. Results establish feasiblilty of advanced aerodynamic concepts

'I

4 BU11d 2 rotat1ng stagp t~sts completed Results enable decision to be made on b~st vane and blade aerodynam1c conf1gurat10n. Component deta11ed des1gn effort cont1nues, incorporating aerodynam1c activltles

Figure 1 Interaction of Uncooled Rig Supporting Technology Program with the High-Pressure Turbine Component Effort - The un- cooled rig program was conducted to ensure timely interac- tion with the high-pressure turbine component effort.

3

Page 19: !VASA ct-/05)',1

AN2 (in.-rpm) 2

TABLE 1

EFFICIENCY GOALS OF THE UNCOOLED RIG PROGRAM

Build 1 Build 2 Rotating Stage Rotating Stage

49 x 109 49 x 109

Rim Speed, Redline (ft/sec)

Reaction (percent)

Uncooled Efficiency (percent)

Vane Cascades

Build 1

Build 2

Build 3

Rotating Stages

Build I

Build 2

4

1730 1730

35 43

90.3 90.8

TABLE 2

MAJOR TEST CONFIGURATIONS OF THE HIGH-PRESSURE TURBINE UN<XlOLED RIG

35-Percent Reaction, "Zero" Vane Cant Angle

43-Percent Reaction, "Zero" Vane Cant Angle

43-Percent Reaction, 13-Degree Vane Cant Angle

35-Percent Reaction (vane and blade), "Zero" Vane Cant Angle

43-Percent Reaction (vane and blade), "Zero" Vane Cant Angle

Blade Vibratory Stress Level Testing of the 43-Percent Reaction (vane and blade), "Zero" Vane Cant Angle

Page 20: !VASA ct-/05)',1

3.0 ANALYSIS AND DESIGN

3.1 Aerodynamic Design

Turbine design studies indicated that to meet the goal efficiency, advanced aerodynamic concepts which achieve a high ratio of wheel speed to specific work (velocity ratio) and a low ratio of through-flow velocity to wheel speed (Cx/U) are required. These aerodynamic design concepts are limited by structural considerations typified by the parameter AN2 (product of annulus area to wheel speed squared). By designing the Energy Efficient Engine high-pressure turbine to an AN2 level of 49 x 109, an increase of 1.1 percent in turbine efficiency was predicted relative to state-of-the-art single-stage turbines. Design trade studies also indicated that turbine efficiency could be improved by increasing the reaction level from a balanced Mach number design to a design featuring a subsonic vane. However, as turbine stage reaction increases, rearward thrust across the turbine is increased and, therefore, bearing thrust balance can become a limiting factor. In the Energy Efficient Engine design, this limit was reached at about 43 percent reaction (see Figure 2).

PREDICTED DELTA

EFFICIENCY

STAGE REACTION

Figure 2 Reaction Level Versus Turbine Efficiency - Maximum turbine reaction was limited by the engine rotor thrust balance.

As a result of these studies, two high AN2 turbines with reaction levels of 35 and 43 percent were designed for uncooled rig performance evaluation. The turbine parameters for these two designs are listed in Table 3.

In addition to the two full stage designs, a third set of vanes was designed, incorporating a 13-degree cant angle in the direction of rotation. This design imparts radial body loads to the gas flow and, according to published litera­ture, has been shown to reduce the inner diameter endwall losses. The aerody­namics for the three vane designs are summarized in Table 4.

5

Page 21: !VASA ct-/05)',1

TABLE 3 PRELIMINARY TURBINE DESIGN PARAMETERS

No. of Stages Pressure Ratio Mean Velocity Ratio, U

-~v;:;:;2:='gJ;=~'77h-

Work Factor, (Jgf h)

AN2 (SLTO), (cm-rps)2«in-rpm)2) AN2(Redline),(cm-rps)2«in-rpm)2) Rim Speed (SLTO), m/sec (ft/sec) Rim Speed (Redline), m/sec (ft/sec) Inlet Speed Parameter, N/ v'T Inlet Flow Parameter, W .J'T/p Specific Work, ~ hiT Blade Tip Clearance, cm (in.) Mean Reaction Level Mean Blade Turning Goal Cooled Turbine Efficiency, %

Build 1

1 4.0 0.56

1. 59 8. 24xl07 (46xl09) 8. 79xl07 (49xl09)

511. 0 (1677) 527.0 (1730)

252.1 17.69

0.0729 0.051 (0.020)

0.35 1250

88.2

Build 2

1 4.0 0.56

1.59 8. 24xl07 (46xl09) 8. 79xlO 7 (49xl09)

511.0 (1677) 527.0 (1730)

252.1 17.69

0.0729 0.051 (0.020)

0.43 117.80

88.2

Specific procedures followed in the turbine aerodynamic design included a meanline analysis, streamline analysis, airfoil design, airfoil pressure dis­tribution, and boundary layer analysis. Meanline analysis was performed to determine flowpath areas. primary considerations during the streamline analy­sis were inlet and exit Mach triangles and gas turning angles. This analysis generated radial profiles using both two- and three-dimensional analytical procedures to produce suitable airfoil pressure distributions. This analysis also determined the radial distribution of aerodynamic properties. Boundary layer calculations were then used to verify the low loss characteristics of the airfoils. Through this approach, a comprehensive turbine design study was conducted, and criteria were established for the design of both the vane and blade.

The vane airfoil sections were designed so that the flow was accelerated past the gage point (throat) with low, smooth backend diffusion. Durability con­straints set the minimum thickness for the airfoil. The uncovered turning and exit wedge angle were optimized to minimize the two-dimensional loss. Based on previous single-stage turbine design correlations, an existing exit angle deviation system and a radial work distribution were applied to the design of the Energy Efficient Engine. The blade airfoil sections were designed to the same pressure distribution criteria as the vane. The blade uncovered turning and exit wedge angle were further optimized to reduce trailing edge shock losses. The blade leading edge diameter was set by durability considerations. The uncooled rig was scaled to match the engine Mach number triangles and vane exit Reynolds number. This aerodynamic scaling, coupled with the constraints of using existing uncooled rig hardware, resulted in a scale factor of 0.7325 between rig and engine turbines.

6

Page 22: !VASA ct-/05)',1

Vane

a Exit (degrees) MExl.t Gap/Chord

Blade Mean

Reaction Turning (degrees) Load Coefficient ~xit Cx/u Gap/Chord

Blade Root

Reaction Turning (degrees) Load Coefficient Gap/Chord

Blade Tip

Reaction Turning (degrees) Load Coefficient Gap/Chord

TABLE 4 AERODYNAMIC PROPERTIES

Build 1

10.4 1.01 0.90

0.35 125

0.92 1.15

0.328 0.90

0.29 133.3

0.78 0.88

0.42 111.3

1.13 0.92

Build 2

10.4 0.93 0.90

0.43 117.8

0.95 1. 23

0.320 0.96

0.36 133.9

0.81 1.01

0.49 87.5 1.16 0.91

Build 3

10.4 0.93 0.90

Reaction = Static Pressure drop across the rotor ratioed to the static pressure drop across the stage.

pS2 - psI. 5

pS2 - pSI

Load Coefficient = 2 :x Sin 2 a 2 [~~; ctn a 1 + ctn a 2]

7

Page 23: !VASA ct-/05)',1

The flight engine flowpath was scaled to rig size (see Figure 3). Mach numbers and velocity triangles were made to correspond to those required in actual operating conditions (see Figures 4 and 5). The uncooled flowpath dimensions were reduced to maintain design reactions without cooling air.

10.211 R

~LED FROM ENGINE UPI SCALE FACTOR = 0.7325

10.174 R SCALED ENGINE FLOWPAT~

__ ~L-__ ~ ________ ~--;

24 AIRFOILS p4 AIRFOIL

11.9 6R -.L ~

;"'I\':='\ ~\ ~\=r\=T\=\t!-.:;~;:::t~--fr-

0.01465 12.028 R 12.342 R

Figure 3 Uncooled Rig Flowpath

An iterative procedure uS1ng a computer interactive airfoil design system was used to design the external contours of the airfoils, and to establish the desired airfoil static pressure distribution. Figures 6 through 20 show the resultant airfoil shapes and surface pressure distributions of the three vane cascades and the two blade designs. Figures 6 through B show the Build 1 vane; 9 through 11, the Build 1 blade; 12 through 14, the Build 2 vane; 15 through 17, the Build 2 blade; and IB through 20, the Build 3 vane. A set of coordina­tes for these airfoils is presented in Appendix A.

8

Page 24: !VASA ct-/05)',1

VANE EXIT ROOT

BLADE EXIT

MEAN

~o MREL=~ 0298

Mil = 0 7582 Mil = 0 8441

!3 = 37 95° Cl = 10 43° Cl = 55 19°

TIP

Mil = 09124

Figure 4 Build 1 Velocity Triangles

9

Page 25: !VASA ct-/05)',1

VANE EXIT

ROOT

03513

MIL = 06986

(3 = 31 5540 a = 104320

MEAN

0233

MIL = 0 7482

(3 = 46 1180 a = 10 4320

MREL=

01608

Figure 5

10

TIP

MIL = 07992

Build 2 Velocity Triangles

BLADE EXIT

MIL = 0 7809

(3=16175 0 a=41746°

= 0 4893

MIL = 0 8486

(3 = 17 0750 a = 47 7270

Page 26: !VASA ct-/05)',1

0 0 10

09

04 1 0 l- 08 c.. 07 ...... en

08 20 c.. 06

05 Ci)

1 2 30 04 w ::I: 0 02 04 06 08 1 0 U Z 16 :2: x/bx - ~ >

20 1 50

24 RADIUS 2594 em (10211 In )

# FOILS 24

28 AXIAL CHORD 324 em (1 275 In )

LE DIA 1 02 em (0 400 In )

80 TE DIA 010 em (0040 In ) 0 1 0 20 30 UNCOVERED TURNING 8°

(CM) EXIT WEDGE ANGLE 4° FOIL INLET!3 90°

I I FOIL EXIT!3 11 68° 0 04 08 12 Max Mn s s 1 257

X (INCHES)

Figure 6 Build 1 Vane Root Section

11

Page 27: !VASA ct-/05)',1

0 0

04 1 0

08 20

Ci) 1 2 30 w J: :2: 40 U 1 6 2 ~

MEAN SECTION

> 20 50

24 60

28 70

32 80

o 10 20 30

(CM)

I I

o 04 08 12

X (INCHES)

VANE STACKING

Figure 7 Mean section Build 1 Vane

12

MEAN SECTION CHARACTERISTICS

10

09

I-08

c.. 07 ...... en

c.. 06

05

04 00 02

PRESSURE DISTRIBUTION

RADIUS # FOILS AXIAL CHORD LE DIA TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET 13 FOIL EXIT 13

Max Mn s s

04 -

06 08 10

x/bx

2818 em (11 094 In )

24 324 em (1 275 In )

1 02 em (0 400 In )

010 em (0040 In )

Page 28: !VASA ct-/05)',1

o

04 10

08 20

1 2

en w 1 6 :I: :2: u 2 ~

20

>-24

28 70

32 80

36 90 0 10 20 30

(CM)

I I I I 0 04 08 1 2

x (INCHES)

10

I-08

c.. ...... en c.. 06

04

RADIUS tI FOILS AXIAL CHORD LE DIA TE DIA

0 02

UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET iJ FOIL EXIT iJ Max Mn 55

04 06 08

x/bx

31 35 em (12 342 In )

24 324 em (1 275 In )

1 02 em (1 275 In )

010 em (0040 In )

10° 4° 90° 869°

1 136

Figure 8 Build 1 Vane Tip Section

14

12

1 0 en w

08 :I: U 2 06 ->-

04

02

0

30

20

1 0

09

I-~ 07 en c..

05

00 02 04 06 08 10

x/bx

RADIUS tI FOILS AXIAL CHORD LE DIA

2584em (10174 In)

54

O'-__ ......... __ ........II--_~ TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET iJ

3015 em (1 187 In )

o 30 em (0 117 In )

010 em (0040 In )

10° o

o

1 0 20 30

(CM)

0204 06 08 10 12

X (INCHES)

2° 2957°

FOIL EXIT iJ 1712°

Max Mn 55 1 359

Figure 9 Build 1 Blade Root Section

13

Page 29: !VASA ct-/05)',1

en w J: U Z

>

Figure 10

14

16 40

1 4

1 2 30

1 0

::2E 08 20 ~ MEAN SECTION

06

04 10

02

o o~ ______ ~ ____ ~~~~~ o 10 20 30

o

(CM)

04 08

X (INCHES)

BLADE STACKING

Build 1 Blade Mean Section

12 l­e. -rfl

RADIUS # FOILS

MEAN SECTION CHARACTERISTICS

05

PRESSURE DISTRIBUTION

28 17 em (11 093 In )

54 AXIAL CHORD 258 em (1 015 In )

o 30 em (0 117 In )

010 em (0040 In )

LE DIA TE DIA UNCOVERED TURNING 8° EXIT WEDGE ANGEL 2° FOILINLET/3 3203° FOILEXIT/3 1802°

Max Mn s s 1 461

Page 30: !VASA ct-/05)',1

1 6 40

14

12 30

-en 1 0 w ::t: U 08 Z

>- 06

04 10

02

0

10 20 (CM)

I I " I

o 02 04 06 08 10

X (INCHES)

10rr-----.....

I- 08 c.. -~ 06

04

o 02 04 06 08 10

x/bx

RADIUS II FOILS AXIAL CHORD LE DIA TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET i3 FOIL EXIT i3 Max Mn 55

3051 em (1201210 ) 54 2 14 em (084210 ) 030 em (0 117 10 ) 010 em (004010) 4° 2° 4474° 1892° 1442

Figure 11 Build 1 Blade Tip Section

o o

04 10

08

en ~ 12 U Z

16 >-

20

30

40

20 50

24 60

28 70

o 10 20 30

(CM)

o 04 08 12

X (INCHES)

Figure 12 Build 2 Vane Root Section

1 0

I- 08 c.. -en c.. 06

04 L..._-'-_...J.._---' __ .L-_...I

00 02

RADIUS II FOILS AXIAL CHORD LE DIA TE DIA

04 06

x/bx

UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET i3 FOIL EXIT i3 Max Mn 55

08 10

2594em (1021110) 24 324 em (1 275 In ) 1 02 em (0400 In ) 010 em (004010 ) 8° 4° 90° 1043°

1 131

15

Page 31: !VASA ct-/05)',1

0 0

04 10

08 20

Cii' 1 2 30 w :z:: -(.) 1 6 ::: 40 :2 ~

> 20 50

24 60

28

32 80

VANE STACKING

0

I 0

10 20 30

(CM)

I 04 08

x (INCHES)

TIP MEAN ROOT

1 2

Figure 13 Build 2 Vane Mean section

16

MEAN SECTION CHARACTERISTICS

10

09

I- 08 11. en 07 11.

06

05

04L----L----~--~~---L--~ o 02

PRESSURE DISTRIBUTION

RADIUS tI FOILS AXIAL CHORD LE DIA TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET iJ FOIL EXIT iJ Max Mn s s

04 06 08 1 0

x/ox

28 18 em (11 094 In )

24 324 em (1 275 In )

1 02 em (0 400 In )

010 em (0040 In )

10° 4° 90° 1043° 1074

Page 32: !VASA ct-/05)',1

0

04

08

1 2 en w J: 0 1 6 2

>- 20

24

28

32

Figure 14

14

1 2

1 0

en w 08 J: 0 2

06 >-

02

o

Figure 15

:2 ~

o 10 20 30

(CM)

o 04 08 12

X (INCHES)

Build 2 Vane Tip Section

o~ ______ ~ ______ ~ o 1 0

(CM)

20

10

09 I- 08 c.. -en 07 c..

06 05

0

RADIUS # FOILS AXIAL CHORD LE DIA TE DIA

02

UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET (J

FOIL EXIT (J Max Mn 5 5

04 06 08 1 0

x/bx

31 35 em (12342 In )

24 324 em (1 275 In )

1 02 em (0 400 In )

o 10 em (0040 In )

12° 4° 90° 1043° 0979

1 0 """_----_

04

03~--~--~--~~~--~ o 02 04 06 08 10

RADIUS # FOILS

x/bx

AXIAL CHORD LE DIA TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET(J FOIL EXIT (J

Max Mn 55

2584 em (10 174 In )

54 258 em (1 018 In )

o 30 em (0 117 In )

010 em (0040 In )

8° 2° 2498° 1618°

1484

o 02 04 06 08 10

X (INCHES)

Build 2 Blade Root Section

17

Page 33: !VASA ct-/05)',1

1 4

1 2

10

en w 08 :r: U Z

> 06 ~ ~

04

02

o

Figure 16

18

30

20

0

0

I 0

10

(CM)

I 02 04 06

X (INCHES)

BLADE STACKING

MEAN SECTION

20

I 08

ROOT

MEAN

TIP

Build 2 Blade Mean Section

MEAN SECTION CHARACTERISTICS

l­e:. rf' 06

04

02L-__ -L __ ~~ __ ~~~ __ ~ o 02 04 06 08 10

x/bx

PRESSURE DISTRIBUTION

RADIUS # FOILS AXIAL CHORD LE DIA TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET {3

FOIL EXIT {3

Max Mn s s

2818em (11 093 In )

54 2 22 em (0 875 In )

o 30 em (0 117 In )

o 10 em (0040 In )

6° 2° 4015° 1708°

1577

Page 34: !VASA ct-/05)',1

1 6

14

1 2

10 en w ::I: U Z

08

>- 061

04

02

0

Figure 17

0

04

08

en w 1 2 ::I: U Z - 16 >-

20

24

28

Figure 18

401

:;!: ~

10

0

0 10 20

(CM)

o 02 04 06 08

X (INCHES)

Build 2 Blade Tip Section

0

10

20

30

I-CL.

06 -en CL.

05

04

03 02

00 02

RADIUS # FOILS AXIAL CHORD LE DIA

TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET {J

FOIL EXIT {J

Max Mn s s

10

09

08

k" 07 -,fl 06

05

04 06 08 10

x/bx

3051 em (12012 In )

54 1 86 em (0 732 In )

o 30 em (0 117 In )

o 10 em (0040 In )

4° 2° 6953° 17 98°

1568

:;!: 04L-__ ~ __ ~ __ -L __ ~ __ ~

~ 40

50

60

70

0 1 0 20 30

X (INCHES)

I I 0 04 08 1 2

(CM)

o 02 04 06 08 10

RADIUS # FOILS AXIAL CHORD LE DIA TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET {J FOIL EXIT (J

Max Mn s s

1 6

x/bx

2594 em (10211 In )

24 324 em (1 275 In )

1 02 em (0 400 In )

o 10em (0040 In)

8° 4° 90° 1043°

1257

Build 3 Vane Root Section

19

Page 35: !VASA ct-/05)',1

0 0

04 1 0

08 20

en 1 2 30 w ::I: 2 ~ 16 ~

40

> 20 50

24 60

28 70

32 80

0 10 20 30

(CM)

I I 0 04 08 12

x (INCHES)

TIP

MEAN

."--ROOT

VANE STACKING

MEAN SECTION CHARACTERISTICS

10

I- 08 c.. -c..VJ

06

I I

04 '--_....J.. __ ..I...-_--I __ ...J..._---' o 02

PRESSURE DISTRIBUTION

RADIUS # FOILS AXIAL CHORD LE DIA TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET i3 FOIL EXIT i3 Max Mn s s

04 06 08 10 x/bx

2818 em (11 094 In )

24 3 24 em (1 275 In )

1 02 em (0 400 In )

o 10em (0040 In)

10° 4° 90° 1043°

1 196

Figure 19 Build 3 Vane Mean Section

20

Page 36: !VASA ct-/05)',1

I-08 c..

"-en c..

12

en w

1 6 ::I: U :2E z ~

> 20

24

28

32 80

o 10 20 30 (CM)

o 04 08 12

X (INCHES)

Figure 20 Build 3 Vane Tip Section

3.2 Mechanical Design

3.2.1 Design of Rig Subsystems

Disk

10

09

08

07

06 05

0 02 04 06

x/bx

RADIUS "# FOILS AXIAL CHORD LE DIA TE DIA UNCOVERED TURNING EXIT WEDGE ANGLE FOIL INLET J3 FOIL EXIT(j Max Mn s s

08 10

3135 em (12 342 In )

24 3 24 em (1 275 In )

1 02 em (0 400 In )

010 em (0040 In )

12° 4° 90° 1043° 1 136

The rotor disk was conservatively designed for a nominal 30-percent burst margin above maximum anticipated operating speed. Computer analysis ensured that the stress levels in this disk were consistent with structural design criteria.

Blade and Disk Attachments

Blade and disk attachments were designed to keep stresses well within design margins. Potential vibratory stress problems were avoided by "tuning" the disk design to provide a frequency margin at 24E vane passing exitation for both the low and high reaction blades at maximum speed and to keep the occurrence of low order resonances well above maximum speed (see Figures 21 and 22). Fixed inlet rakes were aerodynamically configured and located sufficiently upstream to minimize any potential exitation from this source. Blade and

21

Page 37: !VASA ct-/05)',1

disk-coupled vibration characteristics were analyzed by a conventional beam analysis and a more rigorous NASTRAN finite element vibration analysis. Blade dampers controlled the levels of buffeting and resonant response.

Cl Z Cl 10

w t:) w w W 0.. Ui 0.. en w

Cl en 40E w Cl X

...J w t:) w ~ Cl 0.. :::;; BLADE ALONE a: en 36E

8 DAMPER DEFLECTION RATIO = 9 9%

32E

N 28E

J: 6 26E ~

>" 24E

U 22E Z 20E w :::> 18E 0 4 w 16E a: 14E LL

12E

10E 2

OL-______ ~ ______ ~~ ____ ~ ____ ~~------~------~------~~----~. 6

Figure 21

7 8 9

ROTOR SPEED, KRPM

Uncooled Rig Resonance Diagram (Build 1 Low Reaction Blade) -Results of an initial beam deck analysis with disk rim and blade root changes made to avoid first or second mode resonances with the number of nozzle vanes (24) in the rig operating range.

Bearing Arrangements

Bearing arrangements were established on the basis of rotor stiffness, weight, and speed. The optimized bearing arrangement ensured that the operating range was free of vibrational modes that could otherwise cause premature hardware failure.

22

Page 38: !VASA ct-/05)',1

10

8

N ~ ~ 6

> U Z w ~ a w ~ ~

6

Figure 22

0 z 0 w ~ w w ~ w ~ w ~ ~ 0 ~ w 0 w ~ ~ w X 0 ~ ~

BLADE ALONE ~ ~ ~ 40E

36E

32E

28E 26E

BLADE ALONE ~E

22E 20E 18E 16E 14E 12E

10E

ROTOR SPEED. KRPM

Uncooled Rig Resonance Diagram (Build 2 High Reaction Blade) -This diagram is based on the same calculation procedure and requirements as the Build 1 design (see Figure 21).

3.2.2 Design of Test Rig

The test rig, illustrated in Figure 23, was used both for the vane annular cascade testlng and full-stage (rotating rig) testing. A unique feature of the rig was the circumferentially traversing instrumentation ring, which permitted pressure, temperature, and six angle measurements both radially and circumfer­entially in the flowpath. The total range of circumferential travel for a given sensor mounted on the ring was 30 degrees (corresponding to two vane pitches). This flowpath scanning capability is illustrated in Figure 24.

23

Page 39: !VASA ct-/05)',1

Figure 23

BLADE OUTER AIR SEAL

CIRCUMFERENTIALLY TRAVERSING INSTRUMENTATION RING

~ NEW HARDWARE

Energy Efficient Engine High-Pressure Turbine Uncooled Rig - A unlque feature of the rig is the circumferentially traversing instrumentation ring which permits pressure, temperature, and air angle measurements both radially and circumferentially in the flowpath. '

The test rig was adapted to annular cascade testing as shown in Figure 25. Filler pieces were installed in the rig flowpath to cover the steps in the flowpath that originally contributed to endwall losses. In addition, the rotor and blade outer air seal assemblies were removed, and the inner and outer diameter exit flowpath ducts and instrumentation ring were moved forward to the exit instrumentation plane.

24

Page 40: !VASA ct-/05)',1

Figure 24

--

0.300

(LOOKING UPSTREAM)

Circumferentially Traversing Exit Instrumentation Ring - The total range of circumferential travel for a given sensor mounted on the ring is 30 degrees (corresponding to two vane pitches).

Structural design criteria and mechanical constraints consistent with experi­mental hardware were used to establish the design configuration of the test rig. Computer programs helped determine airfoil stresses and deflections caused by centrifugal force, gas bending loads, and foil-to-platform transi­tions. Computer analysis also established the proper running clearance in order to simUlate the tight clearances required by the full scale component.

25

Page 41: !VASA ct-/05)',1

Figure 25

)=:'

FLOW DIRECTION

IDWAll

)

FlllER PIECES IN STEP lOCATIONS

ODWAll

Uncoo1ed Rig Modifications Required for Annular Cascade Testing - For vane annular cascade testing, the rotor and blade outer air seal assembles were removed and the inner and outer diameter exit flow path ducts and instrumentation ring moved forward to the exit instrumentation plane of the vane annular cascade.

A rotor dynamics analytical model of the rig was constructed and the critical speed analysis was run to predict system resonances and mode shapes. The analysis of rig critical speed characteristics (Figure 26) demonstrated that the inherent stiff bearing margin of 100 percent was sufficient to compensate for any potential high strain energy modes that might occur in the rig running range. Trim balance capability was incorporated into the rig to provide addi­tional margin. In addition, the rig speed control system was set to allow a 2000 rpm margin of safety between maximum overspeed and burst speed in case of a water brake failure.

In order to reduce cost, the rig utilized many parts from an existing Pratt & Whitney Aircraft single-stage rig. Hardware designed and fabricated to adapt

26

Page 42: !VASA ct-/05)',1

that rig for testing is shown in the shaded areas of Figure 23. The major items designed for this program were:

o inlet cases o vane airfoil and inner and outer shrouds o the rotor (including disk, blade airfoils, sideplates, dampers, and speed

pickup ring) o the blade outer air seal o the circumferentially traversing instrumentation ring o exit outer cases interfacing with the rotor rim seals o instrumentation.

30

25

20

:;§: c.. e: ~

c:l w w c.. 15 til -I « u l-e: U

10

5

RSE - ROTOR STRAIN ENERGY

MAX SPEED

14% RSE I

I I I I I

97% RSE

100% RSE

o~ __________ ~ ____________ ~ ____________ ~~ __________ ~~ __ __

105 106 107 108 109

BEARING AND SUPPORT SPRING RATES, LB/IN

Figure 26 Critical Speed Characteristics - A stiff bearing critical speed margin of 100 percent is sufficient to guarantee no modes with high levels of rotor strain energy in the engine operating range.

27

Page 43: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 44: !VASA ct-/05)',1

4.0 FABRICATION AND ASSEMBLY

4.1 Fabrication

In this task, hardware was procured and fabricated based on the specifications established in the analysis and design task. AMS 5613 material was used in all of the major parts.

The fabrication procedures used for each of the rig sub-assemblies (blades, vanes, disks and sidep1ates, cases, and shaft and main bearings) were struc­tured to maximize the use of existing hardware and established machining pro­cedures. Fabrication procedures are discussed in sections 4.1.1 through 4.1.5.

4.1.1 Blades

Two sets of blades (one set for each of the builds of the rotating stages) were fabricated. Each set incorporated the different aerodynamic configura­tions defined in Table 2 (see page 4). As the blades were fabricated, provi­sions were made for the necessary instrumentation.

The blade airfoil sections for Build 1 testing were electrochemically machi­ned; the blade platform, trailing edge, and fillet radii were conventionally machined. The electrochemical machining process used in Build 1 blade fabrica­tion was judged too costly and too time consuming for Build 2 blade fabrica­tion; therefore, the Build 2 blades were conventionally machined.

To ensure that blade contours were within established tolerances, each blade was shadowgraphed at the mean section, and every sixth blade was shadowgraphed at the root, mean, and tip sections. Seventy-two shadowgraphs were made for each build.

4.1.2 Vanes

Three sets of vanes were fabricated (each set fabricated for use in the vane cascades was later reused in the rotating stage tests). Each set incorporated the different aerodynamic configurations defined in Table 2 (see page 4). Provisions were made for the necessary instrumentation as the vanes were fabricated.

The vane airfoil sections for Build 1 testing were electrochemically machined and the endwalls were finished by a computer controlled milling machine opera­tion. The vanes were difficult to secure during machining because of their longer chord geometry. The conventional techniques were modified to provide the rigid support needed to hold the vanes in place during the machining process.

The electrochemical machining process used in Build 1 vane fabrication was judged too time consuming for Build 2 and Build 3 vane fabrication; therefore, the Build 2 and Build 3 vanes were conventionally machined. The l3-degree can­ted vane did not cause any unusual machining problems. Each vane was shadow-

29

Page 45: !VASA ct-/05)',1

graphed at the root, mean, and tip sections to ensure that vane contours were within established tolerances. Two hundred and sixteen shadowgraphs were taken for the three builds.

4.1.3 Disks and Sideplates

Disks and sideplates were fabricated from raw material using standard machin­ing practices.

4.1.4 Cases

Inlet and exhaust cases were made available from an existing in-house rig. The cases required only minor modifications to accommodate the dimensional stand­ards of the rig flowpath. Inner and outer diameter rings for the vane assembly were fabricated from raw material by standard machining practices.

4.1.5 Shaft and Main Bearings

The main shaft, stub shaft, bearing housings, and oil jets were made available from in-house hardware. Vendors, following Pratt & Whitney Aircraft specifica­tions, fabricated the No.4 and No.5 bearings and the No.4 and No.5 carbon seals.

4.2 Assembly

Following fabrication, the hardware was assembled into the required configura­tions using normal bench assembly procedures. These procedures, as applied to each of the rig subassemblies, are discussed in sections 4.2.1 through 4.2.5.

4.2.1 Vanes

A typical vane assembly is illustrated in Figure 27. Each assembly contained 24 vanes. Six vanes were instrumented with surface static pressure taps and with mid-gap chordwise and trailing edge gapwise wall static pressure taps. Each vane was secured at the outer diameter by two pins and at the inner dia~ eter by one pin. The two vanes equipped with surface static instrumentation at the tip section were held in place without the bolt. The seal lands in the vane inner diameter shrouds were machined rough while the vanes were being finished machined. Following this procedure, the seal lands were built up with epoxy to ensure that they were dimensionally concentric.

Gaging dimensions were measured at three locations along the gaging plane. Actual gaging areas were calculated from these dimensions and compared with the design areas. Agreement between design gaging areas and actual areas is shown in Table 5. Trailing edge mid-span angles and flowpath diameters were also measured.

30

Page 46: !VASA ct-/05)',1

Figure 27 Uncoo1ed Rig Vane Assembly

TABLE 5

VANE THROAT AREA

Design (cm sq. (in. sq.» Actual em Sq. (in. Sq.»

Build 1 138.19 (21. 418) 137.14 (21.256)

Build 2 143.20 (22.194) 141.16 (21.878)

Build 3 143.20 (22.194) 145.94 (22. 619)

4.2.2 Rotor

A typical rotor assem~ly is illustrated in Figure 28. Each assembly contained 54 blades. Nine blades were instrumented with surface static pressure taps and immersion thermocouples. Strain gages were placed on four blades of the first build of the rig and on three blades of the second build. To ensure dimension­al concentricity, the blade tips, seal lands, and knife edge seals were machi­ned to their final diameters while assembled in the disk. The blade outer air seal was also machined during assembly so that it would be concentric with the inside diameter of the rear main bearing housing. Wire seals were axially positioned in grooves at the edge of the blade platform to control radial leakage. Blade dampers were also included.

31

Page 47: !VASA ct-/05)',1

Figure 28 Uncooled Rig Rotor Assembly

Blade instrumentation was led out through rivet holes and through openings created by drilling into the rear sideplate. The leads were then routed along the rear face of the disk and out to the base of the driveshaft.

Gaging dimensions were measured at three radial locations of 42 blades (ins­trumented blades were not included in this measurement). Actual gaging areas were then calculated from these dimensions and compared to the design gaging areas. Agreement between design values and actual values is shown in Table 6. Flowpath dimensions and blade tip diameters were also measured.

Build 1

Build 2

32

TABLE 6 BIADE THROAT AREA

Design (cm sq (in. sq.» Actual (cm sq. (in. sq.»

239.92 (37.185) 240.53 (37.280)

223.79 (34.685) 225.68 (34.979)

Page 48: !VASA ct-/05)',1

4.2.3 Cases

Many of the inlet and exhaust cases used in this program were made available from in-house hardware supplies. These cases required only the following modifications to conform to program requirements: (1) the case flanges had to be modified to accommodate required dimensions of the rig flowpath and (2) the radial step of the exhaust case had to be leveled by adding filler rings. This same exhaust case was used in both the cascade and the rotating rig tests (the filler rings were removed before the rotating rig tests).

The rig exit plane instrumentation caSe was adapted to program requirements from readily available parts. To permit circumferential traversing, the case was axially positioned on a Teflon-coated surface with eight bearings. Four additional bearings radially supported the case. Two "pusher" type traverse cans were used to circumferentially rotate the case. Flat-faced, spring-loaded Teflon seals prevented leakage.

4.2.4 Shaft and Main Bearings

The main shaft, stub shaft, bearing housings, and oil jets were also made available from in-house hardware supplies. The No. 4 and No. 5 carbon seals and the No. 4 and No.5. bearings were new parts.

Bearing compartments were assembled in accordance with established procedures. The duplex bearing was assembled in a tandem arrangement to increase bearing life. Critical measurements verified that the assembly met design specifica­tions. The oil jets were examined to ensure that they provided the desired oil flow patterns. No additional modifications were required for incorporating thrust balance air.

4.2.5 Stand Instrumentation

Provisions were made for specialized instrumentation (in addition to the pre­viously discussed instrumentation). This instrumentation included acceleromet­ers, vibration pickups, thermocouples, and optical proximity probes. Acceler­ometers were positioned vertically and horizontally on the front and rear bearing housings. Vibration pickups were located vertically and horizontally on the outer inlet and exit cases. Thermocouples were placed at the No. 4 and No.5 bearings and at the No.4 and No. 5 carbon seal locations. The three optical proximity probes, positioned in the blade outer air seal, recorded blade tip clearances at each performance condition. These probes were backed up by three rub buttons, also built into the blade outer air seal. The blade surface static pressure instrumentation was recorded by the data system via a rotating scanivalve system.

33

Page 49: !VASA ct-/05)',1
Page 50: !VASA ct-/05)',1

5.0 TESTING

5.1 General Description

A test program was established and conducted to substantiate the program ob­jectives described in section 3.1. This included (1) use of a test facility designed to simulate an engine operational testing environment over the range of test parameters evaluated, (2) test rigs designed for low cost but retain­ing the capability to accurately duplicate the full-size high-pressure turbine design definition, (3) instrumentation specifically selected or designed to maximize data acquisition capability without unduly perturbating the flow characteristics of the rig, (4) time tested procedures and equipment for data acquisition and recording plus "real-time" data reduction capability, permit­ting rapid and accurate assessment of test results, and (5) test conditions and parameters chosen to provide the most effective range of data with which to accurately determine rig performance. Specific details of this test program are described in the following sections.

5.1.1 Test Facility

All testing was conducted at the Pratt & Whitney Aircraft X-2l2 test stand. The test turbine was mounted on an open bedplate and connected to the inlet air collector and exhaust duct. Air was supplied by laboratory compressors. The power generated by the turbine was absorbed by a waterbrake, and exit con­ditions were varied using flow exhausters. All controls and instrumentation required to operate and monitor the testing were located in a room adjacent to the test cell.

For emergency purposes, an explosive-actuated burst disk was located in the inlet duct to enable the rapid discharge of high-pressure air. If an emergency had arisen, the explosive would have been detonated within 50 milliseconds after receiving a signal from the overspeed limiter.

5.1.2 Test Rigs

Each of the hardware subassemblies described in section 4.2 was incorporated into the completed test rig and mounted in the test stand. Figure 29 shows a vane cascade test rig; Figure 30 shows a rotating test rig mounted for test­ing. The exhaust cases have been pulled back to expose details of the flowpath hardware.

Figure 31 identifies the locations of the primary instrumentation used in the rigs. A detailed description of the instrumentation used in the test program is presented in section 5.2.

5.2 Instrumentation

5.2.1 Annular Cascade Instrumentation

The primary performance instrumentation for the rig consisted of inlet total temperature and inlet and exit total pressure rakes (see Table 7). Additional instrumentation was used to measure primary and secondary flow rates, exit flow angle, static pressures (airfoil, flowpath, and cavity), cavity air tem­peratures, and metal temperatures.

35

Page 51: !VASA ct-/05)',1

Figure 29 Annular Cascade Rig

36

Page 52: !VASA ct-/05)',1

Figure 30 Rotating Rig

37

Page 53: !VASA ct-/05)',1

CAVITY STATICS (Ta, Ps) LOCATED RADIALLY ALONG WINDAGE PLATE

CAVITY STATICS (Ta, Ps) LOCATED IN REAR DISK CAVITY

= CAVITY STATICS (Ta, Ps) LOCATED IN FISHMOUTH SEAL

INLET INSTRUMENTATION PLANE PT & TT

CIRCUMFERENTIALLY TRAVERSING INSTRUMENTATION RING PT, TT, AIR ANGLE

Figure 31 Uncooled Rig Primary Performance Instrumentation

Exit instrumentation was mounted on a circumferentially traversing instrumen­tation ring supported on the outer diameter. The instrumentation ring contain­ed 4 radially fixed total pressure rakes and 4 radially traversing air angle probes. The traversing ring rotated through 30 degrees; therefore, the four probes mapped 120 degrees of the exit circumference.

5.2.2 Rotating Rig Instrumentation

For the rotating rig test, the ring contained 4 radially fixed total pressure rakes, 4 radially fixed total temperature rakes, 1 radially traversing concen­tric temperature/pressure probe, and 3 radially traversing air angle probes. The total range of circumferential travel for a given sensor mounted on a ring was 30 degrees (corresponding to two vane pitches). The instrumentation used in the rotating rig tests is summarized in Table 8.

38

Page 54: !VASA ct-/05)',1

Location ~

Inlet Pt, Tt

Inlet Ps

Vane Sur face Ps

Vane Endwalls Ps

Exit

TABLE 7

ANNULAR CASCADE TEST INSTRUMENTATION

Quantity

4 Pt Rakes, 8 Tt Rakes (10 Sensors per Rake)

12 Total, 6 Each on the Inner and Outer Flowpath Walls

51 Total, on the Pressure and Suction Surfaces at Three Radial Locations

42 Total, on the OD and ID Vane Channels

4 Rakes (10 Sensors per Rake) Mounted on the Outer Diameter Supported Circumferentially Traversing Instrumention Ring

Exit Air Angle, Pt 4 Radially Traversing Probes Mounted on the Circumferentially Traversing Instrumentation Ring

Exit Ps

Exit

Exit

12 total, 6 each in the inner and outer vane cavi ties

20 Total, 12 on the Inner Diameter Flowpath and 8 on the Outer Diameter Flowpath

10 Total Along the Inner Diameter Flowpath Inner Liner to Exhaust Dump

The primary performance instrumentation for the rig consisted of inlet and exit total temperature and total pressure rakes (see Table 8). Additional instrumentation was used to measure primary and secondary flow rates, speed, exit flow angle, static pressures (airfoil, flowpath, and cavity), cavity air temperatures, metal temperatures, and blade tip clearance.

5.3 Test Procedures

5.3.1 Annular Cascade Test Conditions

The annular cascade test consisted of operating points covering a range of vane pressure ratios (exit Mach numbers). Inlet conditions were held constant and the cascade exit static pressure was varied using exhausters. The annular cascade test program is summarized in Table 9.

39

Page 55: !VASA ct-/05)',1

Location

Inlet

Inlet

Vane Surface

Vane Endwalls

Vane Exit

Blade Surface

Exit

Exit

Exit

Exit

Exit

various Cavities

Disk Blade

Rotor Casing

Rotor Casing

40

TABLE 8

ROTATING RIG TEST INSTRUMENTATION

Ps

Air Angle, Pt

Concentric, Pt, Tt

Ps

Proximity Probe

Quantity

4 Pt Rakes, 8 Tt Rakes (10 Sensors per Rake)

12 Total, 6 Each on the Inner and Outer Flow path Walls

54 Total, on the Pressure and Suction Surfaces at Three Radial Locations

42 Total, on the OD and ID Vane Channels

12 Total, 6 Each in the Inner and Outer Vane Cavities

35 Total, on the Pressure and Suction Surface at Three Radial Locations

4 Pt Rakes, 4 Tt (12 Sensors per Rake) Mounted on the Outer Diameter Supported Circumferentially Traversing Instrumention Ring

3 Radially Traversing Probes Mounted on the Circumferentially Traversing Instrumentation Ring

1 Radially Traversing Probe Mounted on the Circumferentially Traversing Instrumentation Ring

12 total, 6 each in the inner and outer blade cavities

20 Total, 12 on the Inner Diameter Flow path and 8 on the Outer Diameter Flow path

48 Ps , 48 Ta for Diagnosis

12 Tm at 4 Radial Locations for Tip Clearance Analysis and Rotating Static Corrections

9 Tm for Tip Clearance Analyses

3 Laser Probes for Tip Clearance Measurement

Page 56: !VASA ct-/05)',1

TABLE 9

TYPICAL RUN FOR ANNUIAR CASCADE TESTING

Operating Exit PT inlet TT inlet Point Mach No. PSIA Degrees R Ps exit/PT inlet

1 0.70 57.42 775 0.70 2 0.80 57.42 775 0.64 3 0.92 57.42 775 0.56 4 1.01 57.42 775 0.49 5 1.13 57.42 775 0.41

5.3.2 Rotating Rig Test Conditions

The rotating rig test covered approximately 12 operating conditions, consist­ing of a range of turbine speed parameters, pressure ratios, and front disk flow rates. The values that were determined included the sensitivity of the blade-to-incidence angle, Mach number, and the injection of the front disk leakage flow. Inlet conditions were held constant, and the turbine conditions were varied by exit flow exhausters and a power absorbing waterbrake. Flow was injected into the primary flow stream at varying rates. This flow was directed through the front disk cavity at the pressure ratio and speed parameter of the design point. The rotating rig test program is summarized in Figure 32 •

Figure 32

• DESIGN POINT

0 DATA TAKEN

390 0 0 0 PLANNED, BUT NOT TAKEN DUE TO STRESS

375 0 0 0 0 PROBLEMS

3501 0 • 0 0 0

315

2801

o o

o

3.5 4.0

o

o

4.5

PRESSURE RATIO

o

5.0 5.5

Typical Run For Rotating Rig Testing - Additional testing was conducted to determine the effect of leakage by injecting air into the front disk cavity at the design point conditions.

41

Page 57: !VASA ct-/05)',1

5.3.3 Data Acquisition

Annular cascade and rotating rig data were acquired in a planned sequence for all of the test conditions.

5.3.4 Data Recording

All test data were automatically recorded by a time sharing computer (Sigma 8) via a remote batch terminal located at the test stand. Pressure data were acquired by scaniva1ves using high precision transducers with negligible hys­teresis. Thermocouples were "hooked into" Universal Temperature Reference boxes with unbroken leads to copper buses before the signal went to the digi­tal voltmeter. Pressure and temperature data proceeded through a high accuracy digital voltmeter to the remote batch terminal. The data were then processed through the Sigma 8 computer, converted into engineering units, and either displayed at the test stand or printed.

5.3.5 Data Reduction

Data from the annular cascade test were reduced to row total pressure loss, which was calculated from the measured spanwise and circumferential inlet and exit total pressure traverses. Measured vane exit air angle profiles, airfoil static pressure distributions, and endwa11 static pressures were also deter­mined from the data.

Rotating rig efficiency was calculated using the measured inlet and exit total temperatures and pressures. Stage exit air angle profiles, vane and blade static pressure distributions, endwa11 static pressures, cavity static pres­sures and air temperature, flows, mechanical speeds, clearances, and metal temperatures were measured, recorded, and presented. Data was then analyzed and compared with the predictions.

5.3.6 Shakedown Testing

During assembly, instrumentation was first installed and connected and was later checked for identification and leakage. The shakedown procedure consis­ted of obtaining a complete data point to substantiate the mechanical integri­ty of the test rig and to verify the performance of the instrumentation and data acquisition systems. The testing resumed after it was ascertained that all instrumentation and systems were operating properly.

5.3.7 Rotating Rig Stress Testing

Four blades of the Build 1 rotating rig were eac' instrumented with one strain gage (see Figure 33) to monitor vibratory stresses during performance test­ing. During the initial attempt to acc(.erate to design speed (nominal 9800 rpm), a first mode 24E resonance was encountered at 8900 rpm with blade stresses reaching 18 ksi. These stresses were higher than normal test limits, so a review of the running program was instituted. To reduce these stresses, thereby allowing accelerations to design speed, rig inlet pressure was

42

Page 58: !VASA ct-/05)',1

decreased and the rig was rapidly accelerated through the 24E resonance. The combination of increased rate of acceleration and reduced inlet pressure resulted in acceptable airfoil stress levels which allowed performance testing at the higher speeds.

Figure 33

TIP

A

LE

GAGE ORIENTATION

CONCAVE SURFACE

A

0.864 em (0.34 in.)

-1. __ ..1-_ A

TE

Strain Gage Location (Build I)-Installed to monitor vibratory stresses during performance testing.

43

Page 59: !VASA ct-/05)',1

The experience gained in Build 1 with the low reaction blading and the Slml­larity of resonant characteristics between low and high reaction blading indi­cated that the Build 2 high reaction blading should be equipped with strain gages. Three blades of the Build 2 rig were instrumented with 4 gages on each blade to better define the dynamic stress distribution in the modes of respon­se. During Build 2 testing, high stresses again occurred in the first mode 24E resonance at approximately 8800 rpm, reaching a maximum of 34 ksi. Again, rig inlet pressure was reduced and the rig rapidly accelerated through the 24E resonance so that performance data could be acquired at higher speeds.

The high 24E first mode stresses of Builds I and 2 were thought to be associated with a higher than predicted resonant speed coupled with inadequate mechanical damping. The rig incorporated a wire seal, positioned between the platforms of adjacent blades for sealing, plus a damper, located under the platforms for minimizing resonant response (see Figure 34). The indications from both Builds I and 2 were that either the wire seal, the damper, or both, were "locked up." This condition would produce higher frequences and minimal mechanical damping. Since the wire seal and damper were parts unique to the rig, an abbreviated test plan was formulated to evaluate the frequency and stress response of the Build 2 high reaction blades. For this test, a lighter weight design was created by removing the wire seal and reducing the damper thickness.

Figure 34

44

lHRE SEAL

DAMPER

WIRE SEAL

Rig Wire Seal and Damper-Wire seals were used to prevent leakages between adjacent platforms and dampers were used to minimize resonant response.

Page 60: !VASA ct-/05)',1

5.3.7.1 Test Program

The primary objectives of this program were to (1) determine how the removal of the wire seal and the reduction of the size of the damper seal would affect the resonant frequencies and (2) determine how effective a platform damper is in minimizing dynamic response.

Bench Testing

Four low reaction blades were tested in the holography laboratory to define mode shapes and frequencies. Each blade was held in a broach block that was uniformly squeezed from the sides. The broach block loading was sufficient to prevent attachment slippage and maintained at a constant level for each blade. Typical holograms are shown for the first five modes in Figure 35 where significant chordwise bending motion can be noted even in the first flap mode. These mode shapes required the use of additional strain gages in the rotating rig test to adequately define actual airfoil stress distribution in the various modes of response.

1st FLAP 1st STIFF

1st TORSION 2 nd FLAP TIP CHORDWISE

Figure 35 Vibrational Holographic Analysis of the Energy Efficient Engine Cold Flow Rig Turbine Blade

45

Page 61: !VASA ct-/05)',1

The three high reaction blades previously instrumented in Build 2 were re­instrumented with eight strain gages per blade (see Figure 36).These gages were located at expected areas of high stress for the 5 modes previously identified. Bench testing was then performed at room temperature to define the vibratory stress distribution in each of these first five modes. Figure 37 shows the level of stress for each gage location in terms of a percentage of maximum for the first two modes •

• EIGHT 40.64 em (1/16 IN.) DYNAMIC STRAIN GAGES PER BLADE • THREE BLADES (SN 43,49 & 56)

CONCAVE SURFACE

10° TIP

C - -- +--...,--- --_-~---r"~ #4 ,

B---~I--""'--~ r-B #3 r

4.414 em (1.738 in.1

LE 3.703 em (1.458 in.)

A---f--Ir-91

CONVEX SURFACE

TIP

TE

AT FILLET RUNOUT

C-- _"#S-----t---C

TE

-'_#7---"""1""--+--- B

#6

3.703 em (1.458 in.) LE

-11l1li---.... --+--- A

t B

#7

1.194 = '0.47 ;0.(' ~ ) -VSECTION B-B

t C

1.676 em (~.66 i~

Y SECTION C-C

Figure 36 Strain Gage Location (Stress Test and Bench Test)

46

Page 62: !VASA ct-/05)',1

l r-~-+----....,

97-100%

1 .194 em -+ ___ ~ 4.414 em (1.738 in.)

3.70 em (0.47 in.)

0.254 em (0.1 in.)

(1.458 in.) 1.943 em

r(0.765 in.) l @]

SUCTION SIDE

((; 92-99%

<2> 84-92%

~

-----1ST MODE

97-100%0

95-99% <§>

051-53% OJ 96% 86-

,-J

PRESSURE SIDE

-

\ 86-91%81

\ 100%<9 \

\~ NODE

" " "- ........ ......

@]<10% @]<10% ill 22-27% ~----~~------~~

2ND MODE

Figure 37 Stress Ratios From Blade Bench Tests

47

Page 63: !VASA ct-/05)',1

Rig Testing

A slow acceleration was run to 11,000 rpm followed by a slow deceleration. Stress levels for all three blades were recorded during this running for all 24 strain gages. The previously recorded 24E first mode resonance from Build 2 was noted to be approximately 1000 rpm lower and responded at about 25 percent of the stress level. These two facts met the primary objectives of the test by showing that removing the wire seal and reducing the size of the damper did lower the first mode frequency as well as show that this mode could be effectively damped at the under platform location.

5.3.7.2 Results and Conclusions

Test results confirmed that lower stresses were obtained when the rig-unique wire seal and damper design were replaced with a modified lighter weight damper. This type will be used in the engine. Also, the frequency information gathered from the bench and rotating rig testing was used to adjust the NASTRAN analysis for the component design (see Figure 38).

en c.. (,)

(Y) o

Figure 38

.... C >­() :2 w ::J o w ex: u..

10

2

Rig Blade effect of frequency

4 6

W -1 o

Z <.:J Vl w o

ROTOR SPEED (X103 RPM)

10

w z

12

Resonance Diagram - 24E first mode response wire seal removal and damper size reduction and stress.

14

shows the on

As a result of this test program, the component rotor design effort will include evaluation of lighter weight design concepts for the damper located under the blade platforms.

48

Page 64: !VASA ct-/05)',1

6.0 RESULTS

6.1 Annular Cascades

6.1.1 Performance Discussion

6.1.1.1 Loss Comparison

Vane losses, which include span mass averaged total loss, endwall loss, and profile loss from the three annular cascade tests, are shown in Figures 39 and 40 for the wedge probes and the exit rakes. On each figure, all losses are plotted against mass averaged Mach number; the endwall loss (or secondary loss) is derived by subtracting the profile loss from the total vane loss. The wedge probes were in the axial plane of the blade leading edge (about 0.46 in. axially from the vane trailing edge). The exit rake kiel heads were further downstream (about 0.84 in. axially). Therefore, increased mixing losses cause the losses measured by the rakes to be higher than losses measured by the pro­bes.

The testing of three different vanes in annular cascades has substantiated the low loss predictions established for the uncooled rig. The trends with profile loss are in excellent agreement with predicted values. A comparison of the data at the blade leading edge location shows the canted vane to have the low­est mass averaged total losses. The Build 1 vane had the next lowest losses, and the Build 2 vane had the highest losses.

6.1.1.1.1 Data Presentation

The contour plots for the three builds of the annular cascade show a clean low loss core flow and higher loss endwall and wake regions (see Figures 41 through Figure 43). These data were acquired from the radial circumferential traversing of the exit probes.

The low loss core region is also shown by circumferentially area averaging the vane loss contours and plotting the results spanwise (see Figure 44). The com­parison between the data from the probes and rakes shows the additional mixing loss at the rake station to be predominately at the inner diameter. A spanwise comparison of the probe data shows the Build 1 vane to have higher loss at the inner diameter and lower loss at the outer diameter than the Build 2 vane. The figure also shows additional reduction in loss at the inner diameter and in­creased loss at the outer diameter caused by canting the Build 2 vane 13 degrees in Build 3.

The comparison of total losses, generated by mass averaging the spanwise los­ses with the results from the air angle traverse, showed the lower loss at the outer diameter for Build 1 outweighs the higher loss at the inner diameter, thereby giving the Build 1 vane a lower mass averaged total loss than the Build 2 vane at the same Mach number (see Figure 39). The results of the can­ted vane tests showed the reduced loss at the inner diameter outweighed the increased loss at the outer diameter to give the canted vane the lowest mass averaged total loss of the three airfoils tested.

49

Page 65: !VASA ct-/05)',1

0.13 TOTAL LOSS

0.11

0.09

0.04 « 2! 0 Cl. --.

Cl. <J

0 0.02

8 Ch 6 6

0

0.05 MIDSPAN LOSS 0

Cl. --. 0.03 Cl. <J

0.01

0.7 0.8 0.9

MNMA

Figure 39 Annular Cascade Pressure Loss vs Mach Number

50

Page 66: !VASA ct-/05)',1

013 TOTAL LOSS

011

009

« :2: 007 c.. --c..

<l

005

CO VANE

OBLD 1 003

OBLD2

6 6 6BLD3

001 __ PREDICTED

006 ENDWALL LOSS

004 0 « 0 :2 0 c.. ~ --c..

<l 002

6

0

005 MIDSPAN LOSS

c.. -- 003 c.. <l

001

07 08 09 10 11 1 2 13

MNMA

Figure 40 Annular Cascade Pressure Loss vs Mach Number

51

Page 67: !VASA ct-/05)',1

:- f- - r L L ....... Jj-~ i t--t---t-... Curve Label Curve Value d PIP

Figure 41

52

2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

0.0 0.01000 0.02000 0.03000 0.04000 0.05000 0.06000 0.07000 0.08000 0.09000 O. 10000 0.11000 0.12000 0.13000 O. 14000 O. 15000

BUlld 1 Mnma = 0.997

Typical Vane Loss Contours at Design - This plot represents circumferential traverse data over two vane gaps at 8 radial p:>s i ti ons •

Page 68: !VASA ct-/05)',1

Figure 42

Curve Label Curve Value

2 0.0 3 0.01000 4 0.02000 5 0.03000 6 0.04000 7 0.05000 8 0.06000 9 0.07000

10 0.08000 11 0.09000 12 O. 10000 13 0.11000 14 O. 12000 15 O. 13000 16 O. 14000 17 O. 15000 18 O. 16000 19 0.17000 20 O. 18000 21 0.19000 22 0.20000 23 0.21000 24 0.22000 25 0.23000 26 0.24000 27 0.25000

BUlld 2 Mnma = 0.932

Typical Vane Loss Contours at Design - This plot represen~s circumferential traverse data over two vane gaps at 10 radial positions.

53

~ PIP

Page 69: !VASA ct-/05)',1

Figure 43

54

Curve Label Curve Value

2 0.0 3 0.01000 4 0.02000 5 0.03000 6 0.04000 7 0.05000 8 0.06000 9 0.07000

10 0.08000 11 0.09000 12 O. 10000 13 O. 11000 14 O. 12000 15 O. 13000 16 O. 14000 17 0.15000 18 O. 16000 19 0.17000 20 0.18000 21 0.19000

BUlld 3 Mnma = 0.951

Typical Vane Loss Contours at Design - This plot represents circumferential traverse data over two vane gaps at 9 radial positions.

AP/P

Page 70: !VASA ct-/05)',1

RAKE PROBE MASS AVG MASS AVG MACH # MACH #

BUILD 1 0 0971 • 0997

BUILD 2 0 0909 • 0932

024 BUILD 3 6 0945 • 0951

020

016

c.. 0: 012 <J

008

004

OL-____ ~ ____ _L ____ ~ ______ L_ ____ ~ ____ _L ____ ~ ____ ~L_ ____ ~ ____ ~

o

Figure 44

10 20 30 40 50 60 70 80 90

% SPAN

Vane Loss vs Percent Span - The low loss core region is indicated by circumferentia11y averaging the vane loss and plotting the results spanwise.

100

55

Page 71: !VASA ct-/05)',1

The mass-averaged total losses for Builds 1, 2 and 3 were .0376, .0369 and 0.0245, respectively, at the design conditions as measured by the exit probe.

Vane gas exit angle is important for good performance, because blade inlet conditions, incidence distribution, and flow distribution are functions of vane exit angle and wheel speed. Design point vane exit angle spanwise data are shown in Figure 45. The level of the measured data, acquired with a radial traverse at mid-gap, was adjusted to match continuity. The data shows the angle skews, with higher angles near the inner diameter and lower angles near the outer diameter. Build 3 has the largest skew, Build 1, the next largest, and Build 2, the least. Although_the angle skew was not predicted, good overall rotating rig performance for Build 1 and Build 2 suggests that the incidence and flow distribution shown in the annular cascade were not the same in the rotating rig because of a redistribution of flow caused by the rotor. The Build 3 vane was not tested in a rotating rig, therefore, it is not known if its larger angle skew would cause a performance penalty. For this reason, the Build 3 vane will not be used in the engine design without additional rig work. Therefore, the Build 1 vane, having proven air angle distribution and lower loss than the Build 2 vane at comparable Mach numbers, will be used for the engine design. Additional data for the annular cascade tests for Builds 1, 2 and 3 are presented in Appendices B, C, and D, respectively.

6.1.2 Analysis Discussion

6.1.2.1 Deviation

Airfoil deviation is defined as the difference between the exit air angle and the gage plane (throat) air angle. The calculation of the deviation becomes important because it is a factor in setting the flow through the cascade. The average deviation for the three builds of the annular cascade was calculated based on continuity and measured geometry and is compared to the design system used for each build. Figure 46 shows this comparison. At the cascade design point, the Build 1 results indicate an approximate 0.3-degree difference; the Build 2 results, an approximate 0.S5-degree difference, and the Build 3 results, an approximate O.SO-degree difference. Therefore, the Build 1 design system was in better agreement with the experimental deviation than the system used for Builds 2 and 3.

The measured and predicted flow parameters are shown as a function of exit Mach number in Figure 47. The flow parameter measurements used here were calculated with rig inlet flows measured with choked venturis. The predicted flow parameters were based on an analysis that was performed with averaged data using the measured throat areas and a deviation system similar to that used for the Build 1 design. Table 10 compares the predicted and measured flow for the high Mach numbers where the flow is choked. Build 1 shows the best agreement with the design system. This may be caused by the margin of error in measuring the airflow or throat area, the deviation system, and possible leakage between the rig and the sonic venturi.

56

Page 72: !VASA ct-/05)',1

18

16

14

w ...J C!) 2 12 <C l-X w w 10 2 <C >

8

6

4

0

Figure 45

------

O MEASURED DATA ADJ TO CONTINUITY o BUILD1}

BUILD 2

6 BUILD 3

10

3D DESIGN

STREAMLINE DESIGN

20 30 40 50 60

% SPAN

70 80 90 100

Vane Exit Angle Distribution - Higher angles near the inner diameter and lower angles near the outer diameter were measured.

o

o

O~ __________ L-________ ~~ ________ ~ __________ ~ __________ ~

07

Figure 46

08 09 1 0 1 1 12

MACH NO

Deviation vs Mach Number - The deviation prediction system used for the Build I design gave better agreement than the system used for Build 2 or Build 3.

57

Page 73: !VASA ct-/05)',1

124

120

116

0.. 11 2 --~108 ~

104

100

---------------~BU~l

MEASURED

o BUILD 1

o BUILD 2

6 BUILD 3

PREDICTED

9~L6----------0L7----------0L8--------~0~9--------~1~0--------~1~1--------~12

Figure 47

58

MN

Flow Parameters Mach Number - At high Mach numbers, the rig exhibits a higher flow parameter than predicted.

Page 74: !VASA ct-/05)',1

TABLE 10

FLOW CDMPARISON

Measured Predicted w "TIP w" TIP

Build 1 11.39 11.04 Build 2 11.95 11.32 Build 3 12.22 11.68

6.1.2.2 Pressure Distribution Discussion

Percent Difference

3.1 5.6 4.6

Low loss vane performance is attained by maintaining a desirable airfoil surface pressure distribution. Effects of adverse pressure gradients and shock losses are minimized by appropriate loading distributions. Mean section vane surface static pressures at design are compared for all three builds in Figure 48. This figure shows the airfoil static pressure, non-dimensionalized by the average inlet total pressure, plotted against percent of axial chord. Loading distributions from front to rear are similar, yet vary from build to build. Predicted distributions qualitatively match the data, which verify design procedures. Predictions accurately follow the changes from build to build. The prediction, a two-dimensional calculation at a given radius, uses a streamtube radial height ratio between the airfoil leading edge and trailing edge to model the flow over the airfoil sections. Consequently, the Build 3 canted vane configuration, which has identical sections to Build 2, can have differ­ent pressure distributions from Build 2 only because of radial forces caused by the vane cant, and other 3-dimensional flow effects. Airfoil surface pressure distributions for both the cascade and stage tests are presented in Appendices B through F at various radial sections.

6.2 Rotating Rig

6.2.1 Performance Discussion

6.2.1.1 Efficiency Comparison

An efficiency gain of 1.1 percent was predicted at the design point by increasing AN2 from 34 x 109 to 49 x 109 (in-RPM) 2. This increase in AN2 allowed the Energy Efficient Engine high-pressure turbines to run at a lower Cx/U ratio and a higher velocity ratio. The experimental gain in efficiency is shown in Figure 49 where the area averaged efficiency of Build 1 of the uncooled rig is compared to the state-of-the-art AN2 level at the Build 1 reaction level. At the design point, the efficiency gain was 1.15 percent, which agrees with the predicted value of 1.1 percent.

59

Page 75: !VASA ct-/05)',1

Figure 48

60

1000

0900

0800

0700

0600

0500

0400

OBUILD 1

OBUILD 2

6BUILD 3

____ BLD 1 - PREDICTED

___ BLD2-PREDICTED

_____ BLD 3 - PREDICTED

0300 L-____ ~ _____ ~ _____ ~ ________ ~ ________ ~

o 20 40 60 80 100

%x/bx

Vane Surface Statics (50 percent span) - Low loss vane performance is achieved by maintaining a desirable pressure distribution.

Page 76: !VASA ct-/05)',1

~T/ = 1 15%

7JAR 86

Fl.gure 49

84

82

80L-____ ~ ______ ~ ______ ~ ______ ~ ______ _L ______ _L ______ ~------~

20 25

PRESSURE RATIO

AN2 Increase - A net area-averaged efficiency gain of 1.15 percent was achieved by increasing the AN2 parameter.

A comparison of low reaction and high reaction rig performance is shown in Figure 50. The high reaction turbine demonstrates a 0.8-percent higher effici­ency than the low reaction turbine at the design point. This exceeds the predicted efficiency gain of 0.5 percent. This benefit for high reaction decreased as the turbine was run off-design (see Figure 50). The Build 1 test data agree with predicted values at lower pressure ratios, but at the higher pressure ratio points efficiency is overpredicted. For Build 2, the measured efficiency exceeded the prediction at the design point, but at the higher pressure ratio points, efficiency is overpredicted. The lower corrected speed (280) data are overpredicted, and the high corrected speed (375) data are underpredicted. The design point data are summarized in Table 11 and in Figure 50.

Build

1

2

'mBLE 11

DESIGN POINT PERFORMANCE (Corrected to 0.0145 in. tip clearance)

Reaction (percent) Predicted Test

36 33

43 37

Mass Averaged Efficiency (percent) Predicted Test

90.3 90.3

90.8 91.1

61

Page 77: !VASA ct-/05)',1

92

90

88

~~~375 I~ ••

% /w ~ 0 350 BLD BLD ........

_'_2--1t-N_1....;VTT_T_T--+ ____ 2__ .. .... ........ ..... ?80 • 0

86 o. 350 o. 280 ~ • 375

84

82

0 350 0386 II 6. II 350 0770 0733 JI

~~ 350 , '89 '254 iJ.7 DESIGN PRESSURE

---- BLD' PREDICTED I RATIO

II BLD 2 PREDICTED II

II II

80L-___ L_ ___ L_ ___ ~ ___ ~L_ __ ~ ___ ~---~~--~

20 25 30 35 40 45

Figure 50

PRESSURE RATIO

Mass-Averaged Efficiency vs Pressure Ratio - The high reaction level rotating rig perfooned better than the low reaction rig at the design pressure ratio.

Efficiency of the uncooled rigs was calculated using inlet and exit measure­ments of pressure, temperature, and air angle. Fixed temperature and pressure rakes were used to measure inlet conditions. Temperature and pressure rakes that traversed through the same IS-degree arc (1 vane gap) were used to measure ~onditions at the exit plane. The efficiency values over the IS-degree arc were circumferentially area averaged and radially mass averaged with the results from the radial air angle traverse.

The measured efficiency data were adjusted for variations in tip clearance caused by speed changes and temperature changes of the disk due to front disk leakage flows. The sensitivity of the change in efficiency to tip clearance was arrived at by correlation of running clearances from three sources. These included readings made by the laser optical probes located at two circumferen­tial locations, measurement of mechanical rub buttons installed at three circumferential locations, and from analytical calculations based on disk, outer air seal, and case metal temperatures. Once the tip clearance was established, the change in local efficiency at the outer diameter was determined as a function of clearance (Figure 51). To adjust the stage

62

Page 78: !VASA ct-/05)',1

efficiency to the design clearance, these data were applied to the spanwise efficiency. study of the spanwise efficiency profiles showed that the loss caused by tip clearance m~grated to 65 percent of the span, resulting in a spanwise average adjustment of 0.079 percent in efficiency for 0.0025 em (0.001 in.) in tip clearance.

Figure 51

4 KIELHEAD CIRCUMFERENTIAL

~ LOCATION >-U 3 0 -850

2 w 0 U u.

-1750

-2650

LEAST SQUARES DATA FIT

0 u. 2 ~ 3550 w

<l ...J

<31 0 ...J

O~ __ ...J-____ ~ __ ~ __ ~ __ ~ ____ ~ __ ~ __ ~

o 0002 0004 0006 0008 0010 0012 0014 0016

(em)

o 0001 o 002 0 003 0 004 0 005 0 006 0 007

Ll CLEARANCE, INCHES

Outer Diameter Kielhead Efficiency Change - study of the spanwise efficiency profiles showed that the loss caused by tip clearance migrated to 65 percent of the span, resulting in a spanwise average adjustment of 0.079 percent in efficiency for 0.0025 cm (0.001 in.) in tip clearance.

Reaction for the rotating rigs was defined as a ratio of the static pressure drop across the rotor to the static pressure drop across the stage. The results of the tests on the two rotating rigs are shown in Figure 52, where reaction is plotted against pressure ratio. The cooling flow points are not presented because the inner diameter cavity static pressure taps were affected by the disk leakage flow and did not read the correct flowpath pressure. The measured reaction was lower than predicted as shown in Table 11. This was caused by three factors: (1) fabrication tolerances on the airfoil throat areas, (2) the differences between the measured and predicted deviations for the vane and blade, and (3) the predicted versus measured losses for the vane and blade.

63

Page 79: !VASA ct-/05)',1

:2 o

044

042

040

038

i= 036 (J

<! w a:

034

032

030

• • • • 0

§

• • • • 0

0 0

0

BLD

1 2 N/VTI

o. 350 o. 280

• 375

028~ ______ ~ ____ ~~ ____ ~ ______ ~ ______ ~ ______ ~ ______ ~ ____ ~

20 25 30 40 45 50 55 60

PRESSURE RATIO

Figure 52 Reaction vs Pressure Ratio - The measured reaction for both builds was lower than design values.

6.2.1.1.1 Data Presentation

During the design efforts, attempts were made to maintain high efficiency in core regions and to minimize endwall losses. In practice, endwall flow regions and wake regions generally have lower efficiency than core flow regions, as shown by the contour plots at design in Figure 53 and Figure 54. This plot shows the efficiency contour lines over one vane gap for Builds 1 and 2. The data were then circumferentially area averaged as shown in Figure 55. The shapes of the efficiency curves for the low and high reaction Builds are similar, with the high reaction turbine showing greater midspan efficiency.

Blade exit absolute air angle, which was used to mass average the efficiency data, is shown in Figure 56. The level of the measured data was adjusted to match continuity. For Build 1, original design point data (350) and repeat design point data (344) are shown. Build 2 angles are lower than Build 1 angles, as predicted by the streamline design. Additional stage performance data for both the lower reaction Build 1 and higher reaction Build 2 are presented in Appendices E and F.

64

Page 80: !VASA ct-/05)',1

r~I"'l:l- I' I I

I +- H- 4" I' - H-"t-r 1 , -I- t - t I ,

~/!!> , r 1 ~t:b I- i- I i - -j

" I I I -1..-

1 +1- ' __ L - -- ~W - R:IT I - - - -I , I

:r--r I + -~- L 1 ~I i- I ' 1"'- t:::;",. - - I "'il! , ~I-:: --l-H- -f 1- -~- -f-l- , , , , :.- 1- I-y- 4-, , , I

I -+ w.- f+ -~ ~ _L 1-1- 1->1- -G ,,- -- -l - - - -I , ,

~ -f- j;;.!-=,v i H-,

f--+- V:-- ~ _1_ -'- - 1" , I

.;" I I-t-- H--R=- 1--' - I- t-l-. +-1- -I- -- r-.. 1 1-1" , ' ,

?-~ "+ ir ~ , -1+ 1-'

, .;. -~- -'-- - - -t - T -+-

J

t.. - - -- +, - - 81 --i-r+ -+- -I-f --I- -1-1 , I

-~ ~~ H- --+ I L ,

I-L H--;- 1- - - - T I

-~ r+- +-1- -II I _L ri-- , ;- - -,

I -y ~ I - T-.~ -

, I 1i' I;!-Id'" ~ ,

-1- -t-1kt --'- -+- T -I-- I I

H- '-t-V!'-IJ ~-~+~ I H-::<-1--- -; -r -1--

I ,<.."

l -t:t -I- 1- ~+ ,

f-r t-!- -i I - ~-:! .J\ , T-

~- ~ , , I

J--f:- - - I I--i- -f-rl- 1-- I

f-r,-I- L -r f-J: R KI-- u- -~ I ~ I

N:: , bi: ...., l+...: -,

~, , t-;..... , --+ -r-- , - I -- - - I ,- -r-, , Ih'r

:~h ! T' 11,,- 1-Ff-Fl~ I

~' ~';-~ I

61u"'Ll, I 0 -I ,;, h I, , , ;;;. I I ~

Figure 53 Efficiency Contour

, r _'_ I

~~ }-- 1

-- ~- ~1"- J , t--- -i- -H- I-,

, + ---Fl- -I I I ,

Rt -0-~\L: I ,

I'::" -T - , I '~ , _ .J

iF=T I r- --

I_ ---8- 0-

1-0 1\-- .L I

_J_ H-r-! - , -t" T-I

~I -f- 11:-- , I 1--~ v,- I -- - , --'-e I

+" --+-,

- - -,-, ,

4:. - .. - - !~ -l-I ..:;. -l -- I r-

:-

:::::::: f--l--

----,

i== § I

t"7' I ,

1 rF*:::::ti;~t;~ -n

Curve Label

6 7 8 9

10 11 12 13 14 15 16 17 18

0.81000 0.82000 0.83000 0.84000 0.85000 0.86000 0.87000 0.88000 0.89000 0.90000 0.91000 0.92000 0.93000

BUlld 1 N/sq. rt. TT = 351.4 PR ma = 4.088

65

Page 81: !VASA ct-/05)',1

'I ~ W- I " -- J i , . ! -'p.:: , II r , ~

..j.

T~ T: V),j Il' - , ;--:;::; I I I.,

~I-V: - --K ~ [7y f1~ 1-,

r-L-i u-l-t- I t::- V; -I f\ . - I , t- l,-, -J ~ VI 1-,;" ~ - -r ,... I , ,

..! - ~+~ -t- -:-r-h~ H- I\T !I 7~ I\f-/1 - pM- I f-_L 1- ~I : ,j" Iii j:' ~

.1 1 I I-I-L - i - -~ J_ Y J: c;r vt-"+ ,

I , k-L Ii.. + --;: l/V !j -; ~ --

I 1\-

" f"+ -JiQ i' -+. f-r 1- -- -I~ ,-- -\ '7~- _L I-+-p+- !l ± .1;; hi V I

~IJ :-TIS i--';'" k_ + I;'~ , , r+-VV k'1_ ' H-t - -+-i-u~ I I~ - - /~- ~y --1- 1--_' I -t-t-j --

" ~l'l ! - l--V- - - -~ _L __ - - - -- t- -I ,"r , , I

~rt Vr ' , . I- -- - - - - -;- ,- - -- --I ,

" ,

'1P~~' I i la-v t:f _. - - -I'r ,) , ~? T 1 t:r: 1 , I

, c.c: ~ c -r: I ,e I

i~f$. 8- _-C ~ ~ :x: -~ ;::t 1111 , -,....

"f-f- ' __ R-:- f-+::: ~1 i· -; I- i-- -t-1'1 ! t=P I -1

~~I ~l- ±: H I fiT" [-i- '::", ,--:,1 tti

Figure 54 Efficiency Contour

66

~ r '}: f-l..

M-: I

-i- i ~- 1 , t-

~ -1 ---1 - ~

-F= :::r , :..:.:::: ,

1+ +-.:::

1 1-1-

1-+' H-Ii -I-~+ -1-~I-'

,

~ ,

1-....-....-r ~ ~/

:.-r: V Il- r

, I-t r,

- ::L I t-l I

, (2 I ~t-... ----

iT - - -I--- I I , ,

IH Ii --~ ~ r-- -~ K --, - -1--~R i-,

f.:-..... 1 " -v

r- I.=-___ L - -

1 - r-. 1

f"K , r -1-~ 1--1--- - ~-

l ........ H-I i

+ ~ k - -~ I

~- +--I-- - -1-~ I T -~

~ fx.. ,

-1-- -~ :::--: ~ ,

"-): ~ ~ - t

, ~ 1--1 ~

I ---'--K- '-]

---. I'N ~II f'I

Curve Label

5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20

0.80000 0.81000 0.82000 0.83000 0.84000 0.85000 0.86000 0.87000 0.88000 0.89000 0.90000 0.91000 0.92000 0.93000 0.94000 0.95000

BUlld 2 N/sq. rt. TT = 350.8 PRma = 4. 149

Page 82: !VASA ct-/05)',1

94

92

90

I=:" 88

86

84 o o

o o

o o

o o

o

o

o

o o o

o o o o

o BUILD 1

o BUILD 2

o o

82L-____ ~ ____ _L ____ ~ ______ L_ ____ ~ ____ _L ____ ~ ______ L_ ____ ~ ____ ~

o

Figure 55

80

70

w ...J 60 <!l 2 ~ (f)

w I- w X a: 50 w <.:J w w C C ~ ...J 40 al

30

20 0

Figure 56

10 20 30 40 50 60 70 80 90 100

% SPAN

Efficiency vs Percent Span - The shapes of the efficiency curves for the low and high reaction builds are similar, with the high reaction turbine showing greater midspan efficiency.

10 20 30 40 50

o o

~ H __ -8 __ ..... -------

o BUILD 1 (344) } MEASURED DATA o BUILD 1 (350)

f::l BUILD 2 (350)

ADJ TO CONTINUITY

___ BUILD 1 - STREAMLINE

___ BUILD 2- STREAMLINE

60 70 80 90 100

% SPAN

Blade Exit Angle - The predicted angles have the trend of l~ier inner diameter angles and higher outer diameter angles shown by the data.

67

Page 83: !VASA ct-/05)',1

6.2.2 Blade Analysis Discussion

6.2.2.1 Blade Pressure Loss

The high reaction Build 2 rig demonstrated lower losses at design pressure ratio and design speed (see Figure 57). The blade total loss was calculated with a meanline analysis using the mass average vane loss and efficiency (the calculation did not consider losses caused by blade tip clearance as being separate from the foil). Off design, Build 1 and Build 2 losses were generally comparable. Large losses were associated with low speed (positive incidence) , but there were no increased losses for the higher speed (negative incidence) Build 2 design. Low speed losses were underpredicted, and high speed losses were overpredicted. Build 1 predicted loss values matched the test data at design, but were too low for off-design conditions. Generally, the test data for Build 2 were lower than the predicted values, except at the high-pressure ratio.

The meanline analysis used for the blade losses was also used to calculate the actual Mach triangles for Build 1 and Build 2 of the rotating rig. The Mach triangles presented in Figure 58 are compared with the design Mach triangles (see Figure 4 and Figure 5) in Table 12. The Build 1 and Build 2 vane Mach numbers are higher than the design intent, and Build 1 and Build 2 blade Mach numbers are lower than the design intent. The reason for this difference is that the reaction level of the rigs was lower than the design reaction level.

TABLE 12

CDMPARISCN OF DESIGN AND EXPERIMENTAL MACH NUMBERS

Design Experimental Design Experimental Build 1 Build 1 Build 2 Build 2

Vane Mn 1. 017 1.061 0.932 0.999

Blade Mn 1.150 1.127 1. 232 1.193

6.2.2.2 Deviation

The blade deviation for Build 1 and Build 2 1S shown in Figure 59 for the design corrected speed of 350. The experimental deviation (air angle at the exit plane minus the gage plane air angle) was calculated from continuity and the exit plane measured conditions. The predicted deviation was calculated using the design system updated for the measured areas and test conditions. The prediction follows the trend of the data~ however, the level is low.

6.2.2.3 Pressure Distribution

Due to instrumentation system malfunctions, no valid blade surface pressure distributions were measured for Build 1.

68

Page 84: !VASA ct-/05)',1

• 020

0

0175

015

Q. 0125 --Q.

<l

010

0075

BLD

1 2

o. o. • 0 6. ~ ..

.0

BUILD 2 (350)

BUILD 1 (350)

% WC/W

BLD

N/VTT 2

350

280

375

350

350

350

0386

0770 0733

1 183 1 254

~-:. __ } PREDICTED

005 L-L-________ ~ __________ ~ __________ ~ ________ ~ __________ ~

35

Figure 57

40 45 50 55 60

PRESSURE RATIO

Mass-Averaged Blade Total Loss vs Pressure Ratio - The high reaction Build 2 rig demonstrated lower losses at design pressure ratio and design speed.

Build 2 blade pressure distributions are shown in Figure 60 for all spans at design. The blade relative inlet total pressure was approximated by using the measured 30-percent axial chord, pressure side static pressure in calculating the PS/pT ratio. Good performance was maintained because the adverse pressure gradients at all spans occured well back on the foil. Also, the pressure increases caused by shock waves were relatively small. The design prediction qualitatively matches 50-percent span data, but is not a good match at other spans.

69

Page 85: !VASA ct-/05)',1

BUILD 1

~FLOW BUILD 2

l FLOW

MR'03~ MR = 0 29

Figure 58

70

360 106 400 108

J.l.

~'0424 ~-047 192 608 186 539

Mach Triangles - Experimental Design Point Mach Triangles for Build 1 and Build 2.

Page 86: !VASA ct-/05)',1

7

'"

6

(I.) 5 w w a: C,!l W C 4

2 0 i= « 3 :; w C

2

0 08

Figure 59

o o

0

0

0 o BLD 1 DATA

o BLD 2 DATA

0 _ BLD 1 PREDICTION

_ __ BLD 2 PREDICTION

1 3 14 15 16

Total Blade Deviation (Air angle at the exit plane minus the gage plane air angle) -

71

Page 87: !VASA ct-/05)',1

1000 - ~

~\ 0900 ~

~\ \\

0800

~\ , \ " ~\

A .

0700 \\ \\ I- \' c.. \t .....

\\ en c..

0600 \' 0\ \\ \

0500 ~\ \ \' 6 \ ,\0

~ \\ 6 0400

o 12% SPAN

~~ r- '" o 50% SPAN

~ 88% SPAN \ ~--.~ 0300 12% S-PRED ~/61/ e

___ 50%S-PRED \01

__ 88% S-PRED 'J 0200

0 20 40 60 80 100

%x/bx

Figure 60 Blade Surface Statics - All distributions successfully delay the start of adverse pressure gradients until well back on the foil.

72

Page 88: !VASA ct-/05)',1

6.2.2.4 Disk Cooling Flow Penalty

The presence of leakage and cooling air in the engine environment will create a performance penalty relative to the uncooled rig environment. In the un­cooled rig, leakage flowed outward along the front of the blade disk, where mixing with gas path flow caused an efficiency reduction. The performance penalty caused by blade disk leakage flow is summarized in Figure 61. The figure, showing span mass averaged efficiency corrected to design clearance, shows the change in efficiency caused by the mixing of the cooling flow. The data agree reasonably with predicted values.

6.3 Summary

The results of the Energy Efficient Engine high-pressure turbine uncooled rig program have established the uncooled aerodynamic efficiency of the high­pressure turbine at 91.1 percent and have verified the feasibility of the Energy Efficient Engine high-pressure turbine aerodynamic design concepts.

91

90

1] AA(%)

89

88

87 o

Figure 61

0 2

0

0

o BUILD 1

o BUILD 2

__ PREDICTED

02 04 06 08 10 12 14 1 6

% WCOOL

WMAIN

Effect of Leakage Flow on Efficiency - The change in efficiency because of mixing compares reasonably to predicted values.

The measured benefit of higher AN2 is shown in Figure 62. This figure com­pares the area averaged efficiency of the current state-of-the-art single stage turbine with the area averaged Build 1 results and shows an improvement of 1.15 percent at the Energy Efficient Engine design point.

73

Page 89: !VASA ct-/05)',1

92

90

88

71AR 86

84

82

80 20

Figure 62

o ~

BUILD 1 PREDICTION

AREA - AVERAGED 077 = 1 15%

STATE OF THE ART

PRESSURE RATIO

Area-Averaged Efficiency vs Pressure Ratio (Effect of AN2 Increase) - An increase in AN2 resulted in an increase in turbine efficiency.

The Build 2 rotating rig demonstrated a mass averaged efficiency of 91.1 percent, 0.8 percent higher than the lower reaction Build 1 rig. Build 1 was tested with a reaction level of 33 percent, and Build 2 was tested with a reaction level of 37 percent. Figure 63 shows the comparison of efficiency vs pressure ratio for these two builds.

Results also showed that the 13-degree canted vane configuration had the lowest mass averaged total loss of the three airfoils tested. The mass­averaged probe measurements indicated an overall pressure loss of 0.0245 as compared to 0.0369 for the radial Build 2 vane at the design point.

74

Page 90: !VASA ct-/05)',1

811 = 0 8% 92

90

* 88 I >-U 2: o BUILD 1 N/VTI = 350 w U

86 o BUILD 2 N/VTI = 350 u.. u.. w

84

82

80L-______ L-____ ~~ ____ _J ______ ~ ______ _L ______ ~ ______ ~ ____ __J

20

Figure 63

25 30 35 40 45 50 55 60

PRESSURE RATIO

Mass-Averaged Efficiency vs Pressure Ratio (Effect of Reaction Level Increase) - An increase in reaction level resulted in an increase in turbine efficiency.

75

Page 91: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 92: !VASA ct-/05)',1

7.0 CONCLUSIONS

o The second build of the Energy Efficient Engine uncoo1ed rig has verified that increased AN2 and higher turbine reaction level lead to increased efficiency. The demonstrated uncoo1ed efficiency was 91.1 percent.

o The Build 1 vane demonstrated the best compromise between low loss and a proven air angle distribution.

o The 13-degree canted vane configuration had the lowest performance loss of all the vanes tested.

o The Build 2 high reaction blade demonstrated lower losses than the Build 1 blade at the design point ••

77

Page 93: !VASA ct-/05)',1

This Page Intentionally left Blank

Page 94: !VASA ct-/05)',1

APPENDIX A - AIRFOIL COORDINATES

F1gure T1tle

A-I BU1ld Vane Root Sect10n

A-2 BU1ld Vane Mean Sect10n

A-3 BU1ld Vane T1P Sect10n

A-4 BU1ld Blade Root Sect10n

A-5 Bu 11d Blade 1/4 Root Section

A-6 BU1ld Blade Mean Sect10n

A-7 BU1ld Blade 1/4 T1P Sect10n

A-8 BU1ld Blade T1P Sect lon

A-9 BU1ld 2 Vane Root Sect lOn

A-1O Bu 11d 2 Vane Mean Sect10n

A-ll BU1ld 2 Vane T1 P Sect lOn

A-12 BU1ld 2 Blade Root Sect10n

A-13 Bu 11 d 2 Blade 1/4 Root Sect10n

A-14 BU1ld 2 Blade Mean Sect10n

A-15 BU1ld 2 Blade 1/4 T1P Sect10n

A-16 BU1ld 2 Blade T1P Sect10n

79

Page 95: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 96: !VASA ct-/05)',1

A-l Build 1 Vane Root Section

SUCTION SIDE PRESSURE SIDE PERCENT X/bx X Y TOP Y BOT

o.u 0.00136 2.766lt1 2.582SU

0.u10 O.Ol"ulS 2.7bl'1o 2.~b219

0.020 'O.026t1U 2.7'1679 2.~76S1

o. (UOo U.OJ'lI!ll ".blu'I1 2.~0778

O.UltU 0.USl24 2.tiZltJS 2. 5561sl

O.U!>O 0.06490 2.~.H 11 2.544l0 O.ObO 0.0716tt 2.1S"'I21t 2.~3030

0.U70 0.0'l1l1t0 ".bou71 2.51536 0.1180 O.10.HZ 2.bU)1 2."9'i~2

0.0.,,0 O.US&4 ".bblu1 2.4b2'11

0.100 O.lltl5b 2.8'114) 2.46S63

0.125 0.160Jb 2.'Ill'lS 2 ... 2000

0.IS0 0.19116 2.'I~uIj6 2.~114~

0.175 0.22,j'l6 2.'I45i4 2.31051 O.2UI)- 0.25510 2.'I5b13 2.267b2 0.225 O.i&I)S ,.'16354 2.l1199

0.2SO- 0.3193) 2.9t~146 2.1507'1 0.215 0 • .;)115 l.'I61t1' 2.09919

0.300 0.3bl'l) 2.'Ib'tbU 2.040.;)::' O.~25 O.4141~ 2.9~/b2 1.'itlUL6 0.3)0 0.44655 2.'14072 1.'11'100

0.315 0.47&35 2. 'l/3J.10 1.&5b18

O~4"\J O.Slul) 2.91lZ9 1.1'134'1

0 ... 2S 0.541'1) 2.bbbll 1.12'111

O."SO O.~1,j14 ".tI)U6'1 1.bbJHY 0.lt15 u.60554 2.U2.H9 1.59164 o.soo 0.b3131t 2.lb135 1.53045

U. 52 5 0.6691 .. ".13135 1.46227 0.55U CI.1UO'l" 2.0715'1 1 • .:l'l.:llb 0.5"/5 O.13i74 i. )'1'111 1.32304 0.000 o. ·'blt54 2.)(JU85 1.25195 0.015 0.7"bj4 ". ,j'i711 1. 17'1UO 0.b50 0.82bl .. 2.21112 1.10b60 0.67) O.b5'1'13 2.1.HJ5 1.Cl3a5 U.700- o .U'I17,j 1.'l/'ib50 O. 'J56 73 0.725 0.92~5j l.b5l1llt O.Ul'iU'I 0.150 O.'I5)~;S 1.b'l'l54 0.110169 0.175 0.9ulll 1.) .. 4bJ 0.711'J1

O.HOO 1.011l.,3 I.Jbb5't 0.b4042 O.b2S 1.05UH 1 • .l£ .. uo 0.~!>b9l

0.U50 1.0tl2),j 1.0~'1'i~ 0.47101 O.tl7!! 1.1l .. ~~ 0.U'Il1b 0 • .)bl31 0.900 1.14b12 O.120~3 0.28963 0.'110 1.15b&4 0.b5l11 0.25146 o. '1~CJ 1.171~b u.!>tll17 0.21218

O • .,.~O 1.161t.l6 O.!>J.(.b'l 0.17171 U.'140 1.1'1700 O.ltJ'Ibb 0.12'iul O.'1)U 1.lCl'l12 0.,jbbU6 O.UtloOl O.'1bO 1.1..2i44 0.Z'i!>9l 0.03'1b5 0.'170 1.l3!»16 0.223 J.5o -0.01069 0.'16U 1.247t18 U. H'I72 -O.CJ5'l/16 0.'1'110 1.20000 0.01)0. -0.10121 1.UOO 1.",7332 0.00101 -0.15040

81

Page 97: !VASA ct-/05)',1

A-2 BUlld 1 Vane Mean Sectlon

tilT RALJIUS & 11.09400

SUCTION SIDE PRESSURE SIDE PERCENT X/bx X Y TOP Y BOT

0.1.1 0.00110'1 2.1i/S313 2.70'l~S

0.010 U.014~1 l.U'I71b 2.10.22, ~

0.1.121.1 O.UlU'lj 2.'1U'I1 2.09321i 0.0301 U.O..i'lb4 2.'12)00 2.Ob2'l1 0.0 .. 0 0.0~2..ib 2.'Hd8l 2.07132 O.O~u O.Ob)Od 2.'I!)1!)1 2.b51ioH

:' 0.000 O. u171'1 2.'Io.)/j,j 2.04~O'l

0.U10 0.0'l0~1 2.'0)02 2.b.)0b4 0.080 O.lO.:ll.j 2.91:10'13 2.01543 o.v'lO 0.1l!>'I" 2. '1'1 17 b 2. !)'1950 0.100 0.1"bob 3.U(;IJU'I 2.!)1:I2'12 0.125 0.100'" 3.0.)110 2.~u/j94

0.150 0.19L2) j.0'~l9 2.4'111't 0.175 0.22 .. 0 .. 3.00'1)'1 2.44175 0.20U 0.2!)5b.:l .:l.0/s.j!>1 2.38931 v .l2!) o .2tOt>2 3.0'1 .. J.l 2 • .).)40,j 0.2!)0 0.31'141 3.1u10'l "./.718'1 0.21) 0 • .)!)121 3.11.14.:14 2.l192) 0.300 0.38300 3.10.)10 2.15880 O.3lS 0.4147'1 3.0'1"'13 2.0'1070 0 • .)51.1 0."40~b 3.Uu'l1'1 l.O.:l30 .. 0.,j75 O.471U1 l.U'!)"'I 1.'10110 0.4UO 0.)lu11 J"u51l1 1.'tOU'l9 0 ... .2) 0.541'10 3.U3lb'l 1."3272 0.45(.1 0.57375 3.00':0" 1.7b303 (/ ... 75 0.(05)4 2.90)75 1.o'Hao 0.500 0.oj7j3 2.9L14.) 1.b19L8 U.!Jl) 0.bb'l13 2.l:IblS)0 1. ~452.j 0.5!)O 0.10092 l.8u)''1 1.40915 0.;]) 0.1.).:11 2.1.Hll 1.3'1210 O.bUO 0.7b450 2.b4173 1.31427 0.025 0.196l,9 2.5.) .. l,8 1.L3 .. 18 0.b5U O.l'Jldu'l 2."10'11 1.15250 u.(1) 0.85'1Ub l.LI .. lil. 1.00'107 0.100 0.8'1101 2. 121S.:l2 0. 'I/s.)1i1 O.llS 0.'Il.j40 1.91LHb 0.8'166'1 0.75(.1 0.'155l)- 1.bU'Ib4 0.&1.1741 (/.715 0.9810) 1.oj'l .. b 0.11!>9l O.bOO 1.Q1b84 1 ... t>.)0'l 0.b211'J5 v.&l5 1.0500,) 1.2bO'l.) O.!Jl'tU8 O.b!>O 1.lIbi ... 2 1.0't.)!)1 0 ... 2460 O.b1S 1.114,l1 0.'IOI0b 0.3l031 u. '1U(J' 1.1"001 O.lu.)'1J. O.ll113 v.'11v 1.15812 O.6Z.)tsl 0.lb515 O.'I.lO 1.111 .. 4 0.~4.:108 0.11'122 U. '130 1.1b"10 0 ... 01!>& o. (,11;;8 1.1.9 .. 0 1.19b81 0.,j1,,"1 0.021 'to o • .,~o 1.20'l~'1 O.,l'tb!>b -0.(/2'133 U.'160 1.li,l,j1 O.L1305 -O.OIi2'1" 0 • .,,(/ 1.l3!>U2 O.lZ81'J'i -0.1l951 O.'1dO 1.2417" 0.0 .... 10 -0.20011 0.'1'.10 1.lb04b -0.U413~ -0.26101 1.000 1.27311 -0.121 .. 1 -o • ..;448b

82

Page 98: !VASA ct-/05)',1

PERCENT X/bx 0.0 0.010 U.OlU (I.U;'V U.040 0.050 O.vbU 0.1170 U.080 11.1190 0.100 0.125 0.150 0.175 O.lOO 0.ll5 u.l~O

O.ll' u • .jOO 0.325 0.":'0 (J.37S 0 ... 0<1 0.4l5 0.4~O

0 ... 75 0.;00 0.,25 u.,50 O.~15 U.bOO 0.b25 0.b50 u.b7; 0.100 0.U.5 0.750 u.n; O.bOO U.fll5 o.u!>o lI.ln; 0.900 0.'110 0.'120 (J.'1JU U.'140 0."'50 0.'160 0.970 0.'180 0.'190 1.000

A-3 Build 1 Vane Tip Sectlon

hOT RAOIU~ • 12.34200

x 0.00156 0.01 .. 28 0.Olb"'9 (;.03'110 0.0'''4l O.065J.3 0.077115 0.0'10,6 0.10J£7 0.11)99 0.12b70 O.lbO .. y 0.19l27 0.22406 0.l!»;U4 0.,,&lb3 0.31'1 .. 1 0 • .,5120 0.3&,,'10 0.41471 0.446!»5 0.41&34 0.51U1J 0.541'11 O.!»7.HO 0.6054& 0.b~U.7 O.06'i1J, 0.70vu .. o .1.,lb2 0.70 .... 1 0.7'101'1 0.tlZ7'1U 0.8).,-/0 0.8Yl!>5 0.'I2J.U 0.9,512 O.'IUb'lO 1.01db9 1.05("47 1.0Ul26 1.114U4 1.14)d3 1.1,u54 1.1112b 1.18.)97 1.1Y6blt 1. ,,0'140 1.22211 l.l34U;' 1.24754 1."bO.£o 1.27l'l1

SUCTION SIDE Y TOP

l.Y4J,l 2.951147 l.'I7ib!» 2.Ybbb1 2.'1'1'1'1';) 3.01L7IJ 3.0L4YJ J.0.,666 3.047'H J.0!>b66 ).OuO'l4 3.0'1"03 3.113)1 3.1,,166 ".14111 3.1)98'1 3.11uOO 3.17743 3.1ltlll 3.1U .. uu l.IU2'1B 3.11b'll 3.171b5 3.16l1'1" J.14b41i ~.11192 ';;.111470 3.U7(;27 J.O .. l~1J l.'1YU"''1 2.'14b40 2.blY14 l.71J'H8 2.06.,Ob 2.,lIb5'1 2 • .,"b61 2.1.j't0'l 1.'1261'1 1.70/,,6 1 ... 71J'7o 1.24lU1 o. 'I"'b(J1 0.7 .. 148 0.04!»51S 0.5 .. 215 0.4J'IOs 0.,,;;44'1 O.""'Ilb 0.12298 ".OlbO~

-<I.091b" -O.~"'(')Ol -o.~0916

PRESSURE SIDE Y BOT

2.772Jl 2.1642) 2.1'''81 2.74419 2.1.,2)0 2.719ti!) 2.10b.H 2.69194 2.b7682 2.bb0911 2.b444ti 2.b005.j 2.!»;313 2.s0l62 2.449J4 2.~93)0

2.33S..!4 2.l7474 2.21212 2.14146 2.uaOb2 2.01211 I.Y'tltl& 1.tl6CJ63 1.7'1';)''1 1. n'l7Z 1.b4207 1.!»6~56 1.481.!4 1.';;9799 1.31111) l.l25bb 1.13641 I.CJ44Y5 0.,}5119 O.IS'4'11 0.7,59b 0.b)404 0.!>488b O ... 3 'I '1b 0.~267b 0.101i42 0.UU.j18 0.03176

-0.OlI75 -0.07b93 -O.IJIt11 -0.1'1~b5 -O • .l)b01 -O.~2220 -0.39330 -0.-.1175 -0.;6264

83

Page 99: !VASA ct-/05)',1

PERCENT Xjbx

84

"'."1 1'."11' ". ""2"1 ... ' ." ~ ( • "4 .... ".05" '."E,'" ,"I .... 7(\

t'. 18 ~

". 09~ ,.. • ! '"I '" n.125 ".1St"! 1""'. 1" c=

~.21"\" ~ • Z",r ,.. • 2· ~

".2'('" ''',.3''''('' ".n.s \.35 " ".375 r _ 4' "'; ........ .,1:, f). /,-'::: ....

,...~...,..:.

f"'\. I ~. ~ . "' -". r; ...

"1.' 7~ "'I • .t"'" "'. ~ ..... r:: r~.lc",

,. • f -. r: 1"\.-,0-.."

('. 7'" It

'" ... .::1""\

('\. ,. "", r,. u' t)

.... "'1 " <~~

,... • t ... "\

r,.O/."

r.. I , "

,. • COIl, ....

"\.97'" ".980 0.<"19"1 1 ..... '1 ...

A-4

x '.0 ".()l'~?

1"\.'" "'"17 "t

".""'1~tl

", ....... -, • '1 i"'."IC:;~~­

- .1"\-'1 .,., n."\n-"'I~

"."Q/. }! '"\. J -'f':~. " • 1 ' ,. .... r· n.!4 C''''-·

l).l7t"rr,

"'\1"\-7""

..... " ft .... ,

" • "'1.,(, ... ? I) • -:. ' f, 1 () r".-·"U·'7 "'\ • ' 1 ' ... ' r,

'" .1.:' f ., '")

r ."."7 .,... "" 1'1.'" "'" ... -' ..... ,.~1/·1 ... "'.rI-1~?

r ;'''' "

7

rJ. ',"". ? r'.71""1-r. ').7 't 1 ('17 t""."'7'r"S - .~ .... ~~.,

-.8~"Ir",

'"'I .. ' 1,(, r"1

r • f't(J') .... -:

".(""1 .... "'.., 1"'\ .0/4 - 1',,,"\

,.. • ,,-,.;;. ')7

1 • f',.., co I r; 1 .r . ...,'" f,") '.r·O~ln

1 • " .... ""\ 1 7 1 .r""""I. ...... ., I' ,

.... ' " , .... 1 • 1"" , I r,

1 • 1 ., 'I t" "! 1.'"1-''' 1.1h ...... {, '.!7 r l-1.l Q 7-('>

BUlld Blade Root Sectlon

SUCTION SIDE Y TOP

r.7 w 161 -."77~<;5

[."("1'-1)')

".' -'.71) 1'\." ( ., J 1

• .,. Q "'1. '" r. '1''''''' (,.c-'.96 :'.(')"1,' ... "."' .... I"",qJ •• '" - 1 34 ! • ('" t.!) 1.1,

1. ," «'3 "

'.1(,-," 1.1:-"'1'>7 1 • ?' I. t.,-:'

:.--:h"1'?, 1 • ~, .: ;, () ' ..... j ..... n7 , • ., r 1 (')r1

]. :9-1") I&G"l"~

1 • -: '/ ,1 <) 1.-"141

! ." ~"t> i')4 1.::'(,1<)4 1.17' ~o 1.1/."'",) J .: \ 17 'I." r '" l? ( • ("' ... "J r4 C'. ') r "4<> ,... r., 16-' ... \. "'7 "''10 ,.. .f"7·.~o ". t' 5" .. I.Q

;:'1 ...... "")7 ..

:-. ;'J~/-,

"'.-'(,l~ti

~.""?"'71

,.. • .., r '77 ,. • ., .... ~. 4 C'

( • -; [II. ,)r, ".1'",04 .... 1 ,:. (10,.., ....... 01.49

PRESSURE SIDE Y BOT

O.4 P " ... f\r-,

"."1<;(10 (1. ';4 ViQ

". 5T~".O C. (-.J';;"3 (\. ()? 't '::. 0.6',,.,(1) f't./)h3!..O I). t,0100 ("'.f,"?)!) ':'. on"".;. n.7~"C:'f 1).7l\..,tjr

".7",,:;oQ

1).77.,.")" f.7n'"'9 -.7,,\r" ".-"S:1.Gl O. 777-;~ ().77?5~

"'. 7fJ - !,7 '). 7(A,~Q ..... ..,.4I-fl t". '73/ .. 6~ O.7?11)? fl. 71"'<;01 'l.t-t"'q'")o

'"\.1"7 11') '"' • I," 1 r 9 ".A31"l4Q r..6roP(-' fl. C;"~f.'3 "'~.~~)7C"'1Q

,.. • .- '0;'" I.?

I"'.~""'ll?

(\.4 7 nr,6 0 ... ""16<)2 ".4f'1r:.t

". ":!n°'7~ ~ • ., ",1 ')

"'.""7,"''' C.''"'14"3 0.1 7071 1'\.1''';'11 ".1,1"2 "'.lr,(,", "."-r o t.7 fl. ()I,n ;'j 1).'l195~

-".'"'l"'''J - ..... ('.';7 / 3

-0.10'1"" -".1F'9f'fl

Page 100: !VASA ct-/05)',1

A-5 Build 1 Blade 1/4 Root Sectlon

HOT RADIUS ~ 10.63400

SUCTION SIDE PRESSURE SIDE PERCENT X/bx X y TOP Y BOT

(I. f) 0.04300 0.9497 5 0.65504

('."10 C.('l'5401 O.9C?ab 0.(,1439

C. .,.)20 O.(J6~02 1.01740 0.13598

( •• 030 0.07"(13 I.G393? 0.77636

0.)'.0 o .I)n04 1. (63e6 O.!?07CJ

C.J~O O.O<Jr.O~ 1.t/'lc46 0.03191

0.060 0.10900 1.1 11137 O.P5760

(.(,7r. 0.12007 1.12680 G.e7ne {'.()~J 0.13108 1.1',:.91 0.1'8579

( .0<;'') 0.14709 J.1LIP.3 0.e9939

0.100 0.1'5310 1.1776<; 0.'10975

0.125 0.1"002 1.<-}300 0.93214

f'. 1 "G 0.201\1<; 1.743(,9 f).n4769

C.17e; O.235f7 1.:>6e64 0.957£'9

0.;:0'>0 .1.?6370 J.~o('\15 0.Q6369

~.7?5 0.79077 1.:O[:!/j0 0.96574

C.~50 0.318<'5 1.3'744 C.96453

0.'75 0.34571 1."3369 C.9~041

C.300 0.37330 J.:V.J8'i O.9~364

n • ...,~'5 0.400",2 1.34713 0.94446

I"j.250 0.47P35 1.:49 .. 7 0.93301

('.37'5 0.45597 1.34095 0.<)1943

C.I.C~ I) .4 ':! 3-',0 1.34555 O.9;):se?

O.42!l 0.51092 1. :3922 0.08628

O.4~O 0.~3A45 1.3]990 0.86635

0.470; O.!"65Q1 1.31146 O.P4559

r.5')1) O.593~O 1.10112 O.C22~3

C.5?5 ').6711)2 1.2!:.U,6 0.79770

C.~50 O.('4q~5 1.25936 C.171C9

".o;7~ Ci.676f)1 1.2~19d 0.14770

(\.600 O.703t>0 1.1 "<)73 0.11 ?57

O.t.2e; 0.73112 1.1t,175 0.68051

(\.65(1 C' .75 P('S 1.111.74 0.64664

C.(7" 0.71'617 1.01.761 O.lo1004

('.700 0.8137(, 0.9'11\('8 c. ~7?o04 ('."1' 5 0.'l41?2 C.'i?910 0.53213

0.7'50 0.U6'l7!. 0.e~~24 0.490'19

('.775 O.'lQf,"7 0.77'130 0.446 .. 6

0."00 O.923!'O 0.c.9PP1 C'.39Q35

(.'1"" 0.q'I"'2 0.',17:33 0.349::;'9

o. 8~ 0 0.97'385 C.S34f'6 0.£9625

Ct. :'7''# 1.00'>:'7 Ci.449uf 0.2::949

C'. ~(j0 1.013'10 O.3(,inO O.17P49

r.910 1.044<;1 0.32754 0.15212

'\.720 1.0'55i:? 0.:'9237 0.1i1607

C.4I;", 1.01>6'13 (,.7'>697 0.09644

(".q4() 1."7794 0.72127 0.C6975

(1.""0 1.0!l8Q5 O.ll'S~q 0.03983

r.Ql,O 1.OQ<JQ6 O.14'J31 0.00856

0.<"70 1.11097 0.11303 -0.07429

C.9"'0 1.1<'1Q'3 C.076~? -0.05696

(,.t)<)O 1.13299 O.O;9Pl -0.09588

1.<'00 1.144fO 0.007<10 -0.13551

85

Page 101: !VASA ct-/05)',1

PERCENT X/bx

86

r. "',-., fl.r:. ... f'\. ",r ")

".("\f" '''"'. n"." n. ",,~ .... 1"\. ""~"\

,).'~'1

l;~

('\ •• t""'\

".'''''' r ..... " .. r.-"')~

r,. "r, "'\ ().":.7 r

" .... "''' (\.-.,c.

-.-'7 C

... I." ,... ,. • ' ., C

r". It r" r, '). -,~

f"'.~"(,,\

,... L .., t'

r.rno n.(~c

r. {.r:...,..,

n.. 1-,7 r ~~,

r.-,.?('

" ... , .. ,.. "".'7 r

..... "'(,"

"'.01:' ..,

" ........ ...,. rJ'-, ~

(" • r1 ~.

,... ,. ~ .. . ~. ~~ ""I

,~ • ( I #'

"'. oC' r n. C f," f'I.C"'7 r "i-. " I" ,.

". r ()r, 1.'l)r

A-6

x n .r." .. .,o " • ""; c:; I) 1 5

".'''''''',) '" • 1 1 f,' 5 1.1 ') I , "

"".!4~"(')

".1 C::7 "'I)

" .1(1~~C '.17i- r

'.1~7r')

"'.'1; .., ".-,"'o~5

"'\. "0" .. ?

" • ""t +'),),... ("

,. • ;. 1 '. "'l -,

"".'l,'1?7,)

" . - "'. l ') " • .., r"lr" '" " • '.1 ' ~ 7

.,f'i.' ').L ," ')~

".~l7-7

1."4''7~

"'.'"1,<"1' "'. 0"# r (t

.1."" "7 ..... ' '. t.. .... C"

.. • f, t.,'J f,?

j ./)()~"'t'

n. """) --,

".7"1':' "" • -' .. ~ I ~,.

., • t'" 1 .. '7

". n:~7?': " • ("~ 7"'> '"2 ... f')f"> ''1

t"\ .', .... .,-7 ,. • ~ ' ..... -'t" (\ ...... 7 •• ., ., "'\ .rJr, , fie

.""'0 ~ , • r-, 1 "'I" ..,

1 ....... ~ ,~

1 • "'4r ! f\

l.nr() ..... ~ '.')",)40 1.1'\7n<;<; 1 • r.. cr-, "'\

'.f"'..-,"''''t'' 1.11"\1'10

Build Blade Mean Sectlon

HOT RADIUS:: Jl.09300

SUCTION SIDE Y TOP

!.l1;bl 1 .11, r,3 I. 1.!7"'3'~ 1 • 1 '-1' "0 1 • '! () 7 (,

~.''''44 1. "07el. 1.'''1<:'4 1.?r;'·~~

].~")1)6~

, • "'I'"":', l .. ~~?O' 1 .: l')t')":1

! . I. r." -, 1 !.:·')1')4 1.- n .)(,r,

!.ln~!(,

1.' f"lr,/:,:", 1. 1 7f,4-'

1. -; F, ~ 41 1.J471.Q 1 • -, ~ I,' 1 • ~ '1 r " ~

, .... n .... " 1 ! • ~(f ~-: ...

~.":/ .. 5n 1.17~?l 1.11",(\1 1.f"f';l.r)

1. :)1) 4

•• -:"',,"~7f, "'\.7C"{"\~')

('. ~ il, -.: ..... ' " rIo S ", • r "ll. -. "

r .' ~/.77

"'.4f}°lt;o "'.-?"73 ,...--~~7')

• -; fJ # '" (")

,.. .... "";'Q ,. .1 \.f'4c,!i

r'.'!.h7:6 (':.1\(.7: '1.1"11'1C; ,.. ." ",nQ rI .... ?(,lfl r.f'O--Qq

PRESSURE SIDE Y BOT

:1.9"Of,7 0.91""1 ~. Q4~ ~o

f'.Q,t.<bn '1.on')~"~

l.OO"'7" 1.01""2 I.()?'16 1 • "'tl. 't~ l.n<~"'2 1. , ... b511 1.1°41,7 1."97o ? :.1~·An6

1.lOCJF'2 1.1"o6~

1.1 r'''''3 1. )'ie-,,> 1.f\:;~16"

1 .""';'76 ! .I)f.n,o 1.n4~1' 1."'2103 "l.QQ"94 fl. q-':::!:l' f)."4 ';,f,4 ",,\.c"17"'~

o.[)('rq9

"'."'5~r;o

n.?!717 °.770 -'1. ,).7/,0:'1 1).t.Qn "7 r'I.( <;<;_\9

'.6,))0., ".r(\.,.,,, n. <;1 ?51 C.' /,f) J.)"

0.'. nt,·' r ". "4'"l~~: ,.?Q("\C,':;

(I. ?2 0 ;?9 1"\.1(,',')0 n.l1°46 ~. 111 '.7 ".0°-;'-"'" "". '" I' r--4..,n

0.n;;7/·5 -D.OO] t.? -0."'125 -').(\(,11,3

-".('C)?31 -l'I.l:'31Q

Page 102: !VASA ct-/05)',1

A-7 BUlld 1 Blade 1/4 T1P Sectlon

HOT RADIUS = 11.55200

SUCTION SIDE PRESSURE SIDE PERCENT X/bx X y TOP Y BOT

o.c 0.17'113 1.?41~1 1.0(,966

O.:I)() ('1.138 .. 2 1.:6764 1.{)9942

f". \.~? '. ('.14771 1.78950 1.10171

0.0:0 O.156 QQ 1.:!,)fl38 1.11175 0.('\40 C.IM:'9 1.324Q 6 1.12350

C.Cco O.17'i51 1.33'171 1.135103 l.(\60 (I .1 Q4116 1.:5291 1.14684

n.o7r. 0.1'1414 1. 2 f ... !l 0 1.15751 e.l'C") ('.?C)"3 1.37553 1.16730

C.ooO 0.71277 1.J~525 1.17f-12

v.ll)n C.;!;>;>()1 1.:N40:? 1.18195

C. 12 t o .74S?? 1.101747 1.19937

0.15t' 0.7/''',44 1.47641 1.2C927

0.17' O.?91t6 1.43661 1.21414

G.21"11) 0.314fla 1.44341 1.214313

C,. '" 5 o. BP 10 1.',470'1 1.2103Q

o. :50 0.36132 1.44737 1.?C746

O.27!:· ('\.3'3453 1.44~B4 1.1c;.091

0.300 0.40775 J.44110 1. l7t-CO

().'75 0.43097 1.43365 1.15794

c.:SC 0.4541'1 1.47348 1.13"95

0.:75 0.477 .. 1 1.1.1052 1.11219

0.400 O.5C'()('3 I.Z<J46Z 1.Of6!!4

(,.42'; (I.523'i4 1.37564 1.05801 O.45 r, 0.5 .. 7')6 1.3!>324 1.02686

C.47' O.<·702tl 1.37699 0. 0 9347 (l.~ro 0.5 0 3<;0 1.2 4 676 0.95794

'l.~25 0.(01677 1.?59 C r 0.Q7037

r. ':~ ..J o .fJ9C,4 1.71325 C. C80C1

C.~75 O.(,t.31~ 1.171.,0 o. e3935

0.600 0.6f16:'7 1.1202«1 0.79603

('. t-7 5 O.709~9 1.06221 0.750QO r. ~.c r", O.732'H (l.o9642 0.70401 0.l.7,) 0.7'5603 O.97P29 (\.6!:537

1. 7': ~ ('.7-,Q"5 0.€(,O49 0.1-,1)503

u. 7? ~ 0.1'0"1.6 C.74714 (,.<;5307 0.?')(" O.e756B 0.72303 0.49935

0.775 0.C41190 O.bC,317 0.44406 O.~O(l o.r72]~ O.'ii:'73 0.38714 o.ne:; o.e9~J4 0.5117{J 0.32P65 :) or("l 0.0Ie~6 ,) .44:')1 Ii 0.ll-86? . - , i).!l75 ".94173 c.. 3f-R n 0.20709 O.O/JO O.Q64o q O.79~'''6 0.14418 (1.41" 0.'174:>8 0.26683 0.11864 (,. <:'7 (' J.9"3~7 (,.::'3770 0.0'12"'2 ('\.'-'3(' 0.Jn':6 O.20!!55 0.06704

C.<'4C' 1.C0214 C .1743<; ('.04098 G.("'5'1 1.rH1 4 3 C.15007 0.01480

o.o .... C 1.02077 0.11077 -0.01150

CI.S70 1.030"0 0.('9131' -0.0378Q

C.9n~ 1.C39"'9 0.C6700 -0.06443 O.oc,:) 1.041l~3 10.0:256 -0.09174 1.(,00 1.057P7 0.00306 -o.11Q71

87

Page 103: !VASA ct-/05)',1

PERCENT X/bx

88

('. - r ,"'

('. -.-1'\ I". "l7r

.-.r "'. , c, ....

".1 7 ' n. -. l' "'. -~~ 1."r'lf"!

"' ... .,r ,..-.." ...

., ..... 'i • .:. "r ... 4?~ r.,r"\ ".'-,r ..... ' if'" ,. • t' -. C

'. C" c­

r.r-.r

".,')') ". ' -. ~

•• , "'I r

ro. ~r j

". --..,.. '1.(''''''

"."'",r

..... ("I"' ....

"'. I 1 r.

..... I I.'" r • r 'I ('

" • t' ,_ f\

....... 71' ('.C;~­

(',o<)n t • nr·r,

A-8

x ", • 1"7'" r r

I'I.'''I'\')?

".1':)~t.

"'.'7'-". ,.. • .... r L, .. t")

'1 • "'1 (, r "' 'I.:'?"' "'2 ".",1 /.(, ,,)."''''-;''"6 r..~ ... Q~tJ n .... C t, ... ,...,

~.;>-'7-,r;

" .;--~Qf'r

~.:"! I'J'" r:: f'\. '14""0 "I • ., I, , &I r

"'. -'"1 (' ,.., • IT 1"11 ."" ~ ~.Jf?cln

f'\ • It I. I) 1 r

("" .'.f.. 7"" n f't. t f" ()..., '"

"'l ..... ...,~.,""" """.r""l.)",r

..... r~t/~

".r-,., .... r:

r • c '1"".1. r ')

-•• I J .' <;

".'''. ',(' \ • ,.e:" r.{.~

'"'.,.. .... 7-,n ".IQ'l .... c:

".71f)"'"

.... -''''''' r:

r'\. '1 '"'4 t'. 0 r • f"")~"". "."l.lln I'll. '" (7" ,. ""'i. "''''''''''1

("\.~~., ... "7?

I) • (J' .. 71 , "".,?rr~·(

("I. ,,.,.'" "'I?

..... nQ'4 r. • 'I ,-, I h

1 .(If • .'."' '1 1."1', ri)

BUlld Blade T1P Sectlon

H')T ~AOIUS - l~.~}?OO

SUCTION SIDE Y TOP 1.:,')77 !.'<;111 1 • '''', ') 1 ~.""'77q;)

! .', '/4't

1.4"'~('t1

1.1,"'19'3 /, 1.4lf75 1. i , :t,:" ~.';431

1 •• 41r .... 1 • ·9 r r.; 1 ") !.G.h~,5~

'.4??6'i 1.' 7!,',', 1. _nc7 1.'7'''''' 1 .';"11 "'" 1. 1,'.:'.4 1 .4~ ,,\"e; 1.,~1")19

1.'.:-?2' ! .J·~'17'3 :.177:>r­'.~l.P?1'\

:.:1~67 , • .., 7? 1 Q

1."''''1~'' , • 1 !) - ':" '2 ~.1"\3?

:. "? q ~ f, r."7''')?

,"'."lIn: ,... n .() 7':; ..... "7 r .-,?n . .' "'.·'!7hh 0.(52°l. "'. I .., ~ l't r.r:"'?7 r'.I.'~15 ..... .., ';''':l L. ') r"."l. .... .)4?

..... -'6:'4"1 O.?:-..,."'tq

"'.~~1:7

.... 1 r r: "l" "' .. 1 ",q "'i'")

-.l"!"~"

r.· '')77''1

"".1"1 ?'j

• r~"l t ..... r,'(~l;1

n.fl'\"'I14

PRESSURE SIDE Y BOT

1.1""'4 1.1"['<')1 ].1'74:;" 1.7"7?('I 1.?1e<n{t !.22?4,! 1. '3917 1.7'.779 1.2~r4<"2

1.?n??2 l.~f-"O? 1.2":>47 l.?(l'31Q 1.??:?"5 1. 7 1'1-(9

!."f,7Q 2 1.''5''7'' 1.23')65

1.1'10."7 1.1(,n·Q I.IZ'l'5Q 1. 'l9f>O? l.nnon? 1.07?0' n.<;91<)9 ('. Qt,"" 17 "."Of?l n.''''>l?t. n.p""S40 C.7577Q n. -H1Q"o (1.""9}9 "".ln~-i<>

". ~)~666 "'.rn(,11 ('.4~,(n'l

". -:"(,74 "'."4?03 n. ?Po7J ". 2J"\~,~ '1.1741Q .... 11"4., ,).Of' .. +r~

"".'171(·0 n.,,1."';6 ()."'~C;I.r;

1"\.1",(\., ")7

-f\.07091 -n.('I447? -'i."',?f,4 -f\.09107 -0.114')5

Page 104: !VASA ct-/05)',1

PERCENT X/bx 0.0 0.010 0.020 0.030 0.040 0.05U 0.060 0.070 0.080 0.090 0.100 0.125 0.150 0.175 0.200 0.225 0.2">0 0.215 0.300 0.325 0.350 0.:315 0.400 0.425 0.450 0.415 0.5JO O. ~-7 5 0.550 0.575 0.6JO 0.625 0.050 0.0(5 0.100 0.725 0.750 0.115 0.800 0.825 0./j';0 0.1l7S 0.900 0.910 0.920 0.430 0.<,140 0.9')0 0.960 0.(110 0.980 0.'J90 1.000

A-9 Build 2 Vane Root Section

HOT RADIUS. 10.21100

x 0.0 C462 0.0 l127 0.02991 0.04256 0.05520 0.Ob1d~ 0.Ob050 0.09314 0.10579 0.11£43 0.1310b O.162b9 001 "431 0.225'13 0.25754 0.2 B916 0.32011 0.3523'1 0.38400 0.41562 0.4472:'1 o ... 11185 0.51046 O.5420tl O.513{)·' O. () O'dl 0.63692 0.6N<:>4 0.10015 0.73177 0.7t.338 v.7'1~OO O. 6 ~661 O.B ~1)23 O.B fj"8'+ 0.'>'2146 0.95307 0.98469 1.0163U 1.(-4192 1.07'1!>3 1.1U15 1.14216 1.15541 1.16805 1.11,010 1. 1 ',fB5 1.205Q Q

1.21664 1.23129 1.24343 1.2~~5e

1.26QZ2

SUCTION SIDE Y TOP

2.71029 2.18472 2.7'1871 2.81223 2.82531 2.831'f4 2.85011 2.86185 2.67312 2.311393 2.8'1430 2.91821 2.9 :)922 2.~H29 2.9723"+ 2.98428 2.99302 2.99844 3.00038 2.q9864 2.99;:'03 2.9!l327 2.96904 2.94993 2.'12547 2.89501 2.85774 2.01257 2.751302 2.691A3 2.61085 2.50816 2.311S16 2.~5010 Z.lOh51 1.95671 1.8018<) 1.64254 1.410 10 1.311 h3 1.1 .. 0l5 0.96,,+75 0.78477 0.7113t! 0.63721 0.56205 O.435'l1 O.401:l70 0.33028 0.25035 0.16814 0.08520

-0.00093

PRESSURE SIDE Y BOT

2.60028 2.59138 2.56134 2.57032 2.55843 2.54516 2.53237 2.51R34 2.50312 2.46855 2.47286 2.43163 2.38180 2.34110 2.29356 2.24356 2.19182 2.1:)8 .. 6 2.08361 2.02729 1.96958 1.91050 1.&5012 1.78844 1.72550 1.66126 1.59516 1.!l289b 1.460u1 1.3'1143 1.32065 1.2,,+840 1.17471 1.0'1941 1.02248 0.94313 0.66306 0.16019 0.694<)3 0.60686 0.51553 0.42019 0.31919 0.27781 0.23456 0.18980 0.14319 0.09426 0.04228

-0.01408 ~0.07774 -0.15559 -0.22302

89

Page 105: !VASA ct-/05)',1

A-10 BUlld 2 Vane Mean Sectlon

HOT RADIUS :0: 11.09400

SUCTION SIDE PRESSURE SIDE PERCENT X/bx X y TOP Y BOT

:

0.0 0.00483 2.82634 2.65481

0.010 0.01747 2.84050 2.64625

0.020 0.03011 2.85428 2.63648

0.030 0.04275 2.66767 2.62565

0.0 .. 0 0.05539 2.80069 2.61385

0.050 0.Oo1lO3 2.8'1.BO 2.60120

0.060 0.Ob067 2.90551 2.58175

0.010 0.09331 2.91132 2.57358

0.080 0.105'14 2.'12870 2.55814

0.090 0.11&~8 2.93961 2.54329

0.100 0.13122 2.95021 2.52126

0.1~5 0.16282 2.97464 2 .4b4 &5

0.150 0.1'1442 2.99622 2.43950

0.115 0.2l601 3.01484 2.39151

0.200 0.25761 3.02)032 2.34111

0.:>25 0.2&921 3.04251 2.28861

0.2!JO 0.3201:'1 3.05123 2.23414

0.215 0.35':'40 3.05621 Z. .11115

O.JOO o .3t .. CO 3.05139 2.11959

0.325 0.41560 3.05433 2.05973

0.350 0.44120 3.046113 1.99623 0.315 0.47H19 3.03438 1.93514

O. ',00 0.510;:''1 3.01675 1.87054 0.4<:5 0.5 .. 199 2.99339 1.80439 0 ... 50 O. 5 13~8 2.96374 1.13616 0.415 0.60;16 2.92713 1.66166 0.500 0.63618 2. B8?73 1.59101 0.5,6 0.6bH38 2.829'+8 1.52496 0.;;0 0.6 '199 1 2.76613 1.45135 0.575 0.13151 2.6'1095 1.37611 O.bOO 0.16317 2.60164 1.29944 0.625 0.79471 2.49664 1.22102 0.650 0.82636 2.31178 1.14093 0.675 0.857'16 2.24711 1.05902 0.100 0.81:1956 2.10611 0.97523

o. 7~5 0.'12115 1.95608 0.1:<8938 0.750 0.95215 1.79180 0.80135 --0.715 0.90435 1.63196 0.71088 0.800 1.01595 1.45<122 0.61117

0.1125 1.04154 1.27996 0.52159 0.850 1.07'114 1.09461 0.42191

0.875 1.11014 0.90351 O.31H9 0.900 1.142.H 0.10104 0."0694 0.910 1.1!1491 0.62693 0.16353

0.920 1.16761 0.54600 0.11691 0.930 1.lti025 0.46424 O.068R9

0.940 1.1'1269 0.38167 0.01924 0.950 1.2e553 0.29831 -0.03235-

0.960 1.21tll1 0.21,+16 -0.086~4

0.970 1.23081 0.12924 -0.14341 0.9130 1.24345 0.04352 -0.20465 0.990 1.25609 -0.04294 -0.21213 1.0UO 1.2oti12 -0.13016 -0.35014

90

Page 106: !VASA ct-/05)',1

A-ll BUlld 2 Vane T1P Sectlon

HOT RADIUS = 12.34200

SUCTION SIDE PRESSURE SIDE PERCENT X/bx X y TOP Y BOT

0.0 0.00504 2.87973 2.70205

0.010 0.01767 2.89441 2.69689

0.020 0.03030 2.90&57 2.68930

0.030 0.042-}3 2.922.!1 2.67973

0.040 0.05556 2.93534 2.66852

O.O~O 0.06819 2.947Q7 2.6~592

0.060 0.0 1l0e2 2.90009 2.64211

0.070 0.0'f345 2.97171 2.62724

0.0!<0 0.IOo0B 2.9~281 2.61141

0.0'10 O. 1111 71 2.99340 2.59472

o .ICO 0.13134 3.0034'1 2.57724

0.125 O.lbi92 3.02651 2.53054

0.1'>0 0.1 '144'1 3.04633 2.48010

0.115 0.22606 3.06292 2.42647

0.200 0.25764 3.01622 2.l7007

0.175 O.2ll'l21 3.06616 2.31118

O."SO 0.32079 3.0'1263 2.25001

o.ns o. ~!:.i.)6 3.09551 2.18674

0.300 0 • .3 b3'14 3.0'1463 2.12157

0.325 0.41551 3.(.R981 2.05456

0.350 11.44709 3.080t'1 1.98579

0.375 0.47l66 3.06733 1.91536

o ... JO o.~ 1023 3.0 .. 9C2 1.84332

0 ... 25 O.541tH 3.02544 1.76970

O.4~0 0.573:>8 2.99bOO 1.69456

0.475 0.6(4'16 2.95995 1.61788

0.500 0.~j,...53 2.Q1634 1.53970

0.525 O.66H 11 2.80379 1.45998

0.5!J0 0.6'14 68 2.80039 1.37877

0.575 0.73121:> 2. 72~ 11 1.29598

0.600 0.76283 2.62841 1.21164

0.625 0.79 .. 40 2.51581 1.12565

O.r-50 o .1l2598 2.3t'667 1.03801

0.675 0.85755 2.2 .. 261 0.94859

0.700 0.8 to9l3 2.0(;561 0.&0;733

0.125 0.92070 1.91743 0.76408

0.750 O. '15228 1.73991 0.66874

0.775 0.Qt385 1.55447 0.57107

0.8..10 1.01542 1.36249 0.,+1088

Ci.825 1.047UO 1.16497 0.36779

0.850 1.01£<57 0.96292 0.76146

0.b75 1.11015 0.75b95 0.1:;1 20

0 • .,,00 1.14172 0.54780 0.03627

o. 'ill 0 1.1 ~35 0.46332 -0.01l2Q

0.920 1.1t>69d 0.37844 -0.05993

0.930 1.11'161 0.29317 -0.10980

0.<140 1.14224 0.20753 -0.16105

0.950 1.20481 0.12156 -0.21394

0.900 1.21750 0.03527 -0.26882

0.970 1./30l3 -0.05134 -0.32617

0.980 1.2 .. 27b -u.ll822 -0.3866~

0.'1'10 l,.!~,,"q -O.ZZ53d -0.45152

1.000 1.2"h(.2 -0.312 7 9 -0.52292

91

Page 107: !VASA ct-/05)',1

PERCENT X/bx

92

c. U (,.(,10 , • ;:~C o. C~1) 0.040 C. (,50 0.060 C.070 C.fJ30 C.OQ:) c. lOO 0.125 0.1';0 (".175 O.7ne t.:':!: O.2':>C ':'.275 V.J{)~

C" ??5 t. )~lC C. "7~ 0.1.0e. (.4<'5 C ... 'iO C. 475 c. ~OG :.525 0.5')0 C.575 O. (,00 ().625 (.l50 C'. 675 ('.700 C.725 c. -'50 (. n5 o. PCI) 0.825 C.SliO C.875 c. QQO C.910 o. "70 0.910 r.940 0.'150 O.QbO C.970 0.9CO C.990 1.000

A-12 BUlld 2 Blade Root Sectlon

HOT RADIUS. 10.11400

x 0.0 0.01018 O.C2036 o .G30 54 0.04072 0.050 QO 0.06 lra 0.07126 0.0314 .. 0.09162 O.IOleO 0.12725 O.l">27C 0.118;"5 0.7031.0 0.22QL5 0.25450 0.77<195 0.JC540 0.33065 0.35630 o .3r115 0.40720 0.43765 0.'.5810 0. 108355 0.50Q(0 0.51445 0.55990 0.58535 0.61080 0.63675 0.66110 O.bA715 0.71260 0.73805 0.76350 0.78895 0.81440 0.83905 0.86530 0.89075 0.91620 0.92638 0.93656 0.94674 o .956n 0.96710 0.91773 0.98746 0.99764 1.00782 1.01800

SUCTION SIDE Y TOP

0.70967 0.16221 o. CC548 0.&'.236 c.. b1604 0.90599 0.93336 0.95(>57 O.9t195 1.C':'374 1.(;2411 1.06919 1.1(,914 1.14324 1.1 n-'9 1.]ge29 1.22u10 1.23849 1.;'~J64 1.26568 1.?7411 1.7e076 1.2c~e3 1.78389 1.28C88 1.174(:.5 1.26505 1.25H2 1.23462 1.71299 1.13627 1.1~34? 1.11315 1. Cb271 0.99952 0.92883 0.85423 0.77687 0.69132 ~.(,1600

0.53306 t.44855 0.36264 0.32763 0.29779 I). 2574fl 0.22197 0.18615 1).15006 0.11367 0.07103 r 1)40 CO 0.O,.;26~

PRESSURE SIDE Y BOT

0.48962 0.51336 0.53533 0.55574 0.57474 0.59241 O.609C2 0.624~O (1.63£>98 O.6~253 O.66~21

Ci.69343 0.71719 0.73698 0.75319 O.7M14 O.770()5 0.76313 0.78754 0.78939 C.78881 0.78587 0.7(1064 0.77317 n.16350 0.75166 0.73165 0.72148 0.70314 f..68l60 0.65983 0.63477 0.60738 1).57755 0.54520 0.51020 0.1,7238 O.4~157 0.38753 0.33996 0.28849 0.23265 0.17180 0.14587 0.11893 0.09091 0.06171 (i.03121

-0.00071 -0.03422 -0.06951 -0.10684 -0.14653

Page 108: !VASA ct-/05)',1

PERCENT X/bx

0.0 C.OlO 0.C70 C.030 (.040 C.Cr,O 0.C60

c.cso O. ;:'90 O. 100 J. 125 C.150 C.17~ (). "::0 O. ??5 0.250 C.275 (\.300 (I. 2125 C'. :-''i0 t.375 (\.4()0 C.425 0.4')0 (,.1,75 r'. ~,co ~. <;25 o.~~O 0.575 C.bOO C.625 ('.650 r.615 C.7CO Ci.725 (.150 C'. ;-75 D.POO ,~. P?5 0.850 c.a15 (,.QOO C.910 C.920 c. '130 o. <;40 0.950 c .... {;O O. c<10 0.980 o. Q<OO 1.0'lO

A-13 Build 2 Blade 1/4 Root Section

HUT RAUIU~ • lO.63~OO

x 0.02723 0.<)3670 0.04617 0.O~564 0.(.6511 0.07458 0.00'.<"5 O.OS3~7 0.10299 0.11246 0.12193 0.14560 o .1!>928 0.19295 o .?l663 0.24030 0.26398 0.28165 0.:n133 0.3350:> 0.35863 o .3P2 35 0.40603 0.42970 0.45338 0.417(,5 0 .... 0073 0.52440 0.54806 0.57175 0.595"'3 0.61910 0.64278 0.666~5 0.69013 0.71380 0.73148 0.76115 0.18483 O.808~O 0.83218 0.1\5585 0.81953 O.P1.'900 0.e9841 0.'10194 0.91741 0.92688 0.93635 0.945ez 0.95529 0.96416 0.97423

SUCTION SIDE Y TOP

0.89211 C.92342 Ci.'t5185 0.9Tl93 1.00704 1.'2445 1.04538 1.(;6498 1.08340 1.10u7'-1.11108 1.15406 1.18614 1.71395 1.23192 1.25rI3~

1.27548 1.28945 1. 30~'39 1.3CB35 1.31335 1.31537 1.31436 1.31021 1.30278 1.29183 1.27707 1.25"01' 1.23426 1.20476 1.16828 1.12263 1. (;6471 0.9,,931 0.'i3053 0.85969 0.18121 0.71345 0.63R5R (;.56270 C.485B5 0.40806 0.32928 0.29749 O.Z6559 !I. 23346 0.20ll4 0.16863 0.13591 0.10304 C,.C69d7 0.03642 0.00273

PRESSURE SIDE Y BOT

0.69667 0.71601 0 .. 73392 0.75053 0.76593 C.78022 0.79J47 0.80576 0.81715 0.82766 0.83140 o.e58~4 0.81523 0.88819 0.39766 0.90390 0.90714 0.90756 0.90530 O. 'i0049 0.£9324 0.8e362 0.81170 0.85755 0.84120 0.en69 0.P0203 0.77925 G.75433 0.72728 0.69807 0.66669 0.63308 0.59720 0.55900 0.51838 0.47526 0.42952 O.3et02 0.32960 (i.27506 0.21714 0.15555 0.12980 0.10337 0.07614 O.Q4836 0.01970

-0.00979 -(;.04015 -c..01l4!» -{j.l0314 ~.13709

93

Page 109: !VASA ct-/05)',1

A-14 BUlld 2 Blade Mean Sectlon

HUT RADIUS • 11.0'1300

SUCTION SIDE PRESSURE SIDE PERCENT X/bx X Y TOP Y BOT ':'

c.o 0.05314 1.07601 0.87672

0.00 0.06lL9 I.L94e2 G.l'9931

C.(20 0.07064 1.11244 0.91902

C.030 0.07939 1.12900 0.9363-4

0.C40 0.08814 1.141.59 0.95161

C.050 0.096139 1.1593(; G.96510

C.CI).) 0.1\1564 1.11319 0.91103

c. :::70 0.11439 1.1[1&:>2 0.98755

c. ('PO 0.123]4 1.1'187" 0.99681

c.cqo 0.13189 1.11048 1.004"4

O.lCO 0.14064 1.22160 1.01200

C.l?5 0.16251 1.24679 1.02559

0.150 0.13439 1.26860 1.03411

C.175 0.20676 1.28728 1.03828

C.20;) 0.22814 1.3e304 I.C3864

C'. :.>Z 5 0.25001 1.31602 1.03560

o. ~50 0.271 89 1.32631 1.02948

C.275 0.29376 1.33396 1.(,2054

0.300 0.31564 1.33899 1.00e99

C.::25 0.337 "1 1.34137 O.9c;4Ci9

(\.:S() 0.359~9 1.34104 ().97870

C..37~ 0.38176 1.3.H90 0.96021

0.400 0.40314 1.33179 0.93964

0.425 0.42501 1.32251 0.91706

0.4<;0 0.44629 1.30975 (\.89254

0.1. 75 0.46376 l.z'nC8 0.86612

C.5:» 0.49064 1.27192 0.83786

c. !.2!> 0.51251 1.24~36 0.80779

(,.550 0.53439 1.212"0 0.77592

(.575 0.556"6 1.16940 0.74228

c.w::. 0.57314 1.11411 0.70687

0.625 0.60~O1 1.C!>230 ".66969

o. 6~O 0.621139 0.S8805 0.63074

0.675 0.64376 CI. 92241 O.~O999

o. 7C~ 0.665(4 O.85!>65 0.54743

C.725 0.68751 £I. 7rao 5 (j.50301

C.7'i0 0.70939 0.71975 0.45670

C.775 0.731l6 CI.b!>089 0.40844

('.1'00 0.7!>314 0.53137 0.35816

C.fl25 0.775ul O.!.1l29 0.30578

o. P')O 0.7Q689 0.44066 0.25120

c. e75 0.81876 0.36953 0.19431

c.<,o:) 0.B4::>64 0.79769 C.13495

o.'no 0.84939 (,.26881 0.11048

0.920 0.85814 0.23981 0.08558

o. Q)O 0.86619 0.21070 0.06023

0.940 0.P7564 0.11'147 O.034r.1

C.950 0.eS439 0.15211 0.00813

0.960 0.89314 (,.12261 -<l.OI867

o. Q70 O.90Ul9 O.O929!> -C.04!.97

0.980 0.91064 0.063C13 -o.onez

0.'1'10 O.~1939 0. C33C 0 -o.10ZZ2

1. tOO 0.92614 0.00262 -(1.13122

94

Page 110: !VASA ct-/05)',1

A-15 BUlld 2 Blade 1/4 T1P Sectlon

HOT RADIUS· 11.55200

SUCTION SIDE PRESSURE SIDE PERCENT X/bx X Y TOP Y BOT

c. c 0.083')9 1.25737 1.(i1672

C.CIO 0.09163 1.26350 I.C6302

C.C20 0.09967 1.71404 1.(,9122

C. DO 0.10171 L. ?B400 1.11282 '. C.C40 0.11515 I. ~9342 1.12902

C.050 0.12379 1.30232 1.14212

C.ObO 0.1313) }'~lO13 1.15282

(.en 0.139r? 1.31P05 10 1t.155

0.C80 0.141'11 1.32611 1.16912

c. G90 o .1,>,>QS 1.33311 1.11484

C.100 0.16399 1.33969 1.17901

C.I?,) 0.18409 1.35421 1.18388

C. 1 'i0 0.20419 1.36632 1.18244

(1.175 O.n4?9 1.375'73 1.17601 0.;;(,0 0.24439 1.::e315 1.16561

C.125 0.'26449 !.3e8C;I 1.15185

<.'.250 0.£'8459 1.39049 1.13507

c.ns 0.30469 1.29051 1.11568

C.3Q() 0.32419 1.38816 1.09394

C.375 0.3441'9 1.:'P)15 1.07007

r • ~r)o 0.30499 1.37~38 1.044210

0.:;15 0.38509 1.36462 1.01659

C.400 0.40519 1.35fJ57 Q.98723

('.425 0.42'>29 1.33280 0.95676

('.4'i0 0.44539 1.31066 0.92376

(.i.75 0.46549 1.7P32P 0.P'979

C.'CO G.49559 1.74910 0.85441

C.~25 O.!-O569 1.;:0543 0.81767

o. ~,50 0.52579 1.15014 0.77960

C. !>75 0.54569 1.09238 0.74024

(.600 0.56599 1.03249 0.69960

C'.625 0.5El609 0.97151 ~.65771

~. £,0;0 0.60619 0.90982 0.61458

c. b15 0.62679 C.84754 0.57021

(1.700 0.64639 0.711480 0.52461

(,.725 0.66649 0.72162 0.47117

C.750 O.6!!659 0.65807 0.42969

0.175 0.70669 0.591.,16 0.31'035

(I. eGO 0.12679 0.52992 0.32973

(\.825 0.14669 0.46533 0.27781

O.P'>O 0.16699 0.40042 0.21456

0.815 0.18109 0.33516 0.16993

O.CO') 0.r0119 0.76951' 0.11367

C.910 0.81573 0.24326 0.09104

C. <;20 0.823?? 0.21660 C.C6197

0.930 0.63131 0.1'1035 0.04465

C.940 0.83935 0.16316 0.02107

c. Q50 0.64139 0.13717 -0.00275

(1.960 0.1'5543 0.11051 -0.02683

(,. <,,70 0.86347 C.08369 -0.05119 C" qQo 0.fl7l51 0.05686 -0.01581

(.9QO 0.87955 0.07994 -0.10012

1.(00 0.(18159 0.00269 -0.12591

95

Page 111: !VASA ct-/05)',1

A-16 Build 2 Blade Tip Sectlon

hLJT RADIUS· 12.01200

SUCTION SIDE PRESSURE SIDE PERCENT X/bx X Y TOP Y BOT

~ 1.27932 (\.0 0.1111:8 1.40015

C.ol0 0.125;>0 1.4071(: 1.28672 ('.020 0.13253 1.41339 1.29267 C.030 0.13985 1.41909 1.298&2 c. :)40 0.14111' 1.47423 1.30312

C.050 0.15450 1.42885 1.3C72Z C.060 0.16183 1.43297 1.31092

C'.070 C .16915 1.43664 J.31342 (.C,flO 0.11648 1.43~36 1.31492 O.G90 0.IU3no 1.L.42b!> 1.31521

C.IOO 0.19113 1.44504 1.31472 c.125 0.20944 1.41,931 1.30791

(".1"0 0.22775 1.45126 1.29499 (.175 0.24607 1.45J.OO 1.27746 G.700 o .?6438 1.44860 1.25631 C.22!) 0.2821.9 1.44/.04 1.23215 Ci. <''50 0.30lUO 1.43732 1.20546 C.275 0.31932 1.42e35 1.11658 c. :00 0.33163 1.1,170., 1.14519 o. ~25 0.35594 1.4C3(17 1.11328 o.?<c 0.314;>5 1.3&628 1.07925 (.:75 0.39257 1.36620 1.04331 C.40j 0.41088 1.34214 1.0')710 C.425 0.42919 1.31301 0.96921 0.450 0.44150 1.£7673 Q.930n C.475 0.46532 l.n9!>3 0.89021 c. !)OO 0.48413 1.11~81 0.81,923 (:.525 0.50244 1.12025 0.80734 r.5')0 0.52075 1.06373 0.76459 o. ~75 0.539(,7 1.0':'661 0.72102 ('.60,) 0.55138 0.94905 0.67666 (.1>25 0.51569 0.89111 G.63155 0.650 O.5Q4(i0 0.1l3~04 0.5R512 o. () 15 0.blZ3? 0.77463 0.53920

"(,.100 0.63063 0.11603 0.49200 C.125 0.64894 C.6513C C.44415 G.750 0.66125 0.59837 0.39567 C.715 0.68557 O.~J930 0.34657 c. FCO 0.70338 0.408015 0.Z9688 o. e25 0.12219 0.42(,82 (\.24659 C.850 0.74050 0.36140 0.19573 0.875 0.75882 0.30~67 0.14431 0.900 0.71713 0.;>4227 0.09233 0.910 0.18445 0.21842 0.07139 C.9?Q O.7911P 0.19451 0.05036 0.930 0.19910 0.17063 0·.02925 c .... 40 0.80643 ... 14669 ('.00804 (1.<:50 0.81375 0.12219 -!I.CI325 G.Q60 0.021US 0.u9883 -0.03462 0.970 0.92840 0.074 9(1 -().O5607 e'.990 0.S3573 C.C!"U91 -ti.07762 ('. (1'10 0.84305 0.<..2695 -0.09924 I.COO 0.e50~3 O.OO2'H -G.12095

96

Page 112: !VASA ct-/05)',1

Flgure

B-1

B-2

B-3

B-4

B-5

B-6

B-7

B-8

B-9

B-10

B-11

B-12

B-13

B-14

B-15

B-16

B-17

B-18

APPENDIX B - BUILD 1 ANNULAR CASCADE DATA

Tltle

EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. Mach Number (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. % Span EXlt Rake Data (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade Mach Number vs. % Span (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade Exit Ps vs. % Span (Area Averaged)

EEE Uncooled Rlg 36% Reaction Annular Cascade EXlt Pt vs. % Span (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade Deslgn POlnt (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade Inlet Pt vs. % Span

EEE Uncooled Rlg 36% Reactlon Annular Cascade Inlet Tt vs. % Span

EEE Uncooled Rlg 36% Reactlon Annular Cascade Alr Angle vs. % Span (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade Mld-Channel Statlcs vs. Predlctlon (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Annular Cascade T.E. Platform Statlcs vs. Predlction (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Alrfoll Surface Statlcs 11% Span (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Alrfol1 Surface Statlcs 50% Span (Area Averaged)

EEE Uncoo1ed Rlg 36% Reactlon Alrfol1 Surface Statlcs 89% Span (Area Averaged)

EEE Build 1 Annular Cascade Clrcumferentlal Instrumentatlon Locatlon

97

Page 113: !VASA ct-/05)',1

TARLE 8-1 DATA SU~'~MARY

UNCOOLED RIG - BLD #1 ANNULAR CASCADE DATA SUMMARY

RAKE PROBE AREA AREA HTD AREA AREA HTD ~lID-

OPERATING PT-IN TT -IN W-MAIN WTD TOTAL MID-SPAN ~~TD TOTAL SPAN POINT f. PSIA oR LBrVS '·lACH # PTjPT PT jPT r~ACH # PTjPT PTjPT

1 57.42 77"' 22.51) 0.779 0.0415 0.0131 0.787 0.0330 0.0125

2 57.42 775 23.09 0.899 0.530 0.0165

3* 57.42 775 23.31 0.967 0.0500 0.01 85 0.979 0.0459 0.0190

4 57.42 775 23.39 1.116 0.0625 0.0255

I) 57.42 775 23.49 1.194 O.07f)5 0.0405

*Des; gn POl nt

98

Page 114: !VASA ct-/05)',1

c.. -c.. <J

-n- , . 1 I I'!" ]f -'I' I:' '1 '!1-', "'1 '.+!' fi ':1 . 012 '! ,11"1:' ",'.'-, ".1':1""1. 1 :, 1': ,r ;'1" :1'I{i!i;H::'lHW1,,,,llt:r: '.'·1 .... 1l1tl!,lfH.r/:t."!tp 1"1 11"-' , I--t~"":r:-'I"'~' In... ',~j+ ' I - -+-.d!.'r::'T1" .,-...-;- ' '. 'P' Ij· T"' 'ffl" '1'1', I"!::r '," , 1-, : I ,":f. It: I'll f,:I, j : 1,1. WI" ': :" " :' .'; II J1:" I: " '" '1.~;' "lil!:!!"' r •• '" J ",x, , ,.... - - .... - • "I," ',1" l~t i"l'l/l .' - 'j,.,. "::t~'H ;ri~ .. ,' y' ~"l'~ ... , - I j (" • It • °t. ~1 I: 1 t • "UfO t" • j' I , ';~, , I ' •

r-- --r-""-I'- j'-fi +-- + -1 ,., 1'-- "~ .. i '-' -'1-" ,1- 'rr'.:.!:! ·t' , ~- "-r-- - " ' -- --I 'j'1 ' ' , " . I , ' , "

010 • ;; !,T t----r----.'·' '[ 1 1 I"" ,"~I ' " • II j '-1..-1""': ,"Ii -;-:- - ,--+--~-l·--- .~ i L,..:._ ~ : ' ,,-~r ,"-F ' .r-- I'''' .. ,'r' ,~: -;-'1.' "'!;~, -I, ·,·~,,·T- £l~ ';' r '1!' , , I I l ' .~ I' '~"" ~ ,,, I I'

-11 " ',', I i I .--'~.' -'I' .. _I 'r ~,' l.." '~1"r' ri.!- .... : ... ,t--· ., ... " '-t-. Vl 'i ••. - "T ,- -, -.. • I " , I r, "I • • I I ,: ";, I " 1 I 1 i q " " I,. "i I ' ,

; '~ !:, ~~ -t--r-:-tl---·-1-~ --l. -- 'I.~ .' J "'j"'" '1' ,: ~~ ':+il,~" .. ;.,'1:..~.'~ .. f~:~,~~+)Ln, "l~ ~ • - I :: 1,- . ',' : , I ~I • I I'" " ,I' J,:' .... ~ . '\ ' • il?r" I

" " I I , ...l 1---'- ~- ··--r-J----!---I 1 ,"-, -t-' . ,-- , " ',.. ,,!~, 'l ! ~' ,+ !

008

r~-' ~.: i·-· .~ ,+,11 ' i ~: + .. ,~tLl"·! ' .. - :'+I"::'+~~V -+-- ~~~·Jf' ,j ,. I j. t, d;;.~ i·ol""~h~h6~ ..... ~~=Ft=;r;q""V~¥-+-";---+-""';""-I--+--++-1 o 06 -I-,~ , .,--t';- --. --t- ----= ;;,;,It j , '~1' ,\' '. o!

~ ~--. , : ; .. '.- -':-~'~ !I :; 'I ~.-::~ " I ' .:;~or:.l +, '-: .. -.. t-' . tl~:- ;,-; ; ... ~.', :' :,; .. ' I I t I i i ! .. I ' I 'J ttl ....,.r~1 .',, !'., I f :' 't T i " , -r T'r-- -, -"''''-1 I J,....-~ ,I ,,,"": : , l- ,," ',I' :~ ,rv1i '1'- ,; '-·"I~:L..-' ,f I 1 I' 'I' ~r'I"Yr·~I·r.--~·P' '," :Tr!r~'''''l. ...... "'1" -~jff' -

004 ' I_I: J!" L~.,; , ._1 _-' ~ , , '" , " I"'" • I 'I .. '1" :,,'.1: 'I' I " } ~ I LI "-1,.1:'1.. ", I -- .-- "f" h. ~- '_1-- ,- - - I' -- ... -r:....- • " -I 1";-1"'; ---·,'{,.';'I'1 I:' ,- 1:, 'Ii" ';; , i ~~. t i

f.-.-!~ ( I i (!.t- . ., -; -'-,-+ i 'T'I- 1- f..-. '. I • ~~'r'" ,:1' . I ,'T~I .I "'-:-~'-HL_-:' I J , I if, I't· ,. I -' 1;,'rr',:.,j--ll'I.i !"'l" '-+,- ·.~·i ,.,.fi. T-

O 02 8' " ' ; l l ' ,'....... ' : ' LOSS -I' __ -1_:...... -' /\,.A;' r-;-r- ;:;1"":' I 1

1, ,!. \ : MIDSP;~' J. : _ .:_ , 0 RAKE

:~ '-~-';=:;::~J\_-:" -- f- I -:_~_+ l~~~,~+ ~.f +-- ~f~+,'II' -+ I' '_', I o PROBE

I . Ii" -t- : I ,·r· 1 ': I ' 1 -r. ' I I /\ - 1 '--'f _c, 1 1 , jl • I L,' I I '. t ":;-j;~ i" I f, i' -' ., . I- 1--:; Ll PREDICTED o j,: ,'j I I: : I ' • , 'I" ' I 1 ' 1 1 I • .

07

B-1

08 09 1 0 1 1

EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. Mach Number (Area Averaged)

12

Page 115: !VASA ct-/05)',1

o o

0.. ..... ~

024 __ --~I--~I~-+--~-~--~,--~-I~--r~I--_+;---~i!--~l~-~;--L! _~_ ~ L_ _ j I I

1

i

MACH NO

FILLED CONFIGURATION 0 0967

UNFILLED CONFIGURATION 0 1005

~+-+ j-H--j -+-+-+--J.-f-~+---+---+--!-+I --t-, ---+- - -. --- - ~

f-,.-- -- 1- .-- '-;- I- . - I : : : i o 20 "'f--+-,---+-=:~~:=-I>-----.-'---+f----"-r-,'-+I-----+--' -+_-. -~I-t-l ---+-----1:----4:- 1,' l. _ _ _ -+ __ _

: I I i I ;

-t I :

Ito-l-+-+ 1~4'.I\-ii+_+\~--+--ji-- f-- - - _ - I r ; i I I -- -t --- -ll--+--+-+-I~~ ~ \ it; i ' , I

016 ~~-+~I\~,~~!~-4~~~4----~-4---+---~I----+----I---+---4-+-~:~~-r-r4-~ 1!-f::-4=--I-+4-·-H\-t-V--I---~-,---11 - I - - t 1

o

:

m"'t!:rnt:tt~..;~~.f::4!1~:f4ltt;.J:~·11~~~1~'~~~]m#t:li-h'+"-+---+ __ t-H-+-++-+-_+-_+_ 1! ~ i!m; "ttj i Iq. ;,/-:.t!::~t"; Ul '1- I ~~ ~ bl1h

o

~~~H Ii.. _II I; ;, ... ~~ \.i:'

fiB I;; I'j I.. ', .. ' u..-;! til-tt':r' l41 h 'V '''f" '1!1 I'"" . - -, h;

if.Jl~; I' ,I ,'! EH 10 20 30 40 50 60 70 80

% SPAN

B-2 EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. % Span EXlt Rake Data (Area Averaged)

90 100

Page 116: !VASA ct-/05)',1

-o

Q. ...... Q.

<l

o

o

o

o

o

o

., ..

20

16

12

08

04

0

} -- 1- . - ·1-

I I j MACH NO

tI- -- - - -- 1-- -: - , - r- I I I

I J ~- ---t I I EXIT RAKES o 0779 I

i - -~- --- - ---t--

~-- _1._ i t , WEDGE PROBE o 0787 _. -- . -- -. - I I I I I

i I ,

I I ; I I I - -- - ~-- - -----+--i

1 I

I I 1 ___ l~

1- .- - -- I---~- -- i . -- . I I , -i- t--I I , ,

I . - ---.. _ 1 I

I ;

I , j - -~

1 I I -- ...;...- r-- -- - 1 - , t - -~ --.

, , \ -+- ___ J.... --+-

.1 I -1. __ I I I I j I : - : t -- - -~ 1---r-

ih. I ..1 I , .1 ~~ ! I ! ! : ------t

I ! I

I ' I I

~ .i-I

I -, ::1.;: .1 : I I :

- ~ I --t------

I -' , ~ I '. I , ._+- -+-- . I j -T ,.r. '-, : i I

I ,j , ... ::- "t \: J : : ------t-- \ .~

i - - - - - -- -. i f - -1- .! ,~

- ~ \ I '" !;:, I h;-- -'1, 1~ I W +

: c.+ , _iff . - "r- --- .,"" .r" ;~ " ~ ,', .:.,

: , ; I lJ ... ~ai :t ='~ -t 'f: i I-L ,+ ! I iit : :; " ,I' :-- ~ ~

;;:; , f~ I 1 ! : "Iti'~ , .W" t~

T:::~,~. .1, ",. [W -~ [:.Ii t I I

".~ -~-- ~ ",. , [:( ~ ,'" .-l-. - .' :tl:::, ~ ,:I: i, ~. I!\. ~ P; j -J I .J, ~ ':l, ,::[.~

1 .', ;; .1-" : : 141, ~ ,. , ....!

~- ~-. .-'. ,-l-:" ~ liih- .'"~ ~ "" ::

i "

~: '::.j' .. +!;

o 10

B-3

~ ;..ot.- .. . 1. ....-t. ~" '1: .:...; ' ..

:m~ 11 t;'::I :tin 'I.: .;. ~, 1" . 1 I r-~\ ,db . u-.Ii i:

20 30 40 50 60 70 80

% SPAN

EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

1:( ~-:Ii h-'

90 100

Page 117: !VASA ct-/05)',1

-o IV

024 .... _-.,-__ --rtl,--.-__ .,...I-_ -1r-_-_.,...I, ---tlr-. --r---r---'I-~li --'1 -'l--~ ---.. -;--- -;- OMACH NO

: __ ~ _____ -+-1 EXIT RAKES 0967 ~.-l!--+, --+---+---iJ--+----+--t--: --ijf---'----+__-

I I .. j- I

I

til ' , WEDGE PROBES 6 0979 --; - - -t --. - -- - I I - 1 i"! 1 I'. I I, f. I I

- j 020 Io---+---+--T -+--"--+--+---+---+--.... : --+--+\--..,..!, --7"--"'" -.- - -- -;-I! . I, :

t-t- -;----+.- "-1- --- -. - 1~ I ! . 1 " II .- -~ !-< r - -T--

~~~~~~~-4~-+---+-+-+-!-~--~~I~~---T---~---~·-~j---~--:~~-I~~~~

--~- - -- - -1 - - ! l J I , ; l' I i - ; j . - --r-: ' ! r--; I I : i !

....... +--+--............ ~+--+----.... ; _'-+-_1 -+_.....L+:-+ --_-.,..: _. +1 __ .--1:r--_I ..... : --lr---lf--~'I-, --4-~ 1 ... -+ - t- : i

: -- -r-f--t-I-- t-- t ·-1 . j . j ; I : -tl j t·- f-.-1-- ~~ : 1 I'! j ~ I I - : .. --- - - t .1. - .-. - 1 - I .- .. r- '--1+- -~-~ -.-+---+---<

to : i . I I 1__ ' tJ! ~=~=~=~~~~=~I~\~~.::~=~::=:·=:=·:·=++-_+--~-. __ -.r-:r_~,I-.-~l--~4-'f---+i!_ _:_ .~ .. -f-+-+~~~~~~~~

~m . I , ! I 1.lIi ~+----t-!..+---+--+---+-:;po;lIj~+--'-+--+-+-+-+- .. - -+-~-+-.,-I--j-. . -. .... i -f-. -+1 ........... -+~-+-'-'+llf'#l--+-I-4!-..!::F~'-1

~. • i ..: t· 1 "He: 1 .- I I ";.,.

-+- I , .! . I

-t-- - r- -+ .... -, JIll. . oj ~

. ~ !'I !

I I o 1l=·:tF?, ttl '" .. . ..... ' 1 i r :1' .. ''II

o 10 20 30 40 50 60 70 80

% SPAN

B-4 EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

90 100

Page 118: !VASA ct-/05)',1

-o w

c.. Q: <J

% SPAN

B-5 EEE Uncooled Rlg 36% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

Page 119: !VASA ct-/05)',1

0 ~

1 3

12

1 1

1 0

2 :2E

09

08

06

~ --f---J- f- 1 gr;p: 'J h it

~ ,

-l--FL=Ulf---l-l-tJ-+-+-........ : +-_...1' +_ .. ; -+Y N 1-- ~i , , r--- ... ~ r-t--- ---, -7 ,,--- --;--- - -+ - ._- !-- T- -- -, :

~,.--i 1,_-A_' -A H

A.r-~ ! , - .I\.

. 1

. I

IT -~- t---- - 1 1 :-: ". L JA -t

'\. I- I

I':' 1;J.i if I 1 ! ,

; I" i

j .--1; , : .... - -'" ,-l:~ ~~~ 'W'" htt lI.

I -

i A-

I I"\,. _ _ ___ ~I-_ • L1'II

.1 ,~ ~ J,,~ , 1 __

... i 'V -- -,

: '.Ii; ;M[' ~ I ; !- ! ,JI" " .... ~I"'" ~" fo-TI M·

.: :AI: F- ~:;1 t, It, :

hl: _::, _ "!rr ~ ::tl' I .,;1 ~;~t"~ .1r ;'~:r: f:g 'm ~h~ 'I

.:: ,J: : .. , Iii ;i~ t:~lL .,;.:Ji:~

:""!"I' or, r- ,...,.~.

I:; ~t :1 ~ i' :

[:w 't:. _",

---1---1- r-

~~ !.. + lUP! ;. i10 Irri1,~::

.,r Ihh:~:

.~~: Itlil:Ht "

o 10 20 30 40 50 60 80 90

% SPAN

B-6 EEE Uncooled Rlg 36% Reactlon Annular Cascade Mach Number vs. % Span (Area Averaged)

t

,

;

100

Page 120: !VASA ct-/05)',1

o VI

« Cl J:

CI) c.. l-X w

90

80

70

60

50

40

30

I i I , i-i' __ L I

t ; -~ -r----! I - ~

! J I - i t i I I ' , ! I I 1--+----1 - . , I t I ! I ' , -- r- .- - J - I ! - . , , i I i i i . ---1 . -1 ~ -! f

I I I I -. - - -- 1 1 . I I I

1 0779 I -

! 1 ,.... 4--- -. t ! 1 i I ,

_ --.+---",,--

~ I

f !

':--j- "-- -1 I I - t

f I 0899 I

• I I I ! I -. j I - t ~~ I I 0967 ! :

-i- Itt .t~ r- ~ - , . ,.

L.._-+---_~

~-- I I i I I.!::::. L --- ._-- ... , 'T 1 116 : I

1 I

~ __ .I J I - .-f-

! : I i 1 194 J

, ! i -'

j --- r- r- -I I 1 I

i t . 1 .- -- t---

I

I : -- - -4- --+-----+---, :

I I 1 I - . _ . .. - - I I

1 , --l-~ - ...... -- - - . - - . :

f I

I I t I : I I - ----t ---+---• i 1

I t - -- - .. .L. ._ ~ . - t-I I

t , I -I - -- - -- ~-, ! I

I : I t' 1 : t I ~----t-- .--- ---+--,

i I

L t 1 , i I

t I I t I I _. ! ---r- 1 ,

I I . - ---t-t I I

MACH NO

o 0779

0 0899 !

00967

6 1 116 I

~ 1 194 I

...c: ., , , ,

! . I

.J fl I

t -f--j I

.L rI' ·r t H; I

I

-i--- r I ! I

- -I r-+-~ J ,

I 't-',.- ~

-t ~2 tt-' -t-, .-t-- ,

1 -·t-0,

~ : P--- ~ ..

r- -, ' ,

[ ... ~:! o

-f- - . . : -0 ' ;-- /--./--. I t - I 1 , t : I i

- .0 i t, ! .- j 1 ! ! -)- -+ ./..---\.- .j- - .j ·-4-.. I I .i , I .. " I .I .1 i . ,i

10 20 30 40 50 60 70 80

% SPAN

B-7 EEE Uncooled Rlg 36% Reactlon Annular Cascade Exit Ps vs. % Span (Area Averaged)

i 90

--t--

100

Page 121: !VASA ct-/05)',1

o 0\

MACH NO

• 00779

~r---..-Q.'"'_ - -+- -- 0 0899

~~, ___ ~ __ 00967

~""-~ _ 61116

~~ ~1194

.• ~'" ~ \\\[0 j-- 1

-- _:\\ib i I -- _\1~ J

-,\1 I I l

T --+~\~Imtt-I---t---+

~---+--~--~--~ -+b --- - ~ --+--r-+-+-+---+

I •

i -1 - r - -1 -- f-- + -

20 30 40 50 60 70 80 90 100

% SPAN

B-8 EEE Uncooled Rlg 36% Reactlon Annular Cascade EXlt Pt vs. % Span (Area Averaged)

Page 122: !VASA ct-/05)',1

Q. -­Q. <l

• II'~ : .. : 'i'l Hl!!b !h· I :1,! ;. " d'l:I!:l: ;p, Hili' ," ~ 'I--'~ ~ : ,r!: ~ '~: . :. '!i l .,It I, 1:;1" .. :' -14hJ.1~4 ~Hf LL rI. '.~.I . 1 ' I'. ;,1. STARTING " ~ MACH NO ..... t" , .' ',' 111 I I':, lid, I' " "I ""1 III,"" I . . 0 0967 : I i' I· ~ ,ff - ! ~ , I .: i ~ , 11 f " t .' t I I I , 1 1 It [ ": I l..!...... I ; 1150 1

024 '1- ~iI " II ,.: .... I;.' 4::1 • : •• 1 "1': "I' ,.', I ~+ ~I" l 2050 0 0965 ,, 1,' II I,... It ','I i , : •. :' I'::'d!~ ,,:' ,·1111 1 " • i' r 2

...... I-~~ ~~ , I If "1 .... ~t-t-...-r-'-"""'·r -+t ht I'M· .. •,

I _i-t, I· I:~' ~t·:O-,f ~Ij f :j .. " I "I. '111'," • II'!' I 0 ,. . . ... . ' " .... --+ 40 4 0967

.- loll r~l;;ti;:' -: I::i 'It : J' •• ;.' :': .: '.: '1< :. j' '. 1'" 1 I. j 't-j- I . _ ''7 --: I • +ir[lt:t· tt' ~·-i.T"· ! .... t ..... ~· t-· . 1 r~~ "" . f ' , ... 1 - - -

: • .' ' I • ~tl. t 1 • It. " f '. I :: ': 'd : id t ~II J 11 I' . i I I I I t,l 020 of -'- -~I--'- t .. 1--, : -+-~

I , • IJI·~~II·III.; '" I:. I, . I ,.: I': i:l l,:i:i J , .! : I !: I +=!! ~: , ~ t·~ It'll. , I ," I" I':, :ji!, Ij' I I I 'J I I 1,· ':,' +'+'''t-t.~ . .!.! rT'·p., ',1 ~ ..,. 1~-""" ., I j , ,. - "f'- ••

.L!' . rj1 , ::. i I,: 1 '1 . j'::' : .,: " ,'. . _.L_ -~-.. - .•. - I~- J_ • .1

1' . f-- -'-1' +- r- ~.L_:

.. .. .•. . -r'-:-.-' -~.~.-~. ':".',0:'::. -I ~I. 1-1' t •• 1 ;. • rl'A I" • ." : . I • , 'I

016 I' : .>-a. ,,':r . , .itl' _.J. ' ~ j ., •• .. L .-~--.'--1 ! '1 ~ I' I' I'! . " 1,' '.' : I I 't-· .. ,( ~ L:,-f- "~'.- .. ' 'j. 'r-~ i --1'1 t t: I ,I •. , .'. ,

I ! \~' ',,'. i·,' .!' I ~--l .. -t·~--~·, . r '-I,· f-t .. -~ i"~ -'j ... \\ ··~r7:' _·t' -( ,·t· r "'1 - I I ~ j l'i : . ~'p' I

o 12 \\.' I ,. I 1 .• - ...... --;'- --7- -to -- . - t·· 1 :-:. - .-j

t-· .. ,l~ "1\, \1-- - r .. t ,_ .. : ' ! j I I I I 1: ~~ \ .: " . _--~'" . i .-- _1 .. j -, - -1 - t_~·1

Ii' !l'~~ "!':: I: ~: . j' ; ":- ~Jr ~W, -i'" . -I .. "1". ,I I 1: :;:; ; . ~ !. . i 008 I " ~ \1 I I j- .-.. - .. ~.- --:- ~ -: '---j 1.-1' .- 'j

·-t· .. -:L_. f: .. · ••••• - "'l~'- .--.W;- , I., ! I 1 1 'j ., ' I I ' -I" . l'j 'f'" 8:\ . .-li f' r ", I

-- ,,~; .. · .. ;i ~\ . I :;'i" I -t-t:- -t-'---·-W--;- -~ -, ~gr' I ··-r-·--J

-J.l.. ._.L:l • I ... -+ - '... .. .. 1. - -l.;.~. j i· l' -I I 1)a.J... - ,

004 ': 't ; .. '1': . I' :!~~b.. :' . ..1 ~-r·L .. ++ .:. -f ;,' .'. +·---t -~ '-,-'-'j'- ", t. .... +.~ ~:! _~;~~'.'~ ' . .'Ji~ t ! ..:J.j

: I • I. " I _' ~ __ ! .. :

-of-- ;·+"·~+"~':l: ,·t· ..t~- +'. 7":~- J'-r \ 1· I I -, I, l J:: O~~~~~~~~~~~~~~~~~~--~~~~~~--~--~--~~--~--~--~--~~~

o 10

8-9

20 30 40 50 60 70

% SPAN

EEE Uncooled Rlg 36% Reactlon Annular Cascade Deslgn POlnt (Area Averaged)

80 90

Page 123: !VASA ct-/05)',1

o 00

119

118

- }

, I ':-- -- -,

o

I ~ -~ , .........--,-----:-----

I ,

j 1 -~- -: , I , -I I ! ---"'- - " - -. - 1

I

I I I

:

~

+- - -"'1- - - ~

I - ~ ---

I I t - ---~-- -+ - I ! -- - ! I

, I :

, I

--1-+- -~-- --. t-I ! I

I I

-~-- - 1 i I I - , :

-r

10 20 30 40 50 60 70 80

% SPAN

B-10 EEE Uncooled Rlg 36% Reactlon Annular Cascade Inlet Pt vs. % Span

90 100

Page 124: !VASA ct-/05)',1

-o 10

u.. o

1

316

314

312

2 310

t=

308

306

304

-~-j ~ ! 1---: i I -- ~ -- - -- -, i __ 1 i --l-- --- - - -- ~ I -i t . . ! I :- -t -

: I i I I •

~- ! '----;--- .. _-I i ! I -

::..--+------ --- 1--:-- .-- - -- , )

~l i . i -: - -+-- ---t- --I---

1 ':"i .....,,1 I , . \ , t@r--- ~-- -~ . , ~ i ~-~ 1

1 \pi 4-- t 1 1.1 : 0 i : I! I ! i

~~i i ~ ri- t ; <> I ~_; ~ -+-- J 1-~-I • i r-.. : ~l ~ i I IJ'X -~K~- 1 ~' I~i T 7: . I ~ , ~I i ,J.

1 -+--t-t I t Q ~ -- I- b I ! ' GJ ! - 1 • - --1 ~l

"'. i "uI' ! ..... • 1 ; AI. I ~ : ....! I} It

i iii 1- , .~- ! -~ ~ ! ~, : l?~ :~~ -~-t--~-

I l'!ll ~

i t---r-- 1 -- t .i __ • t _1 1- ~- --t- f--.--

: ! I

"'" I I .: • 1 I t

1 ~ ..:~ l ~ r 't-l t-If t-A~- j_e_i __ ~ I J 0:-: n ,

f" • J.Il. -'-r-x 1----- -- . --J. ~! ! : I ; , : J . - . -I -

~ "1 - I "'1""- i. '+-', j ·eJ if '±t ...... .-+t - L- i -- t--t!,\- i - --- i - ! 1 RAKE4~ -- - --- ---~- -.- t - - -- -

i I ~, ;-'1 r--

-- I . . 1 .~ i :_j~L I- -

I- 0 4500° -

I I ; I I ! ~-f-- I--- 0 I t--j-- j , -r -t- ( ! ... -~ ~, :;,l--9000° I - -- T ---t . --

J t$ r" ~!1 I im , 1 ,

1 , - .1

~ ~ 012375° t I ! T i : ·t~ f'" -:4~ qt· -L-t-.!--F-I---

r: ~ ~ I-

~ I-'--~

~ '--

E, :

o

616900° _ . I -+- _-1- __ . -- --

i ; ! i I

~ 20025° L -

: I : I I I

L~_ - -- -- , -- ~--- .. I D 24375° •

i --r-

i - t- -,

i i i

026900° f' 1 I . - \-- ~--- I -1- --, --r-- -1 - 1 f-t

035650° : i ; ,

I I ~t- f- t - I : .1

T~~T J .. I, --1- r -f- t -- - - -+ --f-+-..... !. , .. ..:, I i i .

10 20 30 40 50 60 70 80

% SPAN

6-11 EEE Uncooled Rlg 36% Reactlon Annular Cascade Inlet Tt vs. % Span

. .. .. -,; - -!ti~ ~J ;!l. .. -

~f .il .. I :m; r"~~+jE . .. • ,tI • +~ .. : .. --ttt t.. i :: .. .. ;, J

_B fm ",t< -i~ iI ;-8 tit j:: t·n !...t!~

·.tlm~ ~r: 'm :jj-> 1m 90 100

Page 125: !VASA ct-/05)',1

.­.-o

en w w a: C!' w C I w ...J C!' :2 « a: ~

24

22

20

18

16

14

12

10

8

6

4

2

0

.lil ! ,'.'1 -t~ 'r -"--''-f:,l-t~- tl- " ',"1, ,. '11-'1 -1-'-- M"ACHNO 'I 'I lI: 1'1'/ :1. 'II': '" .:", ", '1 ""tit-: :' II I d, ~ • I ..,...1 I I" 1 i I t":- . tt ,I ,-:> :.t, I' ~~Ir '" j·r '~T 1::::1: d 1 T,·l + , I I 1 +' 0 ' , .~' ." , " " 'or ' :....l.--t....L -H:..-I-- 1 , t." ! ,.l. •. + -i-' .. 0779 \

'I~~ J' '11" "'I. 'It:'~'~L' 'l:i~:l,.; .1-. \', I'; I I j "I, 0 0899 , 1 .. I .. 'hi I I I" I,~t d I : 'I •• 4.' I I I I J -4 ., - !l -::"', :t' 1 --; . r;- ,rrr Tr:-;. I'" • r:," ·,·tt' I I, I 'I 0 0967 I,

'. II! "', 1 ....... --1--·· . f..-. , -- [. - I -. ',-;- ,- ,-- • . ...:.i~~14~-4~ I ,1 .. ' ~ll-_! • !I '!:, .: ,:.J' _~, 1 .~.. ' I I j , I" 61116 ! 'f.~' I't! ,i~ ~1:'r4:; ,:. : j 11 I!. ,;, I I I I: '-1 I I , 1 "j'

T . --1-- .......... j._-' _1. -l- ~- ~ 1194 , , ,,,'1 , 'II. 11;, hllul J , I' : "':" ",' 1 II: i;":I::, " ,1 II i ;--- - - ,'" -- I

--::;:".~:;; ,I, ~ , ' ';"~- -. ,- ': -. ~:' -; -+:,~ .. ,1 ,!- . ; rHl - 1 i, I, -DESIGN I " : I I:;, I~, j ,1.. i " ", I , _ ~ - -. I --f-~-L~.- -- PREDICTED 1

1 ll, l+t >~I:il 1 't' .. , tilL I '" i t: I, I ;1 1 1 I ! ... t:' I ~ • ~ U', •• 1. 11 ,Ijl j~. It " I .11,.: I" I J, I' I l

• f"!' " -a. -;-":1. t+f, ~1: II· ... :~ ... - -4 t - ..J • f* • ,- l.l _ • 1 - I ~ -

.'j :'ti ,::1, " '1', ',: 'iI,,' ,.! h:' ,'" :1,1 'I', I " 'I +1" I' r ' = ,H. '01 j- ~.:' ."t~':""- -i--~- -'--j .~.:;'. i::i :j~'" .~", Ii 11 )1,,1:1 }! 11: i' ,',_ ,J, ~i _,. l l' II '. I ! __ 1 ~ I ,_.I .' I' I ::ii:.tf -:l! ';" j: J~'" ... If " " i 'i' L +. , .J H~I . • '-...L.,!- _+-_1_ I -. r '-I ,~ , +-I'~' '--~ i

." , ~ nil ft' 'h.iii: • ~.'.J f1t, lit tl L ~ ~. ~_ 1 , :.: ,: ,1 l I' , I: I ! ::..-- 1 -I" 11

1- A; ';.:: ' .. , 1:1' ~,i ~ 11 ~,~,.' 1 '1 ~! ,,' , ' , 'I I" , , J) ~I-;~ - t J -. -+ '-Y1-,.i-L-..! :- -+ ~

~- ~~ .. : -:-'~'i>'" ,I'" " "t'!~~_.~.f~t~ i"I1=~;'1K! J'! ~;-'i<':~,:i : ;-:·1 : ,"',,' ,:' I " " '; ,I ,I I t I ': '~I- ---I . .;..;. I' ':::T • .Ll!I - ! :~ , __ ~ f J .1......-f-----1

l ' " '1hl~~' J' t';4t, ", ,I ,', I' ' '1'''1 ~'~ :1 I '~' I ' - 1 j " j '--'~t' tz.",,; _,('.L l .. U" !!.l_ ... .!..!..' .'... !-•• " .. , •• J , i t ~.i, ~' .... :rT".! I ~ I t l ;:h ---rr 'i I I -~ t I I I ';--r --; II.. iI' 'I -- l ,. : ~l' : .. it! '11 ,::..'1: :tJ.,:":.!it. .1.'1; it1!J!!lli!:l f I--- _~ I,i' .1_1 _ J :_.;.~ ~~ Ull:~· ..... ! + __ ~ , ','fr,' .'" :.fI 'f! '!,1 d ,'l. 'jll: j' "1,, III li,1 ,'t1 " '" I ' :j. t " ' I ..... , E::' ~ ~ ~~~~ J

' I - : .. ttl' 'j' .;Jt L, ·"t" " 'IH" 'jt, '.1 I, ! :' :" , : '~ ~-' if I • t ... 1 .. t :hh: r l ~tTi n.!. I ,.1. ttl t J1~ I • .1-.- __ ' ~ ... __ t J I -L ...,;~ . . •

+', • Of :,' ": .' , ',,:, .' ,j • ;!.:l~., -.t,- .1', '-::':~. -'. l' " ' I '-H"~' - t,~"',m 'L·

i ... ",

'" ',f.1L '!':t,I;,!I"t\' 1 'I'. ltD.! ',11'11 r 1 ,--I ,"--, ~~'~ . • 1t11,t,l,iPt1t .. i;F··1tt.I~II' 't1·!'~ll!·.I.'", I! I ~ I I ~·l \..:.J I T:;--+...,.-:"t ',11- ,1 I,' :'~it!t :- -nl·:",: " ,. 'I l:-;t 1"~' 'I' • I .. " 1-, , ' II ,,- 1 -,- '%'" -l-- : -, ,', : I ,j: ill .U, J;t:;-, ltu " : I 'I I!' ", "'1:1' 'I I ~ , .J... ' I

, "Ij ,t:, ,,'; '. 'i" III II' I" 'I: : III t '1" I. T Il, '+-, .. r .. ~ .. t-T!, I :, r,,----l " 't I "1. " ,., "! I' ,,' Ij "W ' , 1~. " !

,.! .1-- ,,+;..!~p .... ..,..++t-.~. ,.) :t' !+4!It1~I.!,:.i rtf'" H' - ~ , '1 t,·- I ' '1'+ 'I ",- ,1.Jj~;'" ' .., ... I .. : li r :ff, , t t.~: ~,' . I. ,.1- t:, I I I • , ,

, ".1 "t~~!' ','JJJ ,':., t· 1 ,', 'I.' t, ,j, lit :1" P' '.' I "I I " i ' J I " " ".: . ::,' ;" 'I .\:1 ",:' j: ' ',;; J, ',,'" 'I,' :', ;.:. 1; , , '!! -j- "._- .-. t '-"1- -- -t-- :...-i....l -

:':"/ h,' L r;;I I., .,. ,tl 1 ~: , , I' I, ,J t ,;tf HI' ',' : J ! " I !: ,I :' • .. , .. ,t '!!t +t!lt ' tu"" fi:71 t:, :;, ., r'I,: " !' -, t' ••. ,t . ,- 1"'" j 1,' J ' 1- t -r;, -j-- t·- .~T-I:' 'i:1 !1tl:lIJ-l.;tI,n,T, j;~t;.iH t .. "l, :ilt ,;, 'Ii :1.1 'I: luh,!" 1'1' 'I, ,1,1 I I'" 'r" j- j, I '. o 10 20 30 40 50

% SPAN

60 70 80

8-12 EEE Uncooled Rlg 36% Reaction Annular Cascade Alr Angle vs. % Span (Area Averaged)

90 100

Page 126: !VASA ct-/05)',1

0 0 0 "" 0 'I I I 1'---- -+- ..........1.-- ._+--

: I I I

I , ..... --" .. i

.. ,- .-""

: I 0 I I

b--~ - -- 1-': -- -~- --- ... --

I

-i:--,

t---~ -J ---.,.--

'J. . , ! .

,-

OJ 0 :J ,qi -,

;!

~

r

--- B-13

MID-CHANNEL Ps - Ps/Pr

0 0 o 0 0 0 0 w

""" 01 (l') " OJ <.0

! I-t-I

I , , -.~+~ , ! I I

---I I --I

! - j ~ --I-

---,--- ....... ---, i , -L 1

i I I ---r--I 1 ,

t- -+

! I I

I --+---- -~ -~

t I

- h_ . -- - , t

EEE Uncooled Rlg 36% Reactlon Annular Cascade Mld-Channel Statlcs vs. Predlctlon (Area Averaged)

0

"III If . i ,

~ :

~ f-

Page 127: !VASA ct-/05)',1

10 ~L i- . r j I i - - -0 10 .-+------ f-;-+-- -. f-- ~.-f---!--- ~-

:-L· _.I ' .1 ' t ---DOD

E1~ 1.· _ ~·...;..·:~::1+-~+_J..,_~.':",_ : i ~~ J , 1- -IT:., k r ll'!_, " '. '-:-'1' :-.' j':

09 ~r . -': " I ---'J~:' . ~ I,· ·1 .. - !.::- . ~.:. t r -~

I i " - f f ' ~

I L I:--~:. - f. -~ t I ,- 1 E-~+--t'-· l-l-~~' ~' -~- ~ - II t, 1- - ;-- ~ - - • I

- • I

08 ._, _ ._ t-: _! r . t 'I: .:...........:. f-. -: - ~---I=-~. - ... '-'-F-!--f-~-' - -- ,-+--=t-- _..L_

::.. " 'I . !. - j H-.;::....-+---'--.4---_+-._~ -1---. -..;.....f-•• !-. -.- -:--:~-t

.- .' j , "'" ~ !.

Ps %GAP Ss

B-14 EEE Uncooled Rlg 36% Reactlon Annular Cascade T.E. Platform Statlcs vs. Predlctlon (Area Averaged)

112

Page 128: !VASA ct-/05)',1

1000

0800

0700

0600

0500

0400

I I " MACH NO , I" ; " . '1- --': - i·+ 0 0 779 t' • t I I l i;' 0 ---- .-~.--.----r___.--<'--,-..,., 0899-

t· . , 'I I I

.!.. -. , • ·t 'r" - r - . r I' [0 :. _ 1 0967 I

. 6 1116

, ~ ----:--'; ~ 1 194 .... _~~~_ .. J .. -._~_ L_ .. ___ ~ ____ L--- ... --~- --_ -

Itt •

t . ~ - I": 'r _. __ L-~J __ . :_- _ ~-, ___ ._-.

! ~. , -,.. .. ! -- t ,.

L '; . - , I

-. t - -::-r _. .-.-. ... --t---:- _1. ___ .

, :, ) _ _ ..... l_--.-._.,..

, I , ,

-- ~ - -- --~ ..

-------- ~- .. I t.. - -,-

~ - ... -'O' _.~ - --'""---r-Oo

I

f l ' _. . 1 '

-:-... I· t I , t .. I I ;- - .. -T---:" .... - - ~ - t - ,

i I .--: - - -t- -~+

i ,t. .. -J ; ,-

J r _.J~ ... _+_ ..

1- --.----

.. - - 1

-- --- ... -~-- ----.- - .. ---....,.....-

o

. . .

006

-- .. ~­. , ~ - .

. - ------

0300L---______ ~ __________ _L __________ ~ __________ ~ ______ ~~~----

o 20 40 60

%x/bx

8-15 EEE Uncoo1ed Rig 36% Reaction Alrfol1 Surface Statlcs 11% Span (Area Averaged)

113

Page 129: !VASA ct-/05)',1

l­e.. -.. en e..

MACH NO

o 0779

--. r -1--:_ ;---~ ---'--+ -~·-l.:-~--t . 0 0899 , ! I '; J _ ~ ,._ ~ t' i" -__ --.:. ----------r----r i'; I -~ 0 0967

I 'I :!. I 6. 1116 ~ ,.. ---j- -j--I ,:,:, ~ 1194

0900, - -.---r-~ ~ -.- ;---~--r--·-;_--·-r---'---f-' I I" I If' • , f I , i --;. -T -. fr.- .. - :-- - I -; -. r- f

; --r--- -.--+-----1-....~. f -t---,'- -~ i i . J : ; .. -t : ~

-T-- --.- -r- --. - ---I- -- • --+. -:. !-- .. -J..-- ,--- -t- . -- l:---~. J-.--t I! ~ : ' L _ ~ ~-

-+ :-_....l-___ + ___ -!_._._ t- -~ -+---- - "':"::r''--~ : I.. t t I; _ r -- -.. I /0 - - -

0800

_ ..J _ ., __ . .• __ • _. I-____ ~_ ,

0700

0600 ._- -.--.--

0500

I r

t -------r---0400 -

0300~ ________ _L __________ ~ ________ _L __________ L_ ________ ~ __

o 20 40 60 80 100

% x/bx

B-16 EEE Uncoo1ed Rlg 36% Reactlon Alrfol1 Surface Statlcs 50% Span (Area Averaged)

114

Page 130: !VASA ct-/05)',1

1000

0800

~- - .... -:-~ , ~-i--- ...

:- ,

MACH NO -:

o 0779

o 0899

00967

6 1116

~ 1194 -;

1 •

--+--t-~-t--__r____---:..---~-I J i - - . -- t- --

I , 4--__

j ,- ,

-- -~ .. - .. -"-i • .. .. - I t - ~ t" f

----1_ l- _I -.-- t""-..:.!---='I

j : ! ---+---10-=--[ ,

t - ~- -, r-&_--"- ~--- -'- -0--- t -0- J- - .. _... _ ..... _- :.....-....t ___ .. ~

r I t I r . _ ~t ~ 1-:-- ~:_ ! ----4---+------... ----- L:..~ __ - - - --- -l ., I ~ 1- ,

I _;~!._ - L .. ... .... ~ _ - 1- - r - ...

, . , : I

-----"t"- -- - .- ----- -----. - - ... - -----r---- --..-- _ ..... --.....,.--- -i -- -

6: 0700 -­CI) c..

0600

0500

0400

0300

o

-_-I I I

--- --,---------- -~--i

20 40

%x/bx

, ~-~ --- -

60

0°6 09

00 0 ~

IA A

4

~ .

. ~ * A- :­b-~ fk- - t& ~- -~--.-

~

80 100

B-17 EEE Uncoo1ed Rlg 36% Reactlon Alrfol1 Surface Statlcs 89% Span (Area Averaged)

115

Page 131: !VASA ct-/05)',1

B-18

116

EEE BUlld Locatlon

VIEW LOOKING UPSTREAM

o T E PLATFORM STATICS

o INLET PT

o INLETTT o EXIT PT RAKES

t6. EXIT WEDGE PROBE

\) SURFACE STATICS

o MID-CHANNEL STATICS

Annular Cascade Clrcumferentlal Instrumentatlon

Page 132: !VASA ct-/05)',1

APPENDIX C - BUILD 2 ANNULAR CASCADE DATA

Figure Tltle --C-l EEE Uncooled Rlg 43% Reactlon Annular Cascade Loss

vs. Mach Number (Area Averaged)

C-2 EEE Uncooled Rlg 43% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

C-3 EEE Uncooled Rlg 43% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

C-4 EEE Uncooled Rlg 43% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

C-S EEE Uncooled Rlg 43% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

C-6 EEE Uncooled Rlg 43% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

C-7 EEE Uncooled Rlg 43% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

C-8 EEE Uncooled Rlg 43% Reactlon Annular Cascade Mach Number vs. % Span (Area Averaged)

C-9 EEE Uncooled Rlg 43% Reactlon Annular Cascade EXlt Ps vs. % Span (Area Averaged)

C-1O EEE Uncooled Rlg 43% Reactlon Annular Cascade Exhaust Case I.D. Statlc Pressures (Area Averaged)

C-ll EEE Uncooled Rlg 43% Reactlon Annular Cascade EXlt Pt vs. % Span (Area Averaged)

C-12 EEE Uncooled Rig 43% Reactlon Annular Cascade Deslgn POlnt (Area Averaged)

C-13 EEE Uncooled Rlg 43% Reactlon Annular Cascade Deslgn POlnt Inlet Pressure

C-14 EEE Uncooled Rlg 43% Reactlon Annular Cascade Deslgn POlnt Inlet Temperature

C-1S EEE Uncooled Rlg 43% Reactlon Annular Cascade Average Alr Angle vs. % Span (Area Averaged)

117

Page 133: !VASA ct-/05)',1

C-16

C-17

C-18

C-19

C-20

C-21

C-22

C-23

118

EEE Uncooled Rlg 43% Reactlon Annular Cascade Mid-Channel Statics - 1.0. (Area Averaged)

EEE Uncooled Rlg 43% Reactlon Annular Cascade Mld-Channel Statlcs - 0.0. (Area Averaged)

EEE Uncooled Rlg 43% Reactlon Annular Cascade T.E. Platform Statlcs - 1.0. (Area Averaged)

EEE Uncooled Rlg 43% Reactlon Annular Cascade T.E. Platform Statlcs - 0.0. (Area Averaged)

EEE Uncooled Rlg 43% Reactlon Annular Cascade Alrfoll Surface Statlcs 11% Span (Area Averaged)

EEE Uncooled Rlg 43% Reactlon Annular Cascade Alrfoll Surface Statlcs 50% Span (Area Averaged)

EEE Uncooled Rlg 43% Reactlon Annular Cascade Alrfoll Surface Statlcs 89% Span (Area Averaged)

EEE Uncooled Rlg 43% Reactlon Annular Cascade Clrcumferentlal Instrumentatlon Locatlon

Page 134: !VASA ct-/05)',1

TABLE C-1 DATA SU~lI'lJl.RY

EEE RIG-70709-2 ANtlULAR CASCADE DATA SUtv'r~ARY

*DESIGN POItJT

STEADY STEADY STEADY STATE STATE STEADY TRAVERSE

()PERATIr~G STEADY DATASET JULIAN STATE TRAVERSE DATASET PT-IN TT-Hl POINT # SCAN t NA~lE DAY TI~'E SCAN If NAi-1E PSIA oR --

11)70 HR:tHN 1 648 20074701 as 24 22:111 067-995 270747012R 57.32 778.6

2 798 ?00836410S 29 21:39 883-9]1 27083(i412R ,7.42 796.3

3* 1) 0 8 2009756]OS 211 17:07 600-627 ?70975612R 57.3? 779.7

4 366 20J 064910S 21) 10:47 398-4?6 ?7J 0649] 2R 57.37 7R7.11

5 10 201204110S 75 ?O :15 1?- 47 271204112R S7.32 788.3

RAKE PR08E AREA AREA WITED AREA AREA HITED

OplTG VJ-MAHl WTED TOTAL MID-SPAN \.JITED TOTAL ~lID-SPAN POINT LBM/S r"ACH # PT/PT PT/PT MACH # PT/PT PT/PT

1 22.n 0.703 0.0328 0.0100 0.7015 0.0281 0.OOCJ4

? ?3.13 O.7Sr:; 0.0432 0.01?8 0.791 0.0363 0.01?7

3* 74.10 0.896 0.0538 0.0151 0.911 0.0456 O.0~60

4 ?4.28 O.oSf O.066? 0.0200 0. 000 0.0571 0.0]79

5 2/f.37 1.105 0.09110 0.0357 1. ) 06 0.08h8 0.04?8

119

Page 135: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 136: !VASA ct-/05)',1

N -

c.. -c.. <J

02

o 07

AREA AVG LOSS

o RAKE

o PROBE

08 09 10

MN

C-l EEE Uncooled Rlg 43% Reaction Annular Cascade Loss vs. Mach Number (Area Averaged)

Page 137: !VASA ct-/05)',1

.-IV IV

012

008

004

o o

.. -'(!'

I,

10

" ..:Jc :--' J:: ::1. p!r 1-;_

::'~r l;-~

:-:::_. ~'

t: ;

.:t; :::~ l':,!

"~:E~ ., ~ '-

,5::?" " ;1 _"

20 30

.

40

I

!

i 1

:

• t MACH NO

t

j I!- ; ; ~~i. ::-

i : • -1 ", f[g <@. ~1::' ,,::~. .t:

I, t " J~ .l~: ~-:~:r .. ·::" ::;.;: ',: F' ;-, ±!j!:: i..~ . _- ...d1W~o:: ..:: ~~_,

; ..... ..:.1 t ~:::-. i-..-l.

t;Lt:;i !r.:tf:~.~: ~: 50 60 70 80 90 100

% SPAN

C-2 EEE Uncooled Rig 43% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

Page 138: !VASA ct-/05)',1

..... N W

Q. -Q.

<J

004

o o 10

C-3

.:":

:2 ./ .r ~i' .~. ~!:: i

:--:: J:-!}f.il! L .

. f·:r:7_

[~:: • I

~.. :; I--'y F:~.. :. .:;-

~: 'f~ t~d2~::·.J.~~:J:··~t:-·.;: r·~ 20 30 40 50 80

% SPAN

EEE Uncooled Rig 43% Reaction Annular Cascade Loss vs. % Span (Area Averaged)

90 100

Page 139: !VASA ct-/05)',1

o 10 20 30 40 50 60 70 80 90

% SPAN

C-4 EEE Uncooled Rig 43% Reaction Annular Cascade Loss vs. % Span (Area Averaged)

100

Page 140: !VASA ct-/05)',1

-N VI

028 !;""'"l __ f I - i - 1- -- -, - -- --

-- - ... - ...... -- --~- .... -

-f __ ~ _+ ' 0241-.... f,--+-r-----+--~.-.+ ._. ____ ... ,..... - - ___ _

J;--,i;.........j. ___ - _. j ___ .• ; .,'

1-:'1-'+--'-+--+-1-~-'- " -_ .•. -.~ -.. :- .•

, . . MACH NO I -, " -

• I- EXIT RAKES 0 986 -r<---w ; .. - •.. ->-_. -WEDGEPROBES099~ :J!.-~

-. - ------ -- --+. --~ ... - -- -- I ,...

: .~ + __ ~_._ _ __ _ __ • _ ... _. _ .__ ~.:_ T' -I ~-. _.

: -; .. _.

o 20 IO--+--.;.-;........<~--t.--.. -.-- .• . _. -- ---I -,

!

o o 10 20 30 40 50 60 70 80 90 100

C-5

% SPAN

EEE Uncooled Rig 43% Reaction Annular Cascade Loss vs. % Span (Area Averaged)

Page 141: !VASA ct-/05)',1

040~~----------------------------------------------------------------------------------------~ MACH NO

""------I EXIT RAKES 0 1 Hi5

{~~DGE PROBES_O 1 106 _

030--"";- --, ---j - - ~

j -I'-..,-~--+--- - ---- ---

i ~ __ _ .. ____ 4 _-'IIIJ.._~ ....

-- -t

~ .... I___4· -~\-_ r- -- -- -

... --- .. ---+-- -

% SPAN

C-6 EEE Uncooled Rig 43% Reactlon Annular Cascade Loss vs. % Span (Area Averaged)

! I t - ---1 I I

! I I . - t----j

Page 142: !VASA ct-/05)',1

028~ __ -I~_I~_--~:,---.-_---,'---~--~'-~i---. ·-t ; I I : I !fl..' I

1----+-.--------- - - t-- - ~ ...... -------- - .. ___ ""--_1._ -- -------- -- _ .... ---- -- -- - -- - --- ---- ---- -~--J.-.--__Hler__t____l - ; -p - -- --I .-, , ...... -- _ ......... - - --------- .. -- ... -------.-, .- --- -. ---.-- ---- ---- ---- ~.---------:~ I Ii -.-- t--.:--

- -- - -- -- - - - - -l-__ -< --~-----. -.- ---• .........,I-.....J----i------l : ; I ; . -'I' - 4--, I I i

----- --- _- ---__ ~_---_-_... ---.. I

024 J--...l_-1-•• ""-) _ :

, f-.......-j--+---.- .. --- --- ---- -- ----F-·:--

% SPAN

C-7 EEE Uncooled Rlg 43% Reaction Annular Cascade Loss vs. % Span (Area Averaged)

Page 143: !VASA ct-/05)',1

-tv 00

.~ ~;o~-r-r-;-~ MACH NO

1 2 F-+-+--ht:....~--.:... ---r- -- - ""-~r- --+-"-::::::::::::~:-:::~-j:.:+,_-~;;;..--~__ '0 703 ·,'t.t ' --1 0 786

-j

_-c~~~.....u...;..;.:.;,-,-..u.;.I..l..l.J...:.JT-""'"'"'-'''-'--r'''''''"''''''''=t • -l _-+ 10896

. _,}6986 ,~ _____ .... _____ -;-. __ -: -1 ~1 105

'~IB + j-~ f-.!j

1 1 :. i- '-~~~I : ___ -I-_____ ~ - - -:---------~

I---+---~.-----'-----+-- --~ -----

, " " i • r

, 1- ' 1 0 I-+-+--I---+----:r--+-----, --~-- -.. --!-- :

I -r--------~- - ..... , ,

t 1 I r I ! I

i-

-i - -1--' - f

10 20 30 40 50 60 70 80

% SPAN

C-8 EEE Uncooled Rig 43% Reaction Annular Cascade Mach Number vs. % Span (Area Averaged)

.-~ ~ -:---1

+c«-+--~-l !

90 100

Page 144: !VASA ct-/05)',1

-IV \0

CI) Q.

!:: x w

090 . .,.---'-- ..... - - ." ---,-------, I 1 : I

'1-:-; - :~~ -I''-_'"1--,+/--..-;---.---+-- -- _____ L__ _ ~ _-~-' - ~.:..=-_.~~

O 80~~'~' j+~--~~!~~~!'====:===:=~~~~~~=~~~703--------. __ ' ~,-' , 1f4-1---t---<---,-----+--- _~ ______ ....J.-

-I--"--";I--l-.- 1_ -.... _____ -~ _ .. _;- :

~~fI:~:====::~;~'=~;--~:.:..---"--O-7-8-6------::-----. ---- -~- ~---r--r----- ---+- - _-6--- - - - I I

-, -! --~----- .- . -- - ~ ---~~-~

~ ~--- .. 0896 _ ......... -.. -- ' '---'-~----- , ---' --'

I

--I-j .. -0986 -~:. --. y--+-+-+-+-=::=oo_...-t=:-- ----- 1 i -~- -~--- ~--.---~y - --- ----. --- --~~.~

I

~---j---~--- --- - . ~: -~:I: , • ...-J.- ,: -. --,

i, ,~ --, t' .----;------ _~ __ 1 ___ -~- - ----- -.--- -----_____ I

, r- -t- -----.-- .--- .. - .!...

! MACH NO 0703

, I I I;::;J=~~_t.~~-..... _..-+__- -+----~ ---~~- _ -- -------:- --__ - 0 786 0896

o 10 C-9

20 30 it, .

. -..+_+-____ L __ . ______ " .--__ ..4.-_. __ -11'--_-.-__ +-. __ ...... __ 1 ' I .

40 50

% SPAN

60 EEE Uncooled Rig 43% Reaction Annular Cascade Exit Ps vs. % Span (Area Averaged)

l'::l 986 ~1.~~5 100

Page 145: !VASA ct-/05)',1

<t en :I:

CI) c.. l­X w

'!..!~.' •• ·d.··· H• ~t!··£ • c... • f" 1.1 •• 1 ···t . . ... -~,... •.. MACH NO ·1;+10-::: !?~~·l:!tb:!q:!~ i-:!I+;::~.: ".: '" ... -= :...-:~ ;. ..:.: ..... '" .. .. ~·-;i ... : . ,,. '" .... .•.• . r;.r!.·· ~'Cf;:::' -. .•••• •• -- ._"1:-:- 0 703 ~:--:? ~~!:E~i~!t!:::1rt;:1::~ :- .;~ .. : -:: ... ~ ...... 0-: .. : _+! -

090 F' ... • ... ~ .. ~ffi- ,. f'" .. .. .... .. . 0 786 . :: ;:F ::1.:. !;'~!:i:: :::: 'ra ''':: . '. '. :' .... " .. : . I· . I . .... .... • • .... t· ........ 7 ... . ··i~H·-.:--r-· ~ 0896 t::: ... !: :;t f~ :~_;.; ~;i !.-i! :.:.! ~:: ;' ... "': :!~j; ~ i- .... 1 : .. ·t • .... ••• 1"-.:' ••• • t· ! ., .J" /\ 986 ........ ..-....... _. .... .. -.. • .. t i" ... .. L..l , ... !~ ....... .~ .. -+ ...... + ·t ••• t t! 1 1- ~... .. . . .... -- , .... ...... .. . ... 1-:- . . ....!.-._.

• ... •. - •• ". l'" ..'" . ·_·r ........ r· ::"r--'r~:-~"I . . r- ~ 1 105 ··.-.::1:: ...... f-+·~1·:.:::: .. ;: -...... l i .. -..... _ .. r 080~~-r.i~Sl~Ff~~~~+:~~:6;~CJ~~ ~1~J~I:--·. ' . ~~L± ~TI~T_rTJ~:r-~~T~[~[~-T_I=]~ I~~C]=r'-

!'" H ., ... ~ •• "1' ~.' ~-

~.:~ .~:::t'-.:f:..~i 1.:' ':.I ' .. --. - . .. ... " -+'-+-

... ., .. ... ....... 0-

-:~; •• :. :~- ... --!:.t...tL: ~:'b11Ii...J...';';' h:a.I....-r;':I;.L--! . Pt Ft- ~t F 070 ~1b:t··ffm=t.+++- .+_. t- --~ ... +-.. --

~f:: ':'. j" •• J : .' • I • . ---i' -- --·t-·~ .. -

1 .l __ ~

060 rt f m~'" ;>. . . -~r-l-t·-t· .. ·

~ll~ o501;:::I::·=s-·~t i '~f GIlt,,·} :"!ffi:l'" '!--. I ." .. I .. :' •.• ! .. ~ .. '~ ~"!- i= ... !.I ' ..

,J

040

... ~ '_'j f' IiI tl --±: -~ .\'.;:. f '-k: .. :J . Ld1-;:

f:;Ht'·Ht'-;~~II::ill~··f "1 . TT-~l 1.1 t:I~I--:;-1::-:: :;;!L.htiillLTI: ~!;:± lr·I,~.cL~IL ... "'·L_·'· .~. l·J·.J L.ll; .. -~--~- ~-. . 030 , . :, ..

• . ' I .;. I' • 1

fT! t·' r;M· "'mj'" , .. . .. .. II' .. I 'T' 'n' II" .... .. . .. .. ." t" t+ ;1"tt ~~tl ;.' rtf' !.! .,~.~ .... "! ;ili.H±it~: .. i1++t 1':- .' .. t '.. • .. ~ I:: ..

. :H±!i±H1:;t: .. • l' .. I , • .. p. . . .. ., ... ~.

rtf -: .. ~ r::. L .• : ::'; :!.: +::: '!; :::~ t~~.ih :~t :; ::~! ~!;:-~!:.+ ~:.: t : ... ~: .' .. ' .;t~ .! .............. 1:':-!- "'HZ :''"t1 .... : :: .. : ., !. .. at l !t.' ~+tt 'Ut ."! ....... tt : ..... ! '1' ;'.,--;-' : .. ' ..... ::.t-H tt: ..... ~ ..... !~! :,.~ '!!

.'!1i !:!!! !!!! ~i:r ~: HJ :"I. '!!', n:""lIHL' :'..1.1 :}it I.l t' •• !:r (t: +;t .~- i._ ___ _ J.. .~.;.,_ ...... ~'!!1 .. ~. OL_

010 b. IT jj,

o o 2 3 4 5 6

AXIAL· VTE (IN.)

C-10 EEE Uncooled Rlg 43% Reaction Annular Cascade Exhaust Case 1.0. Statlc Pressures (Area Averaged)

130

':'

Page 146: !VASA ct-/05)',1

-w -

l I­a.. l-X w

98 b

-

- -- !

-- • - j

i 1 -I

I . i •. L

70

% SPAN

C-ll EEE Uncooled Rlg 43% Reaction Annular Cascade Exit Pt vs. % Span (Area Averaged)

Page 147: !VASA ct-/05)',1

-W N

c.. -c.. <J

" . , 020 .. I

1" ~ . l-

I

.' . i

016 :.

-' t-· . ~

. , j

, . - ..

ij • T , .. ' .~

j j ( t '.~

j' .

008

004

I ....

-

. , \.-

I .. I ,-

- .. - ~ - +- ~-, . I

... ... , ~ 1:

S •• T' t t· i

,

• ., j

~'+-:1-'-- ~. 1... I

t "f -- . I ,

--L~_

. -' ).

STARTING 4 RAKE Mn

1150 0 896

2050 0 2 896

2950 0 3 893

250 ~ 4 899

L

, . , ...

o ~~~~~~~~-L~~~~ __ ~ ____ L-~~ __ ~~~ __ -L~~ __ ~~ __ ~~L-~~~~~_ o 10

C-12

20 30 40 50 60 70 80

% SPAN

EEE Uncooled Rlg 43% Reactlon Annular Cascade Deslgn POlnt (Area Averaged)

90

Page 148: !VASA ct-/05)',1

-w w

"< Cl

::I:

:2 ::. (I) w a: ::J (I) (I) W a: Q..

"\

118000 _t:-_ - - - -:- 1 '- -:-_t- f I : - -F--_ r=- -t--f -- t_ -,

4::= :... - - -- - :-- -I- -: - -L -r i ..; '- -r - I -E=- o. E:: - - !.. -: -F: - --- =- - -- :-J-- ,:;- - f -~! - l- I -I I r - C-t.

- - ;- t ----- -- - _t:- c--- ~-~- f .:j -- r T (-:- i ' f- 1-:- :- I-

117 000 - 1 1 - -L- I I t- i - t I 1-- - --- ~ - - - - i --

--F: ,-~ J

I:- t:, 0= - - I ~ -:- - -- --L

116000 -. - - -:- - .~r- ! i 1= -i - I ~

-tEo - :-=-=1- ! -- I J i - ~ i -~- r I . - -= '--

0-::-"":: ':E ==-t- i r - I i - ! ":: - . f--- t

1:-:- =-::, - f-- -- ; -f =:.: i -1- -4 - - -- -- - - -- 1- !- t...._

I=-=--.

~-- ==i- r- -! .: I ! -J - r

115000 - :1 - - , _t: - ==

_-i L- --l: ! - , .lc ,-

02/13/7921 4018 :F=-- : r=- ---. - _-t -- -:.1 I - - -1:::-- - -=-F-o --.t- .: -J - l AVERAGE· 116 689

~ --- -:

-[-: r- -1-- - i - - I f 114000 1.= : - ! i t- ~ 0 675 DEG t;; - - :- ,-f.=. =-= E r -, --I--=- - - 1- + - 900 DEG 7

-f-=== -I : - _ -1 -- t- - -

t-:: --- -- ::.r 1 DEG 7 !"-- -- -- - -f-: t -I ,:- X 1400

- -- -.-113000 - 0 DEG r .- :=-~ - :=: c- --I -1- - i - I -[ 2175 -- - -.

-- i:::- - , - l i r F- - - -- --!OJ:.;; -- - -t-- I t-=- - ; I

1 - - ! I

112000 b,:-':-::'- -:- - - -I J I r- - i I -i f 00 20000 40000 60000 80000 100000

% SPAN

C-13 EEE Uncooled Rlg 43% Reactlon Annular Cascade Deslgn POlnt Inlet Pressure

Page 149: !VASA ct-/05)',1

u..

C!l w E-el) c.. ~ w I-

1 ~ I ':! -1 ::- .I ,

;- -1 't: :1' -. :-J' ' 1 i

! i 1 -:1-

,I ----L' .'-f-' +-:-r

I

.:Jf= :-' -: :J : 1 ' " j-" ,,- 1" t,,: - '

316000 ~""'f.::: 't:: '-~ ',' I '

:+ - '--:: ',:, '''''' 1',

20000

,L.' ,

1 '

40000

% SPAN

I

I~ ~t ---

60000

,. , ,I

,

1: - f i I I

,I

1

SPAN

6709

6709 I' ,I'

-I 1

1 t

1 I

80000

C-14 EEE Uncoo1ed Rlg 43% Reactlon Annular Cascade Deslgn POlnt Inlet Temperature

~J '

" T

,-

-l ,

VALUE

149820

2110

100000

Page 150: !VASA ct-/05)',1

(f.I w w ex: (!) w C I w ..J (!) z <t ex: ~ 8

4

I" ,

- -1

I I

-.+ . ~ i -,

10

C-15

.. - ~ .. -I ' .. ~

r ~"r~-r

r--r

, , .

20 30 40 50 60 70 80

% SPAN

EEE Uncooled Rlg 43% Reactlon Annular Cascade Average Alr Angle vs. % Span (Area Averaged)

90

MACH NO

703

786

896

100

Page 151: !VASA ct-/05)',1

.en ... t' ,:.. b- ~ .j_ .... - "r- .+::- '",,~\ ' ... ...:'-- -,' ... , + dill) _ , ~ . -t-j I

~-- 1 '"" ... ~ ,'" • '., ~ . . !. . t·· . J .... .1 :.' .•. - . - -- _. - - --':';'7 ; i

• I I; i '. .'.: 1 i 07 I'- '-- - -r-f--+-- - . ./-- -,-- -~-f--

F- j.. L .. l 'j: ;.! _ __ ___ .. _:{ ~_ ._ . . ":. i f ! I 1 'I I 1<::" " -'r -+-. -r- -~-I--T- H-. ' :~ ;\1>1 '

I I. "1 _ .'- r-'- ! , 1 -I ", :. t - t.. - -":j tor+- - -;-. T·....!-F;--' , , , , ' " i '\U 1 ,

I- 06 -j._'--j- f-'-;-I-;--I-T - -;-- -t- -t- ! 'r£ ~~ :-.e: ".. I L • ~'h' tf i-I· t ;- : . - -! " -f-.'j .- - '1"- '. -!H. l r+-f--r"- f--,--+- 4- -4-- - -------,--..;...... --1 < ," ,. 1 • if t " •

tf j. r j . - ; .. ' t·- .. -1- .. - ;'-1'-' -1+-'~

~ 05 ~- -or i'-f-~ ;---- --L J I( ~? ~ i-" : i . - ... - i - I .. +. 5~; ~ It- -;-1---7- -~-I--i - _.L_ '-'1-- ~.A~_ lp, '~Ih~': ": ~ 04 '! I' i r. ~~~~ 'fi~ . : .. ~~.:

• 1 .,' - ~ - - t, f-- -- ':'-- -+,-+'--'1 . , , f--j- !---1-f- t'-. ----f--. -:- -- 1--. _+-_ r-

I , '1 ! . I

T - i .. to. + - -1 _.- .- r-- - -. ---:f-~ o 3 ~ -t i .-+-1--,.--1---+ i .... ,

_.j. -I L o. i . .; . _1.. ... ~.. -J - f----,- :I--,-t-'-+-+-lif~~;'-li' Ii I I ! j i

_ .. i _ I-~' . -I ',;: .' - t

T· .' ltt ;,1; .. '1

- '.- ... ' J __ . I-J--'''1---02 _ r-- _ f-- ____ .. -; ~ ____ • J_

--t·_· -- ~r- I---!:' :~~

~ 1'+ t~ ... :: I~ ,.:n "t', r;

01 '11 .II I .', I:' '." t,; •• , .. l' :... "",

~ 1: :1 ~ ~~:~ : :i :_:l li' '!~f

o IWU*ih i~l;l~h li!!l 1;1 til H1Il:l·~Tt!IHnffiij!t;'t3F '.llHflHl;li R4hfU i '+ht t

o 20 40 60 80 100

%x/bx

C-16 EEE Uncooled Rig 43% Reaction Annular Cascade Mid-Channel Statics - 1.0. (Area Averaged)

136

Page 152: !VASA ct-/05)',1

l­.e: ~ I (/) c.. ..J W Z z <t ::I: U C :2:

1 0 ~~;1 ~~i~f~T~:T;nr:t~ 8A;:NO

- -; I -I ~=-- - :- ---. --1-- ----

-- l----t --.- +J~- . I 0 896 ! I -- t--·- 1-- -r -- --- '---- --l...- .; 6 986 1 ' , I "-

09

08

07

06

05

04

03

02

-- ~ I I ---f- ' I - ~ 1 105 - i - ! -- 1 - j t- 1 - --t - - .--l- -- -- f- -- ..! ...:

--- :""'--rl ----T! --~--- _l. ___ L_ - I -I I! Tit . , - I - 1 ~ - -j l' - i - --t-- --t-- -1

, ' " I - .-- ---r ----- - - -.. - - -~--. --+---- -r- --~ :--+-+.--+-+-+ ....... -i l _ j I ! _ I 1 ----• ': I •

--- -- -- --' -- - ----- :- ----t--t-- -:----i- -, , :

I _L._ .. - t -- -f--_ ... -r . ...!---- -.t- -- -t- ---i- _.-4---4--.... -+-+-+-'--1 , ,

j

- -.- - -. ---- -j - --;-- - - - -- 1 - -~ ---; --"':'---, . , • I, i 1 t- -- -,

I It •

~ ~ ~:-=-:: :~--~ -"~.~n uL-~~ I Ai J I ' • • I -- -.- ~ :----- ~ - -.. -- -: - ---~ - _ ---__ ..l. __ J_~_ i...

I I '

-t ---~ ---: ----:- ----: -----~-- -~ ----~ --- :--- --:--i ---P;: I :- 1

- - ~--- - -. - - • - .... - -:. - - - --t--- - ---+ ---+- ----t----t----.--+--, '. , I ~ t I - I ~- - j

- ,~- --" -- --f- -'~"-~--~ -:---~t'~:-i----:-~l - - .... • - .... - - 40- ..... -- -of ... -- .--- --.-- t- ---- t- --4 -- ---

, 't! 1 ~: I I r -+-:-

- • - - -"1--' -: --T- --- ,"- --'-- -- J -- --r- -. - I t

I ! : - i -r - -1- : -- -: - -j --- --1- -r--, -l ----t ' __ + ____ l __ ~._,-- -- -:-I--t-,-+-+-i

01 Ij ----t-~ ::~ _ - ~+j-~__ _ 1_ :_ - - -~ -- t--' i---- -, r . -I -' --.... -"'-- ---t-

, '---- -I--...l.- .....;1-+--+-+----+--+--+-+--+-t---+-+-l-i-"'-+1c-t-+i ! I: - --1--0~~~~+-~~~+-+_+---+-+-~~4_4_4_4_4_~~~~~

- i

o 20 40 60 80 100

%X!BX

C-17 EEE Uncooled Rlg 43% Reactlon Annular Cascade Mld-Channe1 Statlcs - 0.0. (Area Averaged)

137

Page 153: !VASA ct-/05)',1

I­a.. -­CI) a..

o PS

20 40

%GAP

60 80 SS

C-18 EEE Uncooled Rlg 43% Reactlon Annular Cascade T.E. Platform Statlcs - 1.0. (Area Averaged)

138

Page 154: !VASA ct-/05)',1

I-0. --(I) 0.

C-19

03

02

• " • L ..... :.r ".:l ·r· ~ .. , .t· ;':, ... t +- 1';" ...... ! .... ; ... ;.1"":;. I ':f~~r ~ .. .... t-t ~ 4- .. t-!~ ....

J~ !~;~:~ .. t I .. : ,: .:~ :t~: ~:, :F~ !!r: J:i: I::~ :=:+ ~::r ·i~; ;:fL;~f: .... .. ...... - .. tf .. t_ , ..... ;. 1 .-~j ..... ~ .. ~, +....... .... ..... +b.,'" 1''':.1 t';~1 :;: r" .. ~. ; ~t :~. H : > .. ~ ·t; ;t .... : ... :-~: !:: .. ~U .;:tt ·rr, ~7:; 1-::: ~ ...... !~ ::rr

t .. _ l' I, .... '" ...... , , ........ r ... tt_ .... t" .... FiJ:~ ........ ·""t ....... , t::!t' :: . . Z-i.;!"; ~ .: : • .:t. I ..... :-: :.~ .. ;! H-; ~;H ::~:1 !::, :::+ It: 1;;: ~ht!tf:

'::. ,! .. ·U" ! .. ~ .. !: ~ ~ . .j .. ~1"· ~ .. -, .::' ..... """' tt,+n~.:i .!+i .!.::-r::.;.. to-:: t.!!r~hl-~~t-:~ ~~h "r" of .. ~-i.~: ';.! !: I .... ; '::; ~ t H .!i (. ~"t;. ~ .1' :t.;i :.nd~iJt +-+!.! 1;:, t~I" ~m ~~~-:!1ll~!t.: utI ~.;:, I:i~: f-r:":: 1+11 ti;-: :;n .:1" ",:-l i;;} iEi ~H. ~Jf. h;t:+:-t .::; tt.::~ 7,:; lttn·.:r:P1··Ht;- ... rhtt .. ,' ..,.. :t-! .,. ... H. ... ............. "'t ......... H., ..... + .. 'riTt .... tt H.ti •

,ilitti!: :ffEf: i:;~ 'Z', ~;l ±Hi '.rf m; "'::h'" -:n.:.+;... tn. ~t!~ljttt ~~l.t!~ "It +-fli::d .,.t.,. ~~.t! !t.+~ ! " .. ! :. .. ~! t~ 1" ~rit -"tit +

:itHm~ t-o~:!tht::J~t1~l !!1i ~'t::"~'1 ·L'"±liti • i ~~H-ti t~tf tl~± ~J! ~~!it t~ itt ~L;: ~~1;1 ff1"L;± t MACH NO

o PS

20

lh iff rrl 'tiHlihllit '

40

%GAP

60 80

o 703

o 786 o 896

~ 986

~1105

100 SS

EEE Uncooled Rig 43% Reactlon Annular Cascade T.E. Platform Statlcs - 0.0. (Area Averaged)

139

Page 155: !VASA ct-/05)',1

I­~ (I)

c..

1--- -- -

o 20

MACH NO

o 703

o 786

o 896

6 986

~1105

C-20 EEE Uncooled Rig 43% Reaction Annular Cascade Airfoil Surface Statics 11% Span (Area Averaged)

140

Page 156: !VASA ct-/05)',1

l­ll. -­en Q.

I---- ---I-- --

o 600 1--+---+--+---- f---f-. I __

o 20 40 60 dO 100

%x/bx

C-2l EEE Uncooled Rlg 43% Reaction Annular Cascade Airfoil Surface Statics 50% Span (Area Averaged)

141

Page 157: !VASA ct-/05)',1

l­e.. -en e..

•• - f..-.. ••

0800

1--'- .. -MACH NO

o 500 "I--+--1 o 703 '. 'I~' ,::~ o 786 o 896

6 986

~1105

f--+----- ." -_. r··· •... f-- ·-l~--J.--+----I----+--4---1~-l-,~ I r'

" ,. '" --~+-+-4·-+-4--~~+-4-~~-+-4~·'~"~' " ' , ~ I:,

" not:l: :j .. : 1;,~ 0400~1--I ....

I--OESIGN " ", :';'::; ;' 'j II--~'-I PR ED ICTE 0 -+-+-4-'4-~-+-4';"": -flf 1"-',,_' +-,-" +--+--' '-++-~' :~, ·#1 ..... 11· ........ .....;+1 H-i+11:

~' '1j!' .... ," lIP (M975) ;i' ., , :'1' :;:! ;r; !1:: h: 'I

, •• I

o 20 40 60 80 100

%x/bx

C-22 EEE Uncooled Rig 43% Reaction Annular Cascade Airfoll Surface Statics 89% Span (Area Averaged)

142

Page 158: !VASA ct-/05)',1

C-23

0 CAVITY STATICS

4\ CONCENTRIC PT, TT

0 T E PLATFORM STATICS

0 INLET PT

0 INLET TT

0 EXIT PT RAKES

~ EXIT WEDGE PROBE

0 SURFACE STATICS

0 MID-CHANNEL STATICS

VANE #'S

VIEW LOOKING UPSTREAM

143\ 140"

EEE Uncooled Rig 43% Reactlon Annular Cascade Clrcumferentlal Instrumentatlon Location

143

Page 159: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 160: !VASA ct-/05)',1

Flgure

0-1

0-2

0-3

0-4

0-5

0-6

0-7

0-8

0-9

0-10

0-11

0-12

0-13

0-14

0-15

APPENDIX 0 - BUILD 3 ANNULAR CASCADE DATA

Tltle

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Loss vs. Mach Number (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Loss vs. % Span (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Loss vs. % Span (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Loss vs. % Span (Area Averaged)

EEE Uncooled Rig BUlld 1 Canted Vane Annular Cascade Loss vs. % Span (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Mach Number vs. % Span (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade EXlt Ps vs. % Span (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Exhaust Case 1.0. Statlc Pressures (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Exit Pt vs. % Span (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Design POlnt (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Oeslgn POlnt Inlet Total Pressure

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Design POlnt Inlet Temperature

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Average Alr Angle vs. % Span (Area Averaged)

EEE Uncooled Rig BUlld 1 Canted Vane Annular Cascade Mld-Channel Statlcs - 1.0. (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Mld-Channel Statlcs - 0.0. (Area Averaged)

145

Page 161: !VASA ct-/05)',1

0-16

0-17

0-18

0-19

0-20

0-21

146

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade T.E. Platform Statlcs - 1.0. (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade T.E. Platform Statlcs - 0.0. (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Alrfoll Surface Statlcs 11% Span (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Alrfoll Surface Statlcs 50% Span (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Alrfoll Surface Statlcs 89% Span (Area Averaged)

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Clrcumferential Instrumentatlon Locatlon

Page 162: !VASA ct-/05)',1

TABLE 0-1 DATA SU~MARY

EEE RIG-70709-3 ANNULAR CASCADE DATA SUr·1MARY

*DESIGN POINT

STEADY STEADY STEADY STATE STATE STEADY TRAVERSE

OPERATING STEADY DATASET JULIAN STATE TRAVERSE DATASET PT-IN TT-IN POINT If SCAN # NAME DAY TIME SCAN # NA~lE PSIA oR

1979 HR: MIN 1 56f) 2007570l0V 65 07:46 568-596 2707'i7012V 57.51 777.4

2 967 200836410V 65 23:07 969-997 270836412V 57.47 784.3

3* 53 200985610V 59 07:07 3- 31 270985612V 57.37 773.2

4 121 201064910V 61 Ofi:04 123-151 2710611912V 57.47 787.2

5 gOO 201204110V 65 20:19 902-930 271204112V 57.42 792.3

RAKE PROBE AREA AREA ~JITED AREA AREA ~JlTED

OplTG \~-MAIN W'TED TOTAL MID-SPAN WITED TOTAL r~ID-SPAN POINT LBM/S MACH # PT/PT PT/PT ~~ACH # PT/PT PT/PT

1 23.29 0.7]0 0.0303 0.0135 0.712 0.0284 0.0127

2 24.08 0.793 0.0368 0.0167

*3 24.94 0.914 0.0487 0.0203 0.9]1 0.0496 0.0177

4 24.96 1.001 0.0623 0.0242 1.003 0.0588 0.02J3

5 24.q3 1.] 33 0.0744 0.0352

147

Page 163: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 164: !VASA ct-/05)',1

012

o nl'l

• 002

o 07

0-1

I -.,. ... -- -+-~--+--- t----+---.--+-i r I

08 10 1 1

MN

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Loss vs. Mach Number (Area Averaged)

Page 165: !VASA ct-/05)',1

-VI o

024 MACH NO

EXIT RAKES 0 710

J WEDGE PROBES 0 712

020

016 _____ .J_

--.., I

012 --- -- - --.... -~~i 1 ~

008 --<-----

004 , +--__ -1-_ . \ --- ..- .. __ .. _ -/--- ... --1_

i-1 I

J~ __ , , . --+--"'1 I I ' •

1 ----1-_ - -.

% SPAN

D-2 EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Loss vs.·% Span (Area Averaged)

Page 166: !VASA ct-/05)',1

VI ....

.e: c.. <I

r-~--r-~"--- -r- -,----~-

I I 1- ~ t-

024 I-+--r--t-_.,-I ...... -1,·-· f----4.---_----- .L.-_ --- ---

r - r o 20 I--:---t---+--~.--;--. -

- 1- -- ! .. 016 I---:--+-.-... i-------+! --~--- - ~---- ....!- -- -I -- --.

I ! .... - 1 .-

-:-, ! t---~-----;. ---- ;- -- T -I -

o 12 1-..,--+-+-t---_.1--~-1- . ....J--., -----• I

---"1 - --1- - --r --- ----

J I I! ,

t---'--t----------r---- -__ 1.. ... ____ ~ __ .. ____ _

I - I

o 08 I-~_+_--t_~_r_---+'--~ '--. I

J __ i I "

1 --

t--..,--+--I--! -r-~"""t"i -~ ..l.---~ __ .. . .:. --.-... _-t-. I

.; !

_L~ _....:...-t -. o 04 t-~+; -t--:---i'--'-r--:---ti -~--: -.-.;...---- r"

1 I. I • t -' --,---,. t r • • I

! ,-

10

, I I '- I , - .. ------._t_ . l : I

% SPAN

L

: MACH NO I

EXIT RAKES I 0 914

, WEDGE PROBES! 0 911

! i - f -I

90

I __ I • !

I I

D-3 EEE Uncooled Rig Build 1 Canted Vane Annular Cascade Loss vs. % Span (Area Averaged)

Page 167: !VASA ct-/05)',1

.e:. 0.. <I

024 I -+-------- .. ,

j

-'T- - -r ---.- -- f

o 20 t---I---.- -- _..1. --, -- --f

I I

T j--o 16t--f-

-- r -- j-

012

I ., - --- ---- - 1-: t---.-

- --- t- -- T ~ t---+----t--~ i- -- .. ___ -0 - - --, --

... __ ----A-o.-________ _

t t L

i I I

-,--- --,- -i ~- -- ----! -- 1 -

'-+-+-~~"';""~--r-;--' _---l.. I'! .- I :

I

20 30

---- !

40 50 60

% SPAN

- --- - ~---.~--_==:;n_-

---- -------.-'----R:t- . i -

I I

- __________ • __ ~ __ ~_._ I _~ __ ~ __ +

70

-, t -I

-+---;---:--r-, ,- -1---

I , - -:----;- -+--+-, -j ~l-:--t---

I , t ---~t I I

j - -! -- - -- ; - --j! • i' I

---:..-+---..:.---+~ -: : - - 1.-._ i-. .l.- L , . I I . .

MACH NO

EXIT RAKES 0 1 001

WEDGE PROBES 0 1 003

0-4 EEE Uncooled Rig Build 1 Canted Vane Annular Cascade Loss vs. % Span (Area Averaged)

Page 168: !VASA ct-/05)',1

024 --j- .-.4-- -.... -----------t- --......... _-

-;-------

020 ---... -----..---, ,

I

• ! f-016

, , , -J--~----- ------. -1 - -; -

1--'--;'-' __ 1 __ ~ - --j ,

e: f I ~ U 12 t-~+_-+_-r---~-

, I ' 1 , -i :

-t---r--~, --- ---- -~ -- -- .,. i

- -~

, ! ,

008 1--+---1 --- '---~,-I I - -, -1 , - 1

J--.;--'------,..-----., ---- -,..--I

-- --1-- - -. - - -. --. ,

. -t- - ! "!; i : I ... , : I I o 04 -+-.-+---H.~--t"----- --.---... -- ---, - -+---T--~~-

I I , I -J __ I

10 20 30 40 50

% SPAN

- -+-- -- ... -- -

---- -- .... -- ----

60 70 80

MACH NO

o 710

o 793

-'---,-- o 914

~1 001

~1133

-- i -i-

I , j

, I

.' - j- -- - -1

+ "I

'-, -- l' , t ,.! -- - ;-1

! i I

90 100

D-5 EEE Uncooled Rig BUlld 1 Canted Vane Annular Cascade Loss vs. % Span (Area Averaged)

Page 169: !VASA ct-/05)',1

~. 1 I : I r-f-~ --.-- I j MACH NO

• J -t------!---....----------- _ --------~-- -----..,--- -,-----. _____ -- :""-"t--- 0 710 t i ! I i I 0

1;---+--1- Toft -. - "" • - t - + -, , I --. ,- 793 12 , , l.!:~! ~ ___ ~ 1 _______ ~ ___ ,_____ _. _ _ _ __ ----+--~:....i_-- 0 914

J ,I 1 .~ : /\ i-- --. -1- -Ii' , l' . " j ~ 1 001

~ ~ I +-+--,--.+--:..------ -----~-- --=f- ---- ~- .--t-~ -- ~ 1 133

:-.~ - -- --1- 1- - - I - ; 1 -t -- --]

llf + .'! ~ ~+---i-- ~ --- ----- -.-- -- .--'--------- - --- -.--~---~~--- ' I i-7-, f_-. rr- - - t -+i'!..:' - -, - . - - ---,

- ~- -+ "" __ :.. ___ ~ _______ L __ -.----- -- _..l-.. ____ 1 I -r--,--t----+--~+_I- ~ , 1 " : I : -~f--+-- - -'I -, .' : ~ ; 1 ,- \- i ~ -, -.. _- 11

1 • 1 ", , I I I' 1 0 r~ -~----.----------~___r_-- -~--- - ------, .-+--+- 1

r~'i-;~F-~-t- -<>1-- ~I ~; : . '~;'; :; LN -'--~--~ t- :-~ . r.-,;;.. : ' ' "" "'"""'- .. 'A" I I I -'.~, . , j

,H-h-~ t --~:-~-11 I IV: !--;:~-:----; 1'; -. ~-.. -:..-i·--i-.1-.. _f-~.J 1 til i I r- ~~, ;~, • I'

091 I: I' I --+- i I 'I J 1 i NL--: :, ..... "': I ':-+ -r-:. -. -j -::",1 i t - 4 ; i -, - : J !I ,- -~ -j i- " • -l - -;.. !........ A ....... ,1-+---I--""';'--i f t .p-:- -i.-I. ---1----L_-t ___ ~_--!-~_ ¥"'J I

:. • ~ ..... i-~ --~ - !"'"'It T 11t-J-

1' "~r":J. 1 J ~ - ' ; j -l.-- t : .. t-:~~ -+- -+- --~ -r i~::

l 1 - J I I ' I ,'l.:.1 ......r"'i 1 • I' i .~ ..... , -1 ' " o 8 I. ' ....... -..., ---;-~'f-'-L~1oo::~±:_-+_r_....;...."""7_t_f_1f_'_F--;....::Ioo.j(,...~_+__t_1r_:_f__i

lLL ~~~,- -- ; .. J I, 1,1 - - 1-, -1- ,- + '- l-~~ - - ~- 1. ,~- --- c-L_~--r-:'- -i~: f ,_ I ' I ~ t 0( J:J. ' I,.... ):' : ~~~, ' 1 .j -: 1 _~ I'. j • 1 1 'I I - ~ I.("'\. I ' ! I ,~, j '; . 'l~":-fE-l.........r--+--;--1--- -,'-'- 1 I i rv r- ~--~l -, --;-·----,--t- ;--1- +.~-~ .:,--;' ~.; r -::c I! i;, I~' l-........n ' I.ti-'" ,-..,L ! 1

% SPAN

0-6 EEE Uncooled Rig Build 1 Canted Vane Annular Cascade Mach Number vs. % Span (Area Averaged)

'J

Page 170: !VASA ct-/05)',1

80

70

<C CI

r-l ~ 60 l-X w

50

40

30 o 10

D-7

';f:m~ '. j '~lf:H 'l;,.:. '1' ',j IU 'r t: ~t: I,':~ f,', t, ~:. 'I· f~ ~::, i!ft;1 !!!H:: k~' ~::: 't~'!,Fl':' , .; F:[": jtI:':;: 1:;-.:.: r:, ,::,F:--:tu

t;: 1' •• ;" -.::;IJ: :;':\'1 '; --.::L:. m;:" ':::1:::\:,:..: ~:'i;'t ::: rot' I~.H :!' J' ';.,' ."'j::: ...i: ~~ [E.;:, ," :1,,~ :~j'::j ,;:~

:: ;l1F.r-t~i= ~ I;:;" ': - I 710

L.:." '; [Eo i,: -1 :;': r':: ''';: I=i '" I! :- ~t':: I':' I", "I:!.,h

:;!~~ 1'\ ' .. ';07931 " :~, I," .• '.,1' .::: ' ,H~!' I'" r~: .'!~ 'f:

20

~:f f:;? ':I~: t::: ''';" f-.:" ,'! l':, t'· .. ,'1 ':t.

,~~:J;'~:q'i':;'·f~':"~I~~F.::~ ~:·::0:,.,J ~

ft :::;r:I: IE ~E 'f;~~ ~~ ':~1 ~2.!4"~ ,.c,'

It ',it : :a,..%;: c::: 1 ",.:..i·: :;' :l:rt

f:;~:! ~:; &~: :;:""I:!~ 0~ • .:ihf " t' .:-:, ",:

,'" 1::: :~ it;; E:' :::j 1 001 ~ :.

,:1:~;r::·t!rrr.::" :::: :.:.r ~t F~ 1:':-,1:;;; Ii]. ;::: It;:.' ~ ~" .' :11 fmi 1:+:::::-

r; t' r.;:;l: f:I!, !~ .: ~ ,-:~ $ F lilt;~ H:

[Jnlf!;,.l·;, tr~:lf- [..!.:t'" ~~1 133

30

j •. t'.; rr:: t:- :: r;:- f,f- . .1: ::; 't; ~" ~r:'l .-;:::

t! ,I:: I I~: I,~t ::Eb :; ::: J; ~':. •.. .: r·: I' :.![:;:

40 50

% SPAN

60 70 80

EEE Uncooled Rig Build 1 Canted Vane Annular Cascade Exit Ps vs. % Span (Area Averaged)

90

MACH NO

o 710

o 793 o 914

61001

~ 1.133

100

Page 171: !VASA ct-/05)',1

<t CI

~ en

Q.

t: x w

90 . :H: I " 1: t ... '1"

_ _ ..... _ .... ~. --4-- '" t : ' ~~ 1 '"

''1,:'' f- .. -

~ at t:~ .. ,

80 ;; ~':! +1 "·t'

o ' ~

:.1

t---+-~--.-- .... --

.. "

-+- pt:=k' wi'

.,..... 70.~ -1 1· rrr~t i'

r'r ih.l.1;t ·tt ._tj-·tt-t.t-t,~-t·· ··t· I M

rJ E[ -tlEL:et.r!t-f--t--+.-~ .. -t I I' L' • ,':" t-t- -ok --- -.~~. -... --r·' .- ._ .. - "'r~ ,.: • -+,

60~ .1 ... -. r-~~~ . _.~-:::D~Y' ~p~~f'~-;~~r-~ I lI\ tv . ~~ .

_. _ .. "3 f\- L lir~~,,:~-v~ ~~ _ .. ' .... fA: ~~i'~-50~ ~!\ w . ~ , . t-- - r-' _.,- ~ t~r"\ ... :-- --,-- _. f- - •. t;... .- r- _.. '. ,: . ~ .... -,--

" p 1\ L_._ ... ~ .. +j _ _ .. \. .. ___ . ~ __ .. . _. . II I.L -~.\ N~ .-~Kfl.

4011

\ ~ \ r- . Ir-f- --..... f-- .-. i£(L -. _. - ~--\ --7 -~~, -~- ...

II " f-.. -- ..... - -- _.f-.. -f-- -- _ ... , f-••••• f-.•. -~ -. '-r--: '~I:-"'-~-30 l , f I ,

f-+.-+-+--'j--+-+ .. +-.t-.4 ~-.- t_. -+~+--:l-:"+--+ -l-~--+~HH7:-• 1 • ~ ,.",. t. I., ttt It', "t

20tt=t1-t--t-tG-j'-t1·-t·I I I :t7 t1-j tt-tf.} .. } ]n:i

. !t::Jil:ii

•• ,. II'. d.

Ii ..

. 'J . ~ I " ++t ,

;:t: .,: .. ~r.: , > tl'! t If :+' ~ 0' t; t +: t!:~ :!d t.., i::! ·:.i fl!ll :1 I +. • I.. ~. • +. • ~. I • f

:"', t t, fl.. : I I:. : : .' ,1 H1: r ;. t :11 OJ: !"f t • H! tr+ ~'~f :pf ;'ttl!±ll .! t j' . ~ .• . tI f f' • f t j , 1 !;.t' , • l tlU • t .. , H rtI. l:L Ii f1

10 H ",: .. :." l ., .~:' • :: ~~ ,: !t, ::'.:, to: t t"': t ...... :/. :- tt : , .'" 'to "II .:111;,1' ,t'" , .p.::, .. , d I e' ,HI .. ·, . ii' Iii ttl. t • h • ·t" , .• ::::.lI1t· I t 't' '~;! '.:. if. I:t ::i~ Tr: ft;t !ll, !'~ Ht! ttt It·: Plr Hi: lir; :Hi fjl, tJ;! i :iifilf '<1: li 1!n q Ii: :;~!!m:;pi iF H I" 1 t!

tl; I I' I it· It n' lIl' tt·tt rmrp1 t" .f." • Ph1; iHi tt ttl r~ 11 ~ !if! tr·u"! ~1i1~l;r .l~ttti 1 t •

o It !lit ~Httl :m . IUft iii!: ! ;t~fP Ii!: m T 023 4 5

AXIAL· VTE ON.)

0-8 EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Exhaust Case 1.0. Static Pressures (Area Averaged)

156

Page 172: !VASA ct-/05)',1

I-0.. l-X w

.... - ~ .... - ... .. ... - - ...

. i I

i ! 1 1 j

~~~~ •..• ::~:.:.. '; 1 1 . -~ -;;;':.::. --: b i ·1 . i

'. -:- tt:t:::~;;:: .~ .- 1 ·.f ~ :~ ::~ ;::.: '. J.- J

- . _ ~~:7~ ,:-. 1;:-~· r~ _' , " _ -~ _. '_-F!-::-Z:,. :--. - .;-.:.r -! i:::!:F-";F _ _;;, J;8,= £' L

'Hl -_. "! E=' :-:::n:: :J:, ~ -r . :;"!:f:~..:" ~: E=- - - _. -, . :-..!~;: ~-:1-" '~~fri: :: t·: :'1: -'-~i ~: :-. '::V'::: ._-

10 20 30 40 50 60

% SPAN

MACH NO

.j

i _ -I . \: .'.: -:-~ ;: ;: .~' ~

i·' f _ •• ~I·.'::: .:.=:i1. ::'. f! . ;-_ !.~: _-::E:::£~::+.-: . ~ . _:. ::. _f..: ~~ 3! :. ~ ..

.. .. .' ;:,-: :.:: ttl .t:=::1 t::.: .:

70 80 90 100

0-9 EEE Uncooled Rig Build 1 Canted Vane Annular Cascade Exit Pt vs. % Span (Area Averaged)

Page 173: !VASA ct-/05)',1

...... VI 00

% SPAN

D-10 EEE Uncoo1ed Rlg BU11d 1 Canted Vane Annular Cascade Deslgn POlnt (Area Averaged)

Page 174: !VASA ct-/05)',1

(I) w a: :::l (I) (I) w a: Q.

116 000

115 000

114 000

113 000

0-11

90 a DEG

140 a DEG

217 5 DEG

% SPAN

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Oeslgn Point Inlet Total Pressure

VALUE

116780

Page 175: !VASA ct-/05)',1

..... 0\ o

u:: C!:J w 9. CI) c.. 2 w I-

327000 -:-~ ~: If :.~ I~.' -'4 ._ '1" ~r~r rr ri I r- - 0 450DEG ,~SPAN VALUE

.~ _ .41;'~ : ~ .. ~ ~ ~' ~tl -- -b-~t+- -' -i~-t=~ +x 1237 DEG ~ ~ :~~ ~ :~~: ~:: ;~~ , r", -;I. ,'~h~ I I t 1690 DEG I I I I

323000 ,,',, :,;':' 'f , -I·-,-trt~-'~f--I-M, :--_--0 2002DEG -'-,r-.-l'-.. - -+-r--4-......... ...,...j

,~ ,1;~1 ~-~.'~ '-. '-Ir-, - t I I' 0 2437 DEG - - •• : :

• ~ I 1'" t - : 'n ~ .. f.1 - -, r -, :'-' L..l ..., I j.. . r - - "T

'n i " , I ,I .- • Ii- - - I A 2690 DEG - '71-- H---t-..f-.+--+- --c-

i'I'" ' , ,oJ, ' , ..... 3112 DEG ," 1 ' 319000 , 1.111~Ji: '," :,,' !i::, ", , -t ~f- i-. -q-: T 'j-4--tt:, M-+-+-+~!

. +~~ ii~ ;rr'-: 'r~· ;- ri'~;" '! ,r., ~'--, - l .,:~: ~ 3565 DEG + [. --. ~ ,' •• -~., ,1' r.,.' ,", I, , , •• f- •.• •• . .~ _1.....- f-- _' 'I'

315000

311 000

307000

. ," ' 'I, " 'i' ,II "--rft!t-: ",f] iif .... 1..._ ,j r" " ... t!- ~ - ~~ ,- "Ttl'

l'l'!!; 111 111;1.1 11 ,I j,', I "~ I I " """ :',:11

" " '" T --, 'I: 'I' ,~ '~r ~rr 'Iy-~:'.c 1 , ,,,. -~ I -r--,. ..... - ~~,'., ' , ,I; i ~ " : ..!:..~:- 'r -...: i ~ '1:"

" ",' ',": ,," , , ' , jl' I ~ , - T ;'n 1'1; ,II: ",' '-~ ~- ' _ •• rr'_ T --,- r r ,. I' -I~~ 'T~t\~::; -:%:T~

-: :;: ri; nil ,""" ,,:.t.!LW;11·'/ r:" -;, ~ ", - J:~ -', tt,'f: +",~li :11, .I:, :~, 1 jl+,,":~ :;r--~b. ~ :- !." 1, (, ! 111t','I;I, ,I o! Il:'1! I II!: II"! 11 "jt I I I III I ! I~ II

I !" J ,"""" , I ' , 1--- ,,, "" ,," "I ,,' " ,-,.,. .4 I, : ',I!rt' 1.1 m": ':', :',' ,I', : I'" I' 'I'" I' "iliff !ili' ~'!i ~I f' ", i" , '-'

-l,t ':~, -111T I 11,1 :,..J..l M T[ry.j.J- '''i f-I . -' t , -- r 'It r 1t1T! • I ., ". f- --'" ",' -., -- t.+" .... -~ "I , "" I,': " , ','1' Ii'! '1'1 ' 'I! I I" I" ", " " I I' " I' I II ,I"'" I I' I"'" "I ! I r il !l111 I I I I t.', I 'I I I I I -d ... --t l 1'1,1\' rt-",~I' I I

" I':, '~' 'II !,II!P: ":! B't 'II ! 4'~ TIil: ;!'j'!i, ,:I,I~',' 1 ,r "I, :!I, 'iij [I:i ; I , I! ,+'" ': 'i' I", i.l: I: _ ~'._' ~', f'j't! ,'t_1L • 1rM~ .~. 11 ~cU';';tt 'It''~1 ' .- In,'-m-mr" ·t ri·r---''''''- - I li;T'i:1 ','Ii!;1I1 :1"'1' 1,1 ,:',i!1 :,",, I "i,' ~~,: "i""":1 ;':[I'I,;liU: I"'" I" , !'II'! 'Ii': ',I"

,,1\: ::1\ !. Wilti jli, \]11 !ll; I,' :,jllP' ':' i!! !,'" ,'I"",' ':' ~ 1;1 m;ll' Ii" i""!. ',I', 'I 'II' 'I "" "I','" \ , 'II '\:, " t'l' r'-H tH "'I ill [, , .~ '1Itt, 't!if+i r, , F '-," ,-:-. ~ i-+i.p ,1+ ++I~;'.:..tt 111 '1 ~~i!':, ."',,,'! 'ttl I r I' I ~ (I II! I II i ! 1 I; Ii! i. 1 I,' I' : i III 11 I I II : Jill t I I 1 • ' I II, I I :: ! I II I 1.1 I!I ! 'I I I I I ' + tI I I I I I I , , II ,

303000 --+~~+~~~~~~~~~~~f--~~~~Mh'~~ I, ' Ii Ii "I 'J: tiP "IIJ!lli I, IIi' liG II' :; ! I ',;1 ,Ii' .' c '" :, !: I! jill, , 11" " i, ~ ",', I II,,'!, :';, " !! I ,: ,:: ,

I. ~. ·11i t 11' 1f+,· II" + -- In m ... ,'1 - • or. 'rtt '11 -- n'" " +.~ 'r - ,- _.j -. '-;-. r -rt' I';' • ..: '" " Iii' 'II Ii! Ii., iii It I!i I :,' ::' 1.1 ", 'I' '" 'I' ,Iii 'I ',II :: II !,' ': " " : I " il,!

I, "jill I"" ,t 11'1 ''I' II' :, ,',: ,ti' " 1 ' I I '! ,'\ , ,'I -~ ,'" -'-~~Ti' I -, 'J' ~T ,;1, ~1' II j' I I I I, I ,', .. 1 I" I, "" I 'j • ',,:" r:' t;11 ,-.~ ~ - --.., - -' ,.- ,,- ". -,. - .. - I

I " ,'I II: I ';' II! II : I' 'I I I, 1 I t I I I 1;' 299000 ----+ +. T-,:+' -,tt~';""'_"l ~:...- -••• ,.----1-

1---- --:-~~ - ..-- ' , - -1'

"I! • ""':f I,', ,:'1' , I', ' : t" I',,' •. J' l' H r - I' , " -- ',- I I " r I I - I ,

:' I ,i'", "" ," "', ' I 'j I I ~ , 'j' L I -,~-~Inr- -, -, " -i- -r .. ~-·t :-. -- 1-:-1-- _, ______ ,_L -I ,- -[ , t ,,' " ' I I \; I : t i ji,' I I I j I j

295000L-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--~~~~~~~~

00

0-12

'J

20000 40000 60000 80000

% SPAN

EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Deslgn POlnt Inlet Temperature

100000

Page 176: !VASA ct-/05)',1

0\

0-13

% SPAN

EEE Uncooled Rig Build 1 Canted Vane Annular Cascade Average Air Angle vs. % Span (Area Averaged)

Page 177: !VASA ct-/05)',1

162

10,

09'

08

07

01

t Itt

1 ~ .;. , $ I) -~ i-i ' ! _ 4 <0 ~ -, ,

t ,

a 20 40 60

%x/bx

I I

t ,-I I I - .. i

t j

, -

o Q

o

,-. l

. ,

80

MACH NO

o 710

o 793

o 914

D. 1001

~ 1133

- .1

j -l

,

o 00 1

0 8 ,0

100

0-14 EEE Uncoo1ed Rig Build 1 Canted Vane Annular Cascade Mld-Channe1 Statics - 1.0. (Area Averaged)

Page 178: !VASA ct-/05)',1

l­.e:: CI) 0-

l CI) 0-...I W Z :2 <t ::I: U 6 :§

07

06

05

04

03

-l i I

I . i -r 1- -

1

I I­I

%x/bx

0-15 EEE Uncooled Rig BUlld 1 Canted Vane Annular Cascade Mid-Channel Statics - 0.0. (Area Averaged)

163

Page 179: !VASA ct-/05)',1

164

l­e.. -~

0-16

o PS

20 40

%GAP

60 80 100 SS

EEE Uncooled Rig Build 1 Canted Vane Annular Cascade T.E. Platform Statics - 1.0. (Area Averaged)

Page 180: !VASA ct-/05)',1

I­a. ---CI) a.

i - ~ .... - f--- .. ~----- ......... - +-- .. -- .-. ---+-+-+--if--ir--t-+-:.+-~" h-:- MACH NO

710 ! t

20 40 60

%GAP

..... p 0

80

793

914

1001

1 133

100 SS

0-17 EEE Uncooled Rlg Build 1 Canted Vane Annular Cascade T.E. Platform Statics - 0.0. (Area Averaged)

165

Page 181: !VASA ct-/05)',1

l­.e:. en

c..

I MACH NO

1 ! !I 0 710

I 'Ir i ."~r-- . 100 793 Ir:~~-·~-·· . - - - .1 •• , r 'J ' ---! .,~ l 914

-,~.-- ~N~--r -- -.~- .- -t--- --~- - ~ e: ~~: ~ I 1 ~-DENTON

09001--__ ....... ; --~:_ __ Nl.l . ___ ~- _ .. _. +--.-t-,~-.. ~_. ----Ir--t--~....,;tH--t--r--I '\ 1 i :.4 \ .

1000

-- -t -..ll~·· ,-- --:" .- -: ~~-\J~-lil.-~- L--~-. tp. I I I t1 ' ' 'I L

06001-_-""';. ('-_ -+ __ --+-;-+--.+-1 t --+---~--t- •.. _: ____ -.-i _~ty+' JD ~~.f~ .. ~t}._ I I ! r\ ..J

%x/bx

D-18 EEE Uncooled Rig BUlld 1 Canted Vane Annular Cascade Alrfoll Surface Statlcs 11% Span (Area Averaged)

166

Page 182: !VASA ct-/05)',1

l­.e:. CI)

c..

0800 1

'I

li1 Hi [1 HihU ti o .lUU ,,~= ill

o 20 40

\ ..... '0 :::: ,i'11:;;:;1; :11::' ~;l)U

"r~ I~ !h:';' ~ .. ~ li;lr\::{~;:!r. :i:!TI

It il 100

%x/bx

0-19 EEE Uncooled Rig Build 1 Canted Vane Annular Cascade Airfoil Surface Statics 50% Span (Area Averaged)

167

Page 183: !VASA ct-/05)',1

%x/bx

D-20 EEE Uncooled Rlg Build 1 Canted Vane Annular Cascade Airfoll Surface Statics 89% Span (Area Averaged)

168

Page 184: !VASA ct-/05)',1

o INLET PT RAKES

o INLET TT RAKES o EXIT PT RAKES

6. EXIT PT. AA WEDGE PROBES o T E PLATFORM STATICS o SURFACE STATICS

o MID-CHANNEL STATICS

o CAVITY STATICS

25°

/ 234°

14340

\.

~ 140°

0-21 EEE Uncooled Rlg BUlld 1 Canted Vane Annular Cascade Clrcumferentlal Instrumentatlon Locatlon

169

Page 185: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 186: !VASA ct-/05)',1

Figure

E-l

E-2

E-3

E-4

E-5

E-6

E-7

E-8

E-9

E-lO

E-11

E-12

E-13

E-14

E-15

APPENDIX E - BUILD 1 ROTATING RIG DATA

Title

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg Efficiency vs. Pressure Ratlo (Area Averaged)

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg Efflciency vs. Speed Parameter (Area Averaged)

EEE Uncooled Rlg 36% Reaction Rotatlng Rlg Efflclency vs. Mean Veloclty Ratlo (Area Averaged)

EEE Uncooled Rig 36% Reactlon Rotating Rlg Reaction vs. Pressure Ratlo

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg Inlet Temperature vs. Span

EEE Uncooled Rlg 36% Reactlon Rotating Rlg Inlet Pressure vs. Span

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg Inlet Temperture Contours

EEE Uncooled Rlg 36% Reactlon Rotating Rlg EXlt Temperture vs. Span

EEE Uncooled Rlg 36% Reactlon Rotatlng Rig EXlt Pressures vs. Span

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg Area Averaged Spanwlse Efflclency

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg EXlt Alr Angle vs. % Span at Circ. = 155.2 degrees

EEE Uncooled Rig 36% Reactlon Rotatlng Rlg EXlt Alr Angle vs. % Span at N sq. rt. T = 350

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg EXlt Air Angle vs. % Span at N sq. rt. T = 350

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg EXlt Air Angle vs. % Span at N sq. rt. T = 280

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg 11% Span Vane Surface Statlcs

171

Page 187: !VASA ct-/05)',1

E-16

E-17

E-18

E-19

E-20

E-21

E-22

E-23

172

EEE Uncoo1ed Rlg 36% Reactlon Rotatlng Rlg 50% Span Vane Surface Statics

EEE Uncoo1ed Rlg 36% Reactlon Rotating Rig 89% Span Vane Surface Statlcs

EEE Uncoo1ed Rlg 36% Reactlon Rotatlng Rlg Mld Gap 0.0. Statlcs vs. % x/bx

EEE Uncoo1ed Rlg 36% Reactlon Rotatlng Rlg Mld GaPO.D. Statlcs vs. % x/bx

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg 1.0. Platfo rm Ps vs. % Gap

EEE Uncoo1ed Rlg 36% Reactlon Rotatlng Rlg 0.0. P1atfo rm Ps vs. % Gap

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg Vane EXlt C av vs. % Span

EEE Uncoo1ed Rlg 36% Reactlon Rotatlng Rlg Vane Blade EXlt Cavlty Statlc vs. % Span

Page 188: !VASA ct-/05)',1

*DESIGN POINT

STEADY STEADY STATE STATE SCAN DATA SET N7 NAME

-"-'--"--

134

*101

276

419

562

* 24

774

330

165

746

888

316

352

388

603503520

603504120

603504620

603505020

603505520

603444120

603414120

603424120

603434120

602804120

602804620

603503020

603502320

607452920

STEADY

TA8LE E-1 DATA SUl~MARY

EEE RIG-70709-1 ROTATING RIG DATA SUNr1ARY

STATE STEADY JULIAN STATE

TRAVERSE TRAVERSE SCAN DATA SET

PT IN PSIA

TT IN oR

N RP~'

WMAIN LBM/ WCOOL

DAY TIME N2,s NAME .;..;;...;....::....-- SEC LBM/SEC

HR:mN: 1978 SEC

310 16.16'48 136 164 873503524N 57.43 769.93 9801. 23.45

293 12'40:16 313 341 873504124N 57.48 770.26 9737 23.45

299 22:54'25 279 307 873504624N 57.31 778.44 9814 23.26

300 6:41:45 421 449 873505024N 57.53 772.74 9709 23.43

300 17:37:36 564 592 873505524N 57.37 782.02 7818 23.25

307

307

307

307

306

306

311

311

311

8:09:49 26 54 873444124N 57.24 766.64 9819 23.40

17'50'04 278 306 873414174N 57.39 775.83 9733 23.31 0.090

20:15'45 335 363 873424124N 57.37 772.03 9754 23.37 0.180

13:19:34 182 210 873434124N 57.45 775.96 ~'8l? 23.34 0.277

14:21'45 748 776 872804124N 57.31 772.54 7880 23.37

20:28'48 890 918 872804624N 57.44 772.48 7779 23.42

0:28:43 318 346 873503074N 57.38 771.45 9804 23.38

1:49:03 3~4 382 873502524N 57.57 771.24 9750 23.38

3:59:39 390 418 872452920N 57.50 768.20 6873 23.50

% PRES-

COR-RECT­

AVG. ED WCOOL REAC- VR N/ SURE AREA CLR AREA ~ TION MEAN !rIu RATIO WGT'D INCHES WGT'D

0.386

0.770

1.189

0.2845 0.5959 353.2 3.531 90.40 0.0136 90.31

0.3290 0.5631 350.8 4.184 90.19 0.0131 90.06

0.3606 0.5487 351.7 4.707 89.36 0.0131 89.23

0.3792 0.5371 349.3 5.179 88.17 0.0141 88.12

0.4000 0.5308 351.1 5.773 86.86 0.0141 86.81

0.3308 0.5656 354.6 4.178 90.15 0.0131 90.02

0.5623 349.4 4.208 89.77 0.0156 89.84

0.5642 351.1 4.209 89.60 0.0166 89.75

0.5675 352.2 2.239 88.93 0.0181 89.20

0.3412 0.4699 283.5 4.010 86.86 0.0191 87.21

0.3779 0.4530 279.9 4.514 85.24 0.191 85.59

0.2404 0.6317 352.9 2.959 91.20

0.2167 0.6783 351.1 2.574 87.87 0.0116 87.63

0.2472 0.4704 248.0 2.919 81.19 0.0206 81.66

Page 189: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 190: !VASA ct-/05)',1

92-"---""'--~-~--------- -- - ----- - -! I , ,

--,..------ ---- ----r--~-.-~-r----:l . --r-- -, - . . I--+-~-+---""""------------ -:-.----

__ 1 ____ ~ ! .

90~4_~_4----4_---

._-+ , I

L I -T-'- --! ,

- _-- I , . -+- __ 1 __ .-

, -4 - - ~- --

I ,

-+---'--1 , r 1

I t ~ --- --I f J ,

881-+-.,....-t--t---t------.-----r-- ..... ---L -' - -~~ ----------'---\;;;&.;;::--~--;c;::a.'1II;:+ .......... -r

I' I I ...... --..: . - ---t : ~ ...... ~-I • _ --t--l

86

386

770

1 189

-+-- -- ----1- ~- -~- - -- -l- -- --t- ~ --t---- t--- __ - L .--82~+_~~_+_4~:~}-~,~,~~+1_4'--~---il---, -t1~'--tr---i----r---1--~T

---1-- . -- ____ L _____ L __ J --.- i--- --1- -- L .--

E-l

t ( , iI' : I i I I i

PRESSURE RATIO

EEE Uncooled Rig 36% Reaction Rotatlng Rlg Efflciency vs. Pressure Ratlo (Area Averaged)

0 350

0 280

0 350

~ 350

~ 350

Page 191: !VASA ct-/05)',1

I

!

!

I

.:: '!~ 7!':,";+' .:' .. :, ,:f c' j.;... I.... -

88 i~·~ ~.'1;';.,~, .;;.~~ t: 'g r', IR~, r::, :: •

5:J:;.i '?';~' -,:~'i:~ , 86 .= , .. :-.j' ........ ' , ,

6·il .. , s':;~ ,," " ..... ... ~ ..

... • 0-........ ....

J I

1.. , I

~ ff' ;=-': !!: ' " .: :::- :' :'i- , tlr':: '=-, :!!..., -,' ',I:, "

, "; :::- ~.:~ ';~. ,-: : ~ .{

. j

: .. , rtF ~tg't! ,,;- .:: J~: t:: -,.' • :t 'I •• + .. ~.~::..~:~ ~E. :~ :,!

82

80 280 290 300 310

i

320

I , I f '. ,r',

f- ' ! !

.. __ ....... 4

.:" t..:' • .. t t ..

II"!' .r .~, ~I~ ';1' .: - ,':, I :f"'" _ '1~'::£~ ...........-~ .. , _'" ... .. ~ 0.- .. ......i-.j... ......

. i ,! ' 1 i f

'I 1 !, 'I 'j

l ' t

.. ~ I

I

1

t -

330 340

N/VT-r

1 r' T: '," ,1: ":::'.: ;h:fo!E e: 'I _ i 'i~":, ~~~.::, 'I1i J: :;,' ;;

. l. , I

i -

. - :::f~

,-,',:-jf';

350

%Wc/Wm

386

770

1 189

360

PR

0 35

0 41

0 46

~ 50

~ 55

D 41

0 41

0 41

PREDICTED

370

E-2 EEE Uncooled Rig 36% Reactlon Rotating Rig Efflclency vs. Speed Parameter (Area Averaged)

"

Page 192: !VASA ct-/05)',1

I ,1 I I' Iii I I I I I I 'I; ~ I" . 1·':' . t ~1

88 .i

.-.. I , t--' J~ ~ I r." I ll!S - -1 : _;- ~l I"--~~--+-----r--+---+--r----+---'- -.- ---L-l-+- ·-l-l·--+T---..--t.--1--+-......... -+---+---1-~-l-.-4-':....+--+-.:..;.-.;l. j _.': : ! _ - 1 1 :./" _;, I • I. ! -- t i· -. --;1

86 _-- - t T. -t • I _ ~ I l % W IW _ i'-, - -!. .', L If". Y" -+--f--,--+--+--r--j-";""+-__ +--;--+-+-+-Ti '+-+-i' _ 0 c m

~_-,~E~:~_~-1~;~:-~:·~!~--~1-4-+1-~~~V'-+-- t !!! 1 \'1

84 : .. _ '. i:. -. !l ~' :'. __ - _. , -!II _-t i

, , ,

80 ~ ~&::~-~.::::: ::$~: ':--. L:" t - <t:' '- J --o~..; .( o 40 0 42 0 44 0 46 0 48 0 50 052 054

VR MEAN

056

E-3 EEE Uncooled Rlg 36% Reaction Rotating Rig Efficlency vs. Mean Velocity Ratio (Area Averaged)

386

770

1 189

058

PR

O~ 041

046 650

~ 55

D 41

041

041

060

Page 193: !VASA ct-/05)',1

--...l 00

z o I­c.J <t w a::

..:

036! t _ ------t' -: --1.1 -- j.-~--~--' 1~' t IV ~r-~~E-+-' --~-; -i--~+---+-+-t--+l_-.+--~; I l I 'i !, I' I I,' I

032, J I ! .1', -- 1,--'-'_ '--J. I I : ,'j t, I II

.:1 -! ,--'- I -.- -----r·--- I I ! / ' ! i 1· "j: '"1-: .... -~.. .. I .. ~J._ .. _L._ L.L.J{~-t-+'-+-+-!4-4--t-~i +--It----:r-i-t-:-f" i-I-rt-:-~±l'='::!::::=-±:-;:::-i:::::;:;: ~:Hr::' . 1\ I I ' I: j 1 i! I r t L -' N/../f

o 30 ~ .. 1 I It.. . I' I _ Itt I I t 1. , .- 0 J.!:._~;-;1-4f._-"':I--+--+J--:+-+: -+--+-1 --t -.. _. II : Ii. til . 1 _ ." -: 350

::: . -.! i ! I t _:..J!_-+_f -+.~:r--t......J--i"-+---rt ---r-"~ :'j ... }. _ 0 280 028J.;a;;:'.:I-=·;~'~~~-.1J-_--+--~j-+-+-!f-1Ir--+; E -r 1 ',I _I 1. I I. I ::,1 -, i-L.f':':!tt:r:- ..

20 25 30 35 40 45 50 55 60

PRESSURE RATIO

E-4 EEE Uncooled Rlg 36% Reactlon Rotating Rig Reaction vs. Pressure Ratio

'.

Page 194: !VASA ct-/05)',1

u: d w C

CI) c.. ~ w I-I-w ...J 2

..,

10/23/78 21 06 35

AVERAGE - 310 523 DELETED POINTS

o 45 a DEG CIRC SPAN VALUE

+ 90 a DEG 200 2 67 09 367 160

X 1237 DEG I I I·; -! 0 169 a DEG I '- ~ -: ~ 1

,~:~~~:~ t-1::~~1 I .; : 1 ,,' ' J~2690DEG, i'-)~"t-:1

I I : X 356 5 DEG - 1 -I - -, 1 " I, 1---:"- l_;

1 :' ',: l-J I 1 " : I I I I I : .-~-=:-=-__ !-~--=--_-:~--""-~ I' --______ ~ I _I I ..- __ ·0 ~ _ --~-~-=:::::::= .. --_ ~ ----. I

_--------=--t<-===-~ .::=:--'--~.:::--~)~-~ I L-~~""~--=---=-. -= ~-.;- ---=:;=-~-:--~~=-=--- ,-I I, I I ,t I - -~ I " I I:' I

1 t--- I ---1 1 i I I I 1 :, I I 1- ,--- '--: -,

1- -; -.- I .- f --I 1 I I I ,I -I --,

-j -1- .. i--I

326 000

322 000

318 000

314 000

310 000

306 000

302 000

298 000

, .1

294 000 -I !. I .-+ ~I 290000L--L~~~~~~ __ ~ _____ L' __ LI~'~~~ __ L-___ -·Jl_-_·J·t_-_-~~· __ jL·_-J~

E-5

a a 20 001) 40 000 60 000 80 000 100 000

PERCENT SPAN

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg Inlet Temperature vs. Span

Page 195: !VASA ct-/05)',1

..... 00 o

w a: :J en en w a: c.. I­w ..J Z

116000

20000 60000

PERCENT SPAN

1400DEG "

2175DEG

3112DEG

80000

E-6 EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg Inlet Pressure vs. Span

Page 196: !VASA ct-/05)',1

.-00 E-7

3565 DEG

",

DATA - 6035041200

STATION NUMBER 5

STATION 05 INLET

N/.JT = 350 6

PR = 4 096

CURVE CURVE

LABEL

12

13

14

15

16

17

900 DEG

1690 DEG

EEE Uncooled Rlg 36% Reactlon Rotatlng Rlg Inlet Temperture Contours

VALUE

30700000

30800000

30900000

31000000

311 00000

31200000

Page 197: !VASA ct-/05)',1

-00 N

N/.JT PR N/.JT PR

*NO 'S ARE % COOLING 0 353 353 39* D 349 421

115 ~=1'==-t"=tt='1===r==t========t====t==~ 0 351 4 18 77 * 0 351 4 21 =;=i :;:=:;:;:

f-- .-- .• -. [ - ' L. -! _.- 0 351 471 1.19* 0 352 424 -+- L.+.~. , ;!. I I .1 t ;

'i , 6 349 5 18 0 283 401 t 1 ' ! .. ~,t:) --~.. ~.- 1-- I . t -..... ~ 351 577. ___ • _0 279 4 51 1j~':- -I

105 r i ._ 'l ._. _ i-- ._. ! _ 11 __ I .i .... ~~__ J"J. .:"1 _ _ __. ~V7Jt' I:-+:~ . 1 'I ~ ~ 1'V ...... hI:\! ! -.wr-::;; j

% SPAN

E-8 EEE Uncooled Rig 36% Reaction Rotatlng Rig Exit Temperture vs. Span

Page 198: !VASA ct-/05)',1

« C'>

::c

I l­X w I-0..

1 ~ , I 1 ....r'\. I *I\IO'S ARE % COOLING N/.jT . i ..rr~' "I

34 1---+_+, -+--+-+--t---"~Jf-";:--!!~-:I~-''---ti ~ , 1 : :! 0 353

1 .. 'l\ 1 • 1 " 0 351 33

---I-­, 1

i '" f Y 0 1 • _ 1 ,~ 351 1 ' " 6349

L I

~-+, __ ~I--~I~--+~~~~~~'~--r'~_-+--~~'---Ir--f·--T,---r--~="-~,---32~~~_i~7~9~~I~-~~~~+-~~~~r-+-~~~1r-7!,'--rI' ~351

~ , .... --:- 1 , '. ! 'i Ii, , '. 39*D 349

~==±I==+=~t==~==~=~~==~==j~;'~~~=I~==~==r-==t==t:=+==t==~=~i'--1-1 t~:j~t=~~~-~·~'j:=t~~-~-~~'~~=+~~~=t~I==;~~ 77*() 351 31 ~, 1.1 ...1 i ! I -' ~~' ~--~~' ~-L~I~~---+"~/,'--~~-'~~--+--r'~r-i--+--r' 1 19*() 352

I : . I /. _ f\ \ I I I I 0 283 30~~I--~-+--+--+~+--4,-~~t--'~'~'~'~'~I~~~.~~I--r-~--:i~'~I--+-~ ~279

~~--4--";--~I--+,--+----~1f-r~t-~I--~,---r~~-+--~ ,---T-~ ~

27 .-----":'£f JOf// 1J +-..'.T--L~----- ~_ _:. __ /-::-7.A" ' .-./ I . \, : u

,/ - i k7"l' ! 0 ! ' ! ; --!-.... ,--+i-;~ 24~-J+-J+~1~L~~~,~·-i+-,-i4-~~--r----~,~---~+-~~-,~~-_-+--~I-T-Irl --r,--~,--"I---

u y., I'. , - I=-'" I

1- __ 1

, . fl>:. Lff I" • " --JI.. ~-+,-'--+ v'""7.~--+, --+-~--j/'. .... -:,r---rl--TI--'i--,I'- I '\. ! I ~--

23 ./1 I I .If' -I I I I' , " ---t-L--, ~~I---l _--'+-_ # . - '.L'::f. i 1 -;'\. . / •

22 i I - I, 'i 1 1 1 ' ,:LJ.'..!.~I, ~ - i-J-.+-L ~ - "\ -,I , 1 I j , ~-

I -f f _I - ~: - - t 21 ,.: _ A 1 t I .... I t 1 T -+----t---~ \. f !

. ,_IF; I ~_ -r=r+~~'/--,,---+I_'--jl:--:I_:' - _, _I ;.;., j _ f--r~ f ~ I I. I I ---,-- __ 1 " IT"-( ~-j - / - ,- - 1 1 • , --t- 1 1 ""'-.h.. V --..---,

20 -~I '.'- .1- _ f - -.. I i 1 .. , • i -J---j

8 -t :L 1ft _ . .r ~ v

f-tl t-:.l __ ~ - _ 1 I I - I

I I ,

r .,

I

- I , ~

- I '.i ~-+--+--+~-, J

F~--~~~~'-+'~~f-~'~--·~-~r--r~+-~---~-+--~I---r--~-T~' ~~-~-t.;-i 7 i I:{' t 1 - .1. ~ C I..L I' , a 10 20 30 40 50 60 70 80 90 100

%SPAN

PR

353

418

471

518

577

421

421

424

4 01

451

E-9 EEE Uncooled Rlg 36% Reactlon Rotatlng Rig EXlt Pressures vs. Span

183

Page 199: !VASA ct-/05)',1

.-00 ~

% SPAN

E-10 EEE Uncooled Rig 36% Reaction Rotatlng Rlg Area Averaged Spanwise Efficiency

J

N/.Jf PR

353

418

471

518

577

401

451

Page 200: !VASA ct-/05)',1

en w w a::

" w C ~

W ..J

" Z c:(

a:: :;:

-00 VI

,

80

70

100 ~ i - -r--- N/.JT PR %WclWm I_ I ,

! L-~ ___ ! f-!-.O 350 41 -i 1 I --- 0 350 46 - i i I

, t--'-O 350 50 - r----t-.-1-"'-,6 350 55 t .- : - ii, ,

B~ 350 35 - M-~~ 350 41 - ! : I

, () 280 41 -

to--~,C - . .. t':!l: 280 46

, ' . - I

~D 350 41 39 _ L~~ ! (. .-

~O 350 41 77 ,

I

~. - ! .. )- -r-70 350 41 1 19 ' 'I

90

60

1-' ;'-.~ -f-r--t - "- _ •. - K" ' L I e-'r- -" 1t ;-I~ l\I'h. I I "-..

, , ~l

---,.~ ik ,

50

J. ,I : f--~ ~St t .. :... ! • . i~ h;:::-: ,

t- :~ i

• 't t" f*

I :

• 1 1 i .~ ~~!Ca -" I'~ i' ,

Ei' ~-, ''7 1::"1' :11 "'Ii -

t ._]::. rj • I)t DCfl ,t· • .

~-+ . it •• ~ 'i- ! to--·

1 .' I,' I

kl- I. 1-1 ,,: ~ ! ; j. t .1 .j

40

:~~ t!::'! 30

o fu ~~ ~!~; fml

10 ." lit} !' j .1 20 30 40

')

! ! 1 T r, ! ! J J 1 ! hi. h..1. ,

J- ~~ ~ : 1 I \

1 - 1-- • 1 _ .. t " 1--I I ,

: 1 ,

! I -1' '-1'- ", r-- ~-.

1 ' - i'- -. , -'r-' ,

t-~ I'~- --~~ _. ~ +,_. f-t , ~ , i , , to;'

I I _ .. _ 1-- I

" t&i I

I . ._- - , • i 1 _, I

_ L_~ :--' .- -.. - _. ~ .. '. 'r- --I 'I i - ~=(Elt:.±- c- .:;

W·; ; - )' ~l, l~ ~::-1-] r .u-, T --=- .;:-.

ILt t If{ ill 'j ,. t Oi

I:.CJJ ,..-

'J~. - J fl ~ 1 ,.1,

1\-,"[1 -( lfp4''i:' ~

f f .1 ,'G~ Id '~ I.e;; •• 1 .~~ t!J :'"' ~ I'lli; l t:i~ ~ ,~

J...t: ~ , , ! -'---'-'

, t:: ;r .1 ~ r I

, 1- oGO·:l Q.it t'.

0- f· . ..:.. .. "r-,: " tit I : ! ~.': >

I_i . ' ....... -,- v . 1--

~ ! I' 1:-" I

..a. it; .' : 'r' ~ :'-j -- r-- t " ! " J. ..1 i-

,· .. ·-1 .. ~ I 1 ! . -i

',' 1 -J, I f 1 1 .

R i 1- .: f .' --. 50 60 70 80 90 100

% SPAN

E-ll EEE Uncooled Rig 36% Reaction Rotating Rig Exit Air Angle vs. % Span at eire. = 155.2 degrees

Page 201: !VASA ct-/05)',1

-(Xl

0"1

100

90

80

(I) 70 w w a: t!' w C

~ 60 w -I t!' Z <t a: <i: 50

40

30

~:-!fZ-:=: -- , 1 -1'·1 ~J_ r+ !k:' !-::- " - 1 c-:-::- ',L" , I fI 'I~ ~.

-:" -:" I , j

, i . til I~ .. -.--

~, , ; I : I~ I" -: I 1

~~-:, r' -. j : : : _I

T .,- "_. I

~~ ~--.-: I" I : I ! : -

:.-1--I 1 ; ! ~ If). t :" 'r~

:. -. '!::::: :';

~f2, : -. I : .. ~.

~j l1 i~ Uil ..... ~

~':~ -,: ~-:-I

~<: . . 1 . \1 ; 1'\1 i ,.' .

\I" _.-"-- 'r '0' .... 'Erl": " t._' 1-: f· I ~ j i Lr-

:t:Jr:-~_.;: -::-

,I tI T ! ! I ~ " '\ -~~ ~:t- ,~:

, . :.- , . I 1 ;. ~ ~ ! "

tfu};~ , ~- . ~ ,c:' . I , [J: t: f"r §~~. 1\1 A ~l 16 Q : ,-< l.,~ i-

I,', ,!' 14

~~'i "":, 10: ,. !<.... t ~ !l .~ 1-: [Q :~ 101' , ',' 1'" \-:-

~§: I.J·~ 181:1 ~~ -J

F \,i'; ;t. ,,' :r ,;+ T i ! l -':F", ~-

,

='-Ii ~~:;: 1:ICl -- . ';:: - :-:- . -' :-' 16 II. i. ••

. 1, , .' r! ~ riC it' 1'1 , 1

~~!~ r :- ... )I : , I~ t:f t:: I,,:, '0" :..,:.: :.' ~~. r!~r ~,::, --::

:;c , . : i·" ,i-.:: -!: .!= " i:.

bill :-:-: :;.-, : --:-::-'j,. "='

III r' ~i;' , .

" - , PR CIRC i%WcIWm

:, . ~ 35 r"MI .,...: i,t' " .1·::'

1552 1-':: - -

0 j I'::; tt~:. .- . ~ .

','! - r' .~ 35 3352 r', o 41 . : ~. r:, : " '. 'I :: [.-. ~'; ,' . F.::; t::l~ rft E:',; Fr' !_i: 1552

:::: ._' ); :. [;to! r; I,) - ":': I~ ti:l, I ':' D, ii' . X 41 3352

," :\::' hi'; [:-: i· ;: F::' I~l F H " fY: .... ~t [:~; Ie:, !.:'~;.~ Ri' :-" E.2 h' tit '-:t ~~ E': ttf .- I .. . I,·' :; . t.-:.; -: ,:i,r I", -!: E:~ h-:: 1:: ~ I.:

o 10 20 30 40 50 60 70 80 90 100

% SPAN

E-12 EEE Uncooled Rig 36% Reaction Rotatlng Rig EXlt Alr Angle vs. % Span at N sq. rt. T = 350

"

Page 202: !VASA ct-/05)',1

-00 ......:I

CI) w w a: c.:J w C

~ W -J c.:J :2 <C a: <t

40

30

@F~ !, -;! .. 'l__~ t:-.

~~ f:- i:' '. _ c_. ; - f:.,.~;':;:'

o 10

E-13

20 30 40 50

% SPAN

60 70

:1!:

80 90

EEE Uncooled Rig 36% Reaction Rotatlng Rig Exit Air Angle vs. % Span at N sq. rt. T = 350

100

Page 203: !VASA ct-/05)',1

...... 00 00

CI) W w a: e,:, w c l w ...J e,:, Z « a: <t

90 PR CIRC % WclWm

~-~--. ---_. - o : 41 1552

~ i 41 3352

80 1---..+----. -.. _- + - o . 46 1552

- ; ._,\L 46 3352

i • I

70 t--I------- - .- - -- . ---'- - --1

1----1- - + - - - --- -- ~ -----------+

60 ...... --+-.. --1 -- - -- _ ..... -, ~

-+ __ i

I

- '@ tlirJ . ~I- -_'f_~1 I~ ;

~ -~--- ----. ~ ,

- - -+ ~- - - ~- --- -.----~

50 --~--. -

~ -- -+ --- + -- ~

40

1

------ J ____ ... ___________ ~

,

10 20 30 4U 50 60 70 80

% SPAN

E-14 EEE Uncooled Rlg 36% Reaction Rotating Rig Exit Air Angle vs. % Span at N sq. rt. T = 280

Page 204: !VASA ct-/05)',1

0800

0700

0600

0500

0400

: r I

j- --1 I I

I

I ' N/.JT PR

41

, 0300L-__ ~ ____ ~ ____ ~ __ ~ ____ ~ ____ L-__ ~ __ ~~ ____ ~~~~

00 ~ 100 o 20 40

%x/bx

E-15 EEE Uncoo1ed Rig 36% Reaction Rotating Rig 11% Span Vane Surface Statics

189

Page 205: !VASA ct-/05)',1

l­e.. -(I) e..

190

i 0900 t -

0800

0700

0600

0500

0400

!-

20 40 60 80

%x/bx

, I

~ --- --i 1 I

i -+

I I I

100

E-16 EEE Uncooled Rig 36% Reaction Rotating Rlg 50% Span Vane Surface Statics

Page 206: !VASA ct-/05)',1

0900

0800

0700

0600

0500

0400 I --t

! i

, _ 1

-+ ,

, , I -- ~--""'-r·--·-- ~

.. i

1-

--_. -4-- .. -

40 60

%x/bx

-- ! ---I i I r-- -I I

i j

I -r--: ---I

- i --, ~~~~~~~~~~~~.-L __

I t -.. ... :

80

E-17 EEE Uncooled Rig 36% Reaction Rotating Rig 89% Span Vane Surface Statics

191

Page 207: !VASA ct-/05)',1

I-w ..J Z

I-a.. -en a..

0800

0700

0600

0500

0400

0300

"1

- -- t­i

-. -- ~ -

o 20

: . - j - - L-, I . ;

1 I l t __ I. ____ + ___________ ' I

40 60 80

%x/bx

N/..[f PR

o 350 41

o 280 41

, I

I -+-~---.!-

100

- 1 1

1

E-18 EEE Uncooled Rig 36% Reaction Rotating Rig Mid Gap 0.0. Statics vs. % x/bx

192

Page 208: !VASA ct-/05)',1

I-w ...J 2:

l-e.. ........ CI)

e..

0800

0700

0600

0500

0400

0300

I , +

j I I ,

.1

,­I , , I

I I 1 I I

I

.. I I

I , I , I I

j I I ,

.. ---+

o-oto.-

I .

I - ,

I I

, , - I

, I I i I I 0- j - .-1

I I I

.-1

I __ L. __ . _.~_

~ N/..jT PR 350 41

280 41

'--,

--4--.. - --+ - - _.-......... I , : . , 0

E-19 EEE Uncoo1ed Rig 36% Reaction Rotating Rig Mid 0.0. Statlcs vs. % x~8R

193

Page 209: !VASA ct-/05)',1

I­w ...J 2:

I­a.. ....... C ..: ~ c:c o LL.

~ ...J a.. W ..,: w 2: <t > le

061 "

051

I-I l

I , ~f -- ,--j j

--f I

I J.

I -.--- r I t i , I

- 1 ,

1 -t

, I

: i -t "

1 i J. 1

f r -1''' --f

, - ~

I -

It,

i· ~-~~J. [Ii: 'I 1~1-9, ,

" ,

.1 04

I

-~--t : I ! I ! r' , j ---- -- '·-i --, ;-I I 1

03

-, ! r-

~ .. 1 _ -: -. ---r -.

.1. .- .- .-1-.- --"1-. I ,

- -r-·' I

~ - -t .L I j j ;

o 1 ~I ~-+--+-·-+-'--+-t

f·--· - f- -

%GAP

%Wc/Wm

, N/../TT

o 350

o 350

350

6 350

~ 350 o 350

386 D 350

770 0 350

1189 0 350

o 280

o 280

, "

I

I I-I ,

, \

-r . I 1

, !

PR

35

41

46

50

55

41

41

41

41

41

46

E-20 EEE Uncooled Rlg 36% Reaction Rotating Rig 1.0. Platform Ps vs. % Gap

194

Page 210: !VASA ct-/05)',1

,.

I­w ..J :2

I­~ ci d :E a:: o u.. I­<t ..J c.. W ..,: w :2 <t > en c..

08,p-

07 -

06 I-

05 I-

03 -

'- I

I

j

I I t -

f

, -i I

r I I

. J

I 1 j I

I i

-I

, . ., ,

-1 I

1 I .. I

I

! -I

I

-I j

-1 I,

; --~ I I

t ; __ .I

i I -, r

, I --- ------% Wc/Wm NvTT

o 350

o 350

0350

6. 350

~ 350

PR

35

41

46

50

55

!. , I

021----1 I o 350 41 j

306 D 350 41

770 0 350 41

01 ___ - -1_. "~ - ~'-' .-- •. -f--- ~--. 1189 0 350 41

I. 1 . 0 280 41

! i ' ; 0 280 46 -1-+---+1-+-<1-- ~t .. ~ __ ~ __ ~.l~1 --r--lL...=:.;...c:,..::!:........,.~~1 ,-"1" - -- . . j -1 1 - j .. - j -. j" .- _. --I .-. O~~~~~~ __ ~~~~~~ __ L-~~~~~~~~~

o 20 40 60 80 100

PS %GAP SS

E-2l EEE Uncooled Rig 36% Reaction Rotating Rig 0.0. Platform Ps vs. % Gap

195

Page 211: !VASA ct-/05)',1

-\0 0\

64

60

en 56 0..

> I-:; q: CJ

!: 52 X w w Z q: > 48

44

40

- I I I -- ---{ I-

i I

1 I

~-- .-I ---I I I

-+~ I

I --t- f---:- - j ; - 1- - -\ - - r- --- --:-~ F= ! i ! I

-r.-: ,........ :- --! I I I I j i t t ' ~ 1"""'..-

- - , - - - --- - - I I t 1- .. ..:-:..;.-;: ~ i I ~ ~ - I - i I I , - . I I

I -L ·1 I i

~ ~ ~ ~ I

t--- - , J - -+ - , - , ! I ! ! , I"""" I , I .. , - ,

. - t c·

~+----T-"- I -~-I ,

I I ---- - --- f-----. ,-...: . ...- I .;:.

1 t J-~ ~' ~ , ,

~ -~.---I I

----~ -i -~-I- I - . , -1-1"""' ~ , I I I

, ~ 'l- . , - 'I I , I

~~ .-l-- .--.r- ~-'~ e .... I L I

I-I

, t I -I _L

V---, I- t ----j-- - -- --+-- --"--

I' ~ .... --- I ~ , -" I i , i i i 1 ~ ?!~< : ~- i

~ ~ ,.......-, : ! -- --- t- I -- J--< I

~ ! r"":"- f---,- - ---. - -----t--- < - i - -- --:- -_I

Q ,-~ ~, i 1 J t ;

~~ - -.,~ ...,.. . - ,.---}--,-. ) I 1

I f - t .. -t- -- t- I-~-I t

~ -.- . .. ,..... 1 I -- -- -- t --- _. -- -- i I I .1: - :.411 I L I! lIP. ~-'

,

-t--,

.I %Wc!Wm N/.JT PR - I t j -' : -f~ - - I I .. - - r----.- 0 350 41 - I , t -ES:' " -- i I !, , J - 0 280 41 < . : +---- , ~e 0.:, - I

--1- ~ -0-- ,--_.+ +- -I- i I D I : ' : 386 350 41 ........ - , , - ..

F.:' - I , J ,- h ,I 0 j I : ; 770 350 41 " ~, , , - . ;n' - -, - - ! t I ! t

. -! i 0 , - : , I I 1 189 350 41 .. - . -, - , ! j t ! i I _c:::-. t:::_ t I I- I t 1 1 f -,I '1::':1: , .. --, .., ::n: ::ci. J I I I i I

- I ! I . J - -rJf:]frW n= [f;~ I f i -o 10 20 30 40 50 60 70 80 90 100

% SPAN

E-22 EEE Uncooled Rig 36% Reactlon Rotatlng Rig Vane Exit Cav vs. % Span

Page 212: !VASA ct-/05)',1

-------- --- - -32

30 II:L._-;--

<I: 26\

CI J:

I u I-<I: I-eI)

>-!::: > <I: u !: x w w 0 <I: ...J !Xl

18

16 , I

t j , I j - ... -14

i

20

1 I , I j

40 60

% SPAN

0 0 0 6 ~ 0 0 a

80

PR

350 35

350 41

350 46

350 50

350 55

350 41

280 41

280 46

.J~ , f

100

E-23 EEE Uncooled Rig 36% Reaction Rotating Rig Vane Blade Exit Cavity Static vs. % Span

197

Page 213: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 214: !VASA ct-/05)',1

Flgure

F-l

F-2

F-3

F-4

F-5

F-6

F-7

F-8

F-9

F-10

F-ll

F-12

F-13

F-14

F-15

APPENDIX F - BUILD 2 ROTATING RIG DATA

Title

EEE Uncooled Rlg 43% Reaction Rotating Rlg Efflciency vs. Pressure Ratlo (Area Averaged)

EEE Uncooled Rig 43% Reaction Rotating Rig Efflclency vs. Speed Parameter (Area Averaged)

EEE Uncooled Rlg 43% Reactlon Rotatlng Rig Efflclency vs. Mean Veloclty Ratio (Area Averaged)

EEE Uncooled Rig 43% Reaction Rotating Rlg Reaction vs. Pressure Ratlo (Area Averaged)

EEE Uncooled Rlg 43% Reaction Rotatlng Rig Inlet Temperature vs. Span (Area Averaged)

EEE Uncooled Rlg 43% Reaction Rotatlng Rig Inlet Pressure vs. Span (Area Averaged)

EEE Uncooled Rlg 43% Reactlon Rotating Rig Inlet Temperature Contours

EEE Uncooled Rlg 43% Reaction Rotating Rig EXlt Temperature vs. Span

EEE Uncooled Rlg 43% Reactlon Rotating Rig EXlt Temperature vs. Span

EEE Uncooled Rig 43% Reaction Rotating Rlg EXlt Pressure vs. Span

EEE Uncooled Rig 43% Reaction Rotating Rig Spanwise Efficiency (Area Averaged)

EEE Uncooled Rlg 43% Reaction Rotating Rlg Spanwlse Efficlency (Area Averaged)

EEE Uncooled Rig 43% Reaction Rotating Rig EXlt Air Angle vs. % Span at Circ. = 91.6 degrees

EEE Uncooled Rlg 43% Reaction Rotatlng Rlg EXlt Alr Angle vs. % Span at N/sq.rt. T = 350

EEE Uncooled Rlg 43% Reaction Rotatlng Rlg EXlt Alr Angle vs. % Span at N/sq.rt. T = 375

199

Page 215: !VASA ct-/05)',1

F-lb EEE Uncoole8 q1g 43% React10n Kotat 1 ng R1g Vane Surface Statlcs - 11% Span

F-17 EEE Uncooled ~lg 43% Reactlon Kotat1ng Rlg Vane Surface Statlcs - 50% Span

F-18 EEE Uncooled Rlg 43% React10n Kotatlng R1g Vane Surface Statlcs - 8~% Span

F- b EEE uncooled K1g 43% Reactlon Rotatlng Klg rvj10 Go.p 0.0. Stat1cs VS. % x/Of.. •

F-20 EEE Uncoo 1 ed t-<lg 43% React10n Rotat1ng R1g r~l d Gap 0.0. Stdt1CS VS. % x/tJx

F-2l EEE Uncoolea R1g 43% React10n Rotatlng K1g 1. D. Platform Ps VS. % Gap

F-22 EEE Uncooleo Klg 4310 Reactlon Rotat1ng K1g 0.0. Platform Ps vs. % Gap

F-23 EEE Uncooleo Klg 43% Reactlon Kotatlng Rlg Vane EXlt Cavlty vs. % Span

F-24 EEE Uncooled R1g ~3% Reactlon Rotat1ng R1g Blade EXlt CavHy vs. % Span

F-2~ EEE Uncooled K1g 43% Reactlon Rotat1ng Klg Clrcumter2nt1al Instrumentat10n Locatlon

200

Page 216: !VASA ct-/05)',1

TABLE F-1 EEE RIG-70709-7

ROTATING RIG DATA SUnr~ARY

*DE,)IGN POINT

STEADY STEADY STEADY STATE STATE STEAOY TRAVERSE

OPER'ITING 'iTfADY DATASET JULIAN STATE TRAVER'iE DATA,)ET PT-III TT -IN N POINT f SCAN F NAI'1E DAY TWE SCAN t NAI-lE PSIA oR RPn

78-7fJ HR MIN *<;5 473 60355il120Q 4 17.16 <;]1-519 8735<;4I2ilP 54.47 776.1 a7flQ

7 3'1 fi03'i04fi70Q 3'i5 04'40 36- fi5 87350ilfi2ilP 57.51 772.8 9703

3 177 601505020Q 355 12'02 179-206 87350502ilP 57.il7 7112.8 9798

4 376 fi03'i0'i<;20Q 31)5 70 54 328-35'i 87150r,r,7"Q 57.112 779.1 9796

5 410 603503520Q 11 13 51 il12-440 873'i03'i?4P 57A2 791.5 98iJ6

10 il35 6028141?OQ 356 07 07 437 -4(iil 117281ilI2tlQ 57.51 781 il 78il2

11 'i38 60?fJ04620Q 356 or; 78 <;40-568 8728045e11P 57.51 780 1 7110(j

13 514 6037511120Q 11 21 25 516-'iil3 8737'i1l]2ilP <;7 'i6 715.e 10003

'i7 za] 603574]70Q 10 OIt'ilZ 793-370 R73r,Zil]?4P 57.61 7"0.3 9807

53 635 60353il120Q 3<;6 11 31 637-fi611 R7353il1211Q 57 'il 779.3 01103

OV AVe; C(1RRECTEO OP'TG H-MI\IN H-COOL WCOOL VP N rRES AREA CLR. AREA POINT LBI1!S LBM/S ~n1I\IN REACTION I1EAN TT -IN RATIO WEIGHTED HlCHES WEIGHTED

(%) (%) (~ )

*55 21 94 o 3799 0.5672 3'i1.4 il ]2 qo fi2 0.0]45 90 60 2 C3% 0.11078 0.5517 351 '1 4 fi9 119 44 O.OH5 89 47 1 ?3 110 O.II??] o 'iill] 348 9 5 O'i 118.57 o 0135 88.43 4 23.81 0.4381 0.5354 35].0 5.65 86.80 0.0]1<; llfi.71 <; 23 fi7 0.342] 0.920 3<;0 0 1 5'i 00.32 o 013<; 90.23

10 23.90 0.38<;0 o 4640 280 'i il 03 Rn.fill 0.0705 87 14 11 73.9<; 0.4155 0.il507 279 4 4.(,0 lltl.49 0.Oe05 84.95 13 24. '13 0.3716 o fi039 374.1 4.08 00 87 0.0115 00 67 52 73.73 0.17il 0.733 0.5654 384 8 il .12 P'1.96 0.0165 90.10 <;3 ?1.8'i o 7ao 1. 7'iil 0.5fiCl 3 3<;] 7 il.12 pq (,4 o (JIgS 9lJ. 07

201

Page 217: !VASA ct-/05)',1

This Page Intentionally Left Blank

Page 218: !VASA ct-/05)',1

N o IN

80 j; ... 1: _. __ . H t 4 j.-,:,.", I· -. 4 ••• I • I Ju:: ':'; .'_ . ~ .. !: t!: ·:tE;: t:.-.l!!l~! 4

25 30

F-l

35 40 45 50 55

PRESSURE RATIO

EEE Uncooled Rlg 43% Reaction Rotating Rlg Efficiency vs. Pressure Ratlo (Area Averaged)

60

Page 219: !VASA ct-/05)',1

88 E: l' _._ - • 1::" " I -r--, 'I 'I.-I-- t ! I" ! ~ ~. 'j ._ t!:.. : --- .;:t.. _ ..... - _____ +_+ ___ :.-....I_~_..;;~ ___ ..!.. _____ 4- !'--!---r--'--- --i-' ..... +_+__ _ 1

p- :" ~~.. ! I, t k-"t : I til· I'! t·' "

I. _.- ,_;).::: ':-:i ! ~~ t " ' I I : I 1 lSI ;:i :; . . . _. 1.:" -j-' ~I-""I;"- -.--I--t-- -, f- .•. ,-t- -- r -" .. - :---7 ._, -, -t- ... • ,!: ' .. : - .. -. ~" : I ' ! I ' ' .... .1 -: . .: ',: ':~ ::~

86. • ..' ". t-4 l ' • ' i' ,.., • ' r' " :t;:;1 ';:. -:. t.': .... .~......- I --+--+--,,- ~~- -f ,_: -, -~,., .. ---f--"':-. -T, I ,- .. ' -+ -,.,. -~ • 1 " I • 'I 'i . , F;i:.~ .J,;~"'" .: ',; -,'-i~ ii" : I PR % We W

~::~ :.: .. -; : - " ., I' , 1 1-: 0 3 5 i2. :::. ':- " . T. '-+1 - ~I" - -, .. t-i-' '-'t, .. , --,"-'---' - tl '-~,' - -1

1'--- ~ --l'-'r -T 0 41

~:. t;':T.: -84fP"',_:" ::'.' -- ' " 't, -h-' '[ 0 46 E' I: • I I I , ! I

S::-:" "j':_ f--;-- --I-, '-,--'1r--t-'1--11--r-"- -.-- --.' r'-- I -.l-~-I--I--+-. -+T.,'-4 /\ 50

:F .. '~' E-, • , ~

N/v1T

F-2 EEE Uncooled Rlg 43% Reaction Rotating Rlg Efflclency vs. Speed Parameter (Area Averaged)

Page 220: !VASA ct-/05)',1

IV o VI

:-:

, 9 2 ~.; 1:-

9 0. 1:1

-' = E1. .'.

-;: - .. lS, -:

:.-. 8 8 g-;. .. : "

~:! ~:-,

If;... ::i:~::

612 .::..;: :.z r::. ~:: ~- :-:;,~

rs .~ L·;~

r'_ :.:::

84 f:!'

~- t- 1-':

E::;-

82

80 o 40

1- j , I ,- I :--1--- -i I I . f--~ 1--- .. - . : -_~ ___ -i._ r--

I i

.1._ :

· I i I----r- ~- 1--;--- r- r·· - _.- T- 1--.•. 1- • - - ~-. --- -- -

I I f- DESIGN - . . _-

-+--:

r---l--· ~ .. ~ -i-. - f---!---'r" - -- 1---· t·_- ~- H- J~ , --- I I f--! - ~~ r-:c- .'M !

I -, .. I-- - 1-- .- .~ -- f-+ r- , . f-. '- ~-~-~ J. ----

. . : . V ,.7, ~-.

, L , I

;;; T- - -- , . !-- _. i/"' . ~~ ,

I: ./ .

~ ...... l._ V :-~.-~ I

-- - -c - . :- -- - -.. --;-- -.. -: ~ ;....-- I

! . 1 ~--:-"....

, I ~_ . : , t ~.-~- - :----t - -- ,--- -- :-- :--- ,.- - -7--1· -I

I ~ I i r..:;: , : y J

, _1 PR

rovV I --.- 1-- r-I 0 35 : t=; t - !;.-"' V, I

--..)..--i , 0 !

.. -! 41 - I ,

· . ..1 0 t:- , J ; 46 -:.; I · : . ;

(). ~: - t- i : i I :: 50 : - : I

-:' : I I , .

} ~ . ! , 't ~ 55

D ..c:[ji ..1 1 ! : _I : : .. :: 41

~:: :::- t::::: ! I ,- , fi-1 0 41

8, T~· 1.:.:.= , j 1

. r':[ t:::.:': - '':: J-.

'.:. , F- _,-

-:::

H" I;~ 042

F-3

- '1- 1-_· t J J (.,

t-:' .i: I; -! to: I·' ~·t 'i; 1:- 1- l' h.:J.Ll &i ~f..:

044 046 048 050 052 054 056 058

VR MEAN

EEE Uncooled Rig 43% Reaction Rotating Rig Efflciency vs. Mean Velocity Ratlo (Area Averaged)

I' _.

t:. i f-:-!

- E-,-

.M·-·

bl :I ! ;t !

I , 1

,7E ..L.

::'~ .. ,,: §

b:: l;; E§

%WclW

733

1 254

060

Page 221: !VASA ct-/05)',1

2: o I­U <t w a::

~ ~-:L--~~ i- _L - ~:- !-- 1_ ~ ---1-=-:, ~ ~- - -- ~ - - L ! ~- --i--~~ ~-~~~-+~ --1- ,~~~~ I I. 'I· I , J I l. . ": ~ ~ II:. ... -+_:-_1i--,--1:i-_~ ___ ..j.... i ___ .. _..!-_-'---!.- ___ , __ ~---1--.. ., , 1 t '

044 • • J' I" , ,. 1 '\ -., 1 iL- J' t -j " 1 ' , , i' " r tTl _1""""1 'H-:_r-: t----r-=--i~- -+~--l--~ .. ---t--.. -~4 +-- , ..... - -1 ----.--------t-- ~-.. t_ .. A+---+-O • ---.... -:---~ ,._

~ i ,f .. • ! ~ I 1 : ' : r It .. ~ : ' i - ':.~.

60

PRESSURE RATIO

F-4 EEE Uncooled Rig 43% Reactlon Rotating Rlg Reactlon vs. Pressure Ratio (Area Averaged)

Page 222: !VASA ct-/05)',1

327 OOOr--.,----r---;I--I;--.I.---:-I--_,---:-'-,~I-r--1 .---r--,--- -:nl

- r---;- 04/04/79 08-4959

--j'- - - - - I -- --' _ I : I: i ' _~_J _I 'AVERAGE - 316395 , ,I I I I: t--r-:, ---:' --:-- -,---~~II---~I ---J '+r-- ---1-- -1- - -- - ---- -- - --, - -,-- ! DELETED POINTS I

32300 I" __ / _____ : __ 1 _________ . I !: -!-r--- i I ~ ~ VALUE I

.1 - - , :' - l ' , 200 2 67 09 222 160 I

I-:--+_-t-~--+-_I_-t-_--r ____ -,;-_-t--I ___ -r-,· -t-_L-,r-I ~: 'TI-. I _ TIT~~T, _ J:'I, ~~J 319000_t_I'~ " ; I' ~ ,:-!'-!' ~! I 3150001.-;-:~---~1~ "'-"'~~I ~~~F~;~;:-l~~-'~:§~L~~,,~--;-,-~~ ~--g-;~-~~~:~--i,'~~~§~~~~~_~~~-~h~~~~i;-~"1:~~,-~

~ I-i-~ f-;- ';=C-;-' r i- ;- /,-- I I r ; ':b~.,:. ~ ::'::- -. -----/- _L ___ : ____ +_ -I ... -\.. I -1- -j' ·1 -., -i~ -r ~l~~ CI) c.. :2 w I-

311 OO°t-_t-r-..=:...t-_t-_I_'_ - :_ - , : J. _J -- _J_~ --l- ~- -+ -: /.-;- -+-- -r--- ~ ~~ -J-1:±= ---I---i--'- -- ---- --1- -~." '11 -. J- -' - ,': / - ; 1.. - 0 450 DEG I

1 I, ! I ' . I + 123 7 D EG

--{=-I--- -;- ' -1- -4.;. - ,,' '.: J ~ ~ I: -. ,'1';-' X 1690 DEG I' , I I 1 'I 1'1 ' 1, "',,1,',, " - 02002DEG

II I' l.~ :,,"1.' f I I--f-+::-'-:--t--;--- __ I-+_'~.....L_ - .- ~ " - - -- ",- -, " ,:, .. -- -- .... 0 2437 DEG I : I 111 !" .' L, ! • t. 1,. .. If

1 I 1 + j,. ii' I" ',I I' ,'1,';, I' .,: ':1, i' "/" - 6 2690 DEG ++-+,-1---+-';':-1-',-- I --";"'d":"!;i "'--'~-;~1!",-- - "-, +3112DEG

, - -1- i '_ 1._ I • .!~~, !Ii, di' ih ,hi ~ :_1.-; 1* ~~ :~!,~. _L ,_ .11 I L - ~ 3565 DEG i ,"! I: I I : I 'I:' Ii, IIjI,,,, h!' "" ,'!i,ll" 't:",: II Ii ' c" I' - , -, '

299000~~+-+-4-~I~~j~r-~r-tl-t-+;-+~"~f~~~"~i,r.I~'!I~I'~j!i·'I~,;f,I~II,tji!t,,~:T~;li,',~,,',~:~, r.-rl,T.lltl:~,,1--tl-t,j,II,tl~I'1-1r~ir.:.-,:I--~II-.;.~__ I _ -I-r- -.. - - ... , .11ljll:.uJ. ..... 1- -- 'r,'" .1_ l!_ r. M' .. ' ,

,:I': :-i I li 'Il! '11 '11\ iii, '\t,' , : :1, ;" i,l, ' ,

F-5

PERCENT SPAN

EEE Uncooled Rig 43% Reaction Rotatlng Rig Inlet Temperature vs. Span (Area Averaged)

Page 223: !VASA ct-/05)',1

tv o 00

CI) w c:: ::l CI) CI) w c:: a..

119 000 t--~--t--+---I--t---t--t--t--t--

:-~.-- -;- -1-- --;- -. - -. _. --;.- - : -

04/04/79

AVERAGE -

084959

117022 DELETED POINTS

I " 0 --=-1----' --1--- '-_. 675 DEG :-- I '

CIRC SPAN VALUE

118000 __ , __ --t+-.~- .~_ ! ___ : __ ,_. 1 ;'( 1:~~~:~ 675 674,9 1171130 i

:-: -.:- I' .' 10 ~17 5 ~EG i ..' • , •• - I I! .1 .:. _ .J

117000 I ! .._ -,-' - .1,- _-. . I_r-_ ._I_~ ill i I I I I 1 , 1 1 I I I-~ ., 1'- -:. ._! i -; -; I i I' 'C \. !. 1 t -. - I I I

. \.-_. ! j _L --I- _J. - __ L.. .-1- . 1.. ~I:-- .. J~ -J!'-- - 'II - - - _L -! - . -.;. -' t ! j ! i I I I t 1 i "

116.000 +---+--+--+-....---l-:--+--+--:--~'--t--t--,-+-.;-.-1!-+-J--!--+-...!.--.J---<'--t.....:...-+--+-.!--I--,.-+-l.--t--l

t--"~-' +---:-' -+::: ...... ' :-t-~I' ! r- 1-'--'- -l-- _.1- -'TI- -:- -I·· -J--r-+. ~_ ._1- .. L_. --_.' I" t I : I I 1 1 I I I I I I

---- .. --1- I -1-' --I· I -I ·1 I I I I I· I I I ii' 1 115 000 ·t-:-t-t--+--t-+---I:-r-t--i--t--:--t-:~-+-+-t--i-+-~!-+-J--+--+--'--t-:-f-+-f--i

I ...L I I I -!- __ L -+-- _L -"IL '-1- __ L -.~. -i._ ...1_. . .. L _I. .... l' II! ! ! : I 1 I I" I ii'

: -1- j- +- -'i-- -I-"j I \.. -1-' 1 ' J tl-:+I --t-"+-I 1-+\ ~I I~I-t-+-II I 114000~!-+--+--t-+-~~-t-~-t-~~-t-+-t--i-+-~~-+~~-:--~:-f~-t--i-+-~~-+-+-~

----+-' -, +-~- -t- -1'-'+ -1-' -j -;.. -'1,.- -I· j. - ··1· 1-' . - +. -·1·· -I·· -.1' \., i I I :..L _L __ I- _ !- - -t-. -:1-~- --'-- -+- _ i --!-. _1_' -~.- - " ..: :

-- -, --, ·1 1 I I I i I 'I ' I I I,: , ': 113000t--'--t--+--t-+-~!-+-t--i--+-~~'--t---t--t-+-~~-+-i-~+-~~-+-t-~+-~~-+-t--r-

r-t- -+- + .-t- -+- -t- -+- -+ ---!~ -1- +. -+ ... \-- --1- .;. -- -.-~- --1-- .- -.. +.. . - .! ::;::':-:: ... -·1.: -:-L i '- '.-1,' :1:._. 1 j. - j, .1. I I --, : t I I : -:-'i.:. .:::.,-- y. '-J" I =-:::1: ":1:" ,I, I ' r I 1 I I ~'I'" I t I '

112000~~--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

o 0 20 000 40 000 60 000 80 000 100 000

PERCENT SPAN

F-6 EEE Uncooled Rig 43% Reaction Rotating Rig Inlet Pressure vs. Span (Area Averaged)

"

Page 224: !VASA ct-/05)',1

N o \0

269DEG

3565 DEG DATA - 603554120a

STATION NUMBER 5

N/JiT = 351 4

PR

STATION 05 INLET

CURVE

LABEL

11

12

13

14

15

16

17

1690DEG

F-7 EEE Uncooled Rig 43% Reaction Rotating Rig Inlet Temperature Contours

= 412

CURVE

VALUE

31200000

31300000

31400000

31500000

31600000

317 00000

31800000

Page 225: !VASA ct-/05)',1

N -o

I PR ! I'" I ....

~..,..l ...'Rr ,i -,_. if~l : :-

.1 i '-Iii' ::ij i

IU: : : :. iA~·j ~- - lii,.r.. :1;:J

'\~ ,:!. I I tAr. 1

..... Ial'; . i .... -.l 1~!'" ~ Ji~::' '.": I"",! ~~ - . L ~~, - .3 ., ... , ~ir"'!"r'~: .:'.;:: .it

u.. 0

l !:: X If"I.7l: ! 1 I· t' ~~.:. I,: F.;; 1,'';'P

w l-I-

-::'; .. .- c,. ',. ! k~,". ltI-1'_.. .,. ~~ :-::' ;:: :,:. -" .... ~,....,.- ..0.; - ~ :..:;. - • I;.' ;:t r:;

"-:#.' . :' - l:- 1 --:: -ou: .; ;..~ ~.:.I·~.. ~~ ;.: .~ -:.-.: .• ":'=l..:n.·.J:::-"["'''

." ~~·I,~~~=:/:§;~~.!'~I-;.~r-.~~ ::. -:=-: to. ~~ :k:l:! ~IT ill: ~:i~ 1,::-c~"f~' ~~ ~ 1:::.1

40

30 a 2[) a to

% SPA-N

F-8 EEE Uncooled Rlg 43% Reactlon Rotating Rig EXlt Temperature vs. Span

Page 226: !VASA ct-/05)',1

t-J --

u. o

I !: X w l­I-

...

130 :.:. :::::~'t-!I ~r-. ...,....:-_ ' .. -_~r-:: .,._~--r-, --r-__ -r~-iT .. -:r-.+'1I-.-,...~ _....,.~r-_'!.-.J'. __ ~_ ~._~ I:-:.. !--L.~ .... ~--1--f--~-:r-}-t-! I, J. i I ~L I 'T- 1 I' I' :

PR %Wc!W

355

412 733 I

412 1 254 '

403

460

60 14' 'J+':: "~~Ir::; E·:+: ~.::1' :::1·. ·l:'~: ::-i ., . f. .:'; ,··b.d:.: ,: ;!'.:= <; ::;"I:;;:~§.:::~:::T:f$lE~--tE: o 10 20 30 40 50 60 70 80 90

% SPAN

F-9 EEE Uncooled Rig 43% Reactlon Rotating Rig Exit Temperature vs. Span

Page 227: !VASA ct-/05)',1

212

« Cl J:

1 I-X W l-e..

34~41--~~-+~~+-~~1--r-~,r+~~~~~r,~~~--~;-­r-~---+,-4~+-~~~~~--~~~~~kr!+-~-+--rT-t-

30 I I f-- ~_If---r' - __ --+~14__l~-+--t-,.~.A---:-+I-t--i~ ~ -----1

, 1 I I

29 -'--+-+-+-

28

27

ot'/ / ~/ I j _~' - +- /ii/' /,/1'1 ' I A ,.--r-" ::r.-- -

26

25

24

23

22

// I 00 ' !.1i ' _ E-~J / ' , J;::..q ~I ,I . fI. __ ~ / F.j' I'- 'I 'P A I I Y- I t to: .... ' f

21 'I I .- 1--+--:1-_ t-r--+-_--I'---.-"-""', <c;~ -

J;! 1.1 N/.JT PR N/.JT PR

19 ' I ~ 0 3514 412 D 3488 412

%Wc/W b 733 ~

~ ~--+---+--II-1r--+--'" 0 3519 469 0 351 2 412

18 -~ A I 0 348 9 5 05 0 280 5 4 03 -;-~f++ 6 3510 565 0 2794 460

l' f ~ 350 0 3 55 0 374 1 4 08 f 'f~T=f---Frr7"r-llr r I I I-I

Q ---", I

~ t-, , ,-17

1254

o 10 20 30 40 50 60 70 80 90 100

% SPAN

F-10 EEE Uncooled Rig 43% Reaction Rotatlng Rig Exit Pressure vs. Span

Page 228: !VASA ct-/05)',1

82

80 o 10

F-ll

tr.:

2U 30 40 50 60 70 80

% SPAN

EEE Uncooled Rig 43% Reaction Rotating Rig Spanwise Efficiency (Area Averaged)

469

355

408

90 100

Page 229: !VASA ct-/05)',1

N -~

F-12 EEE Uncooled Rig 43% Reaction Rotating Rlg Spanwise Efflciency (Area Averaged)

,\

Page 230: !VASA ct-/05)',1

80

70

(I) 60 w w a: t!' w c l w 50 ...J t!' :2 « a: « 40

30

20

N/.../f PR %Wc/W

I 0 3514 412 ~-- ~-,; _. I

~,-·i-·· , ; 1~'-1-+-' : '1

f-- -~ ;-- r-- ---- :,-0 3591 469

0 : ,

f-l· ' +- :--t ' I I

~ 3489 505 f--I-~- --, ,- - . I ~ 3510 565

,

, , ! ' ~ ~ 3500 355 ~

.~ ilia ~ D J t 3488 412 733 i !~ t.\ . , 1+-,

~l I l. :;:i 0 3512 412 1254 N, ~ ~ I'" --=rt ~j l~ li. - 1 i !/\ :

~r:: 0 2805 403 j 0 -{ { } ! wi Ie:: ... I \ ~ t,:p!

~~ C) f~ t r-- :e .,

~ T ~T: :& 1;;1 '~ ~ 2794 460 I" 4 t'.! 1"'1

0 3741 408 .. I't a1 ~ ~: t~ ;II l ~ ~' ' .. .! Ij.II ff;-j ',' I,l, --;:: ~f+' f-. ~I l: ~ l t$ ~I ;~ ~~.

I Jj " i .( -;,

"- ~ • ..t.-" ' 'III L-' I '~~ .~ ~~ I ~, j I . ~~ ~ , : 1

tt::f~j :::~ ':- .:' ·tii ' " IJS~ -C ~ ~ r\ 19! l~ " ... I .. , i [1:: , t-:

::;: :-1 kE ,'-18 ~ I" ,·I.:· ~ ~t) IVI :'\1 !i;.: : • .1 ,:;

," ~ P.§iF .:; Itf! -:: ~ .. ~ : :: I"'tt . 'V' :~ J; ~ ~;.

• .: ;r, : ; : :(,:~ ~ .,.,.

Jr:. .., '" I ',~ ':'

It..; I 1 . t . f: • .;- b : ~~i J;.:t !-

10. ,. j

I , I !(: ~~~l g::.:.~ I..-.. ! ,

, : . . j • ! .. I :'j h: ...: II.

I· . ! -.+ '; j •• '1 k ti; E..:l-; : .• :!

I'; iI, ~ - 1: t- "I :~. I': i" i,- ,:.f~ IS: ~:t .. :

I .: p. ',' ';' I;· I. !:' (':,-1=:- !,-: I- e ,: t:::: I;~ 1:;.' 1.:-" fI! ,:.:: .

, ;:!. :, tE; •. 8~: tr ~~ 1,':, I:' ' -: J'r ~ '.: '. F ,-::-

l!~: L~, t:E llt ::~ . .: ';' I. 1-

o 10 20 30 40 50 60 70 80 90

% SPAN

F-13 EEE Uncooled Rig 43% Reaction Rotating Rig Exit Air Angle vs. % Span at eire. = 91.6 degrees

rr-:~ ;~

f-··~

E!:? -, hi;~

~ <~ .:

~ ~ FrS; f.£ ,:0:

!OO If f.!

';

~ ~ ~S!

r!l ':.: tIn :-

r.~f: ~!;,

~.;-~ ~I'

::E 100

Page 231: !VASA ct-/05)',1

IV -0\

en w w a: e" w c l w ...J e" 2: ~ a: <t

~f:ili.:~';::'-r .1 _ .. i .. , ___ "_'\_" ! ... LJ .. , I 'li . __ ~ ... +.: -i I LJ_.~_....l~_ t t - • ~;:. :'jt' ~ '. '" I j',:, , I '1 ' "I I : :'

70 ~~ .. ; .•. ; '.;' :,1 - , I I '1 I 'I i ' ! 't I: ..h : " ,.... . . "T-I1-+-t, ,--r-, r- ',' . t· , '! .• - I .-~.' 1, .. ~ "1.1.·_· -1,-' :-. ': ·'I, .. ·:--t-i":"--1-~ t .. 1;..".... '; .. ~t:-~: '::::r . . T i j i\ ~ ""

:..: .:.: .. ~:. r :: I I',,!, I I 'i, , ! J '.... I J.:.J:""" -~F.-'lt-:=l-::-i--+--t--+-+---'+---r ., ...... - -, .. - t····· _. -. I . .~ i 'i I,' .',' i -, '+, '. "1-- "-;--j "-+-':"'c;.;;.'. Jt....;J , E:f.;:. :::; ~, , T' I, 'i, 4; rc ....,.. t': , .. :.;

60,.." .. " ., , !' I '~ t ; ...... -s: '.' '!.. •• ':: ... ,_.l.-h-r-.-+~ r'-' . ~,+ . Ir\l-\'" . -~. +&. 1---,-" -+ rr~.. l!:l:t.:l :;' -: "'.. ~. I i '\' !M' 1 l!l I 'A' ;-,... ~

% SPAN

F-14 EEE Uncooled Rlg 43% Reaction Rotating Rig Exit Air Angle vs. % Span at N/sq.rt. T = 350

'j

Page 232: !VASA ct-/05)',1

(I) w w 0::: Cl w c l w ...J Cl 2 « 0::

<i:

~~ :l!' "':t _. 1 - .:rl~f--~- -f !.! _ f- ~ ____ ~ I _.!_J _~-+--1_ '_!_L_I_J !' I J_' ~' :~: : __ I-P_R_~_CI_R_C "- ~ :', rTT I I I '1 I-r-r: . 0 4 1 91 6

80 Jr:::-;:;:.ct';::;.ct=.,..-+-+-+-+--4i- f--L ___ L f--~---L: ___ :._ ~ __ . -f ~ _____ ~_ L __ ....! __ ---L _+_ -l_~_."""'-.T0::..f~4...,1.......,~......,,1 ,.....6~ ::_ _~ . ~" I 'i i' 'i " I l i - ' '. ; _ :!: ;-f; :

70 It!.. t

E''"'"::

o 10

F-15

20 30 40 50 60 70 80 90

% SPAN

EEE Uncooled Rig 43% Reaction Rotating Rlg Exit Air Angle vs. % Span at N/sq.rt. T = 375

100

Page 233: !VASA ct-/05)',1

PR ~J j I ;. ·t .. ·· .. · .. ·t .. _.-. N/VT

o 350 41

1 0001+---+-~ --+--1-- --·~·i It-l---1-:-t--+-I

--± ll-:----t---t--H r\ ~ -'1 -i

1' :'<...vr~l ..... t\c1~" 41

I ~ ill.: I: 1- _ DESIGN (M975)

: :~~ 1· .. i I .. ·· - I .-~~

41 o 280

6. 375

PREDICTED

'\. I !!: I' 1 o 900 ~~ -- --t-~.~ ! .+--~! --+-·tf.-_-.. +-.-+l-.-+-,.-_ t-t.-.. -tt:I\--+--.. -+-_-.• t--T.-_.-t. -......:.+-"7:

I • ; \ ' Ij 1 : r-" ~

0800,r-::-~~ '~~ ~,.i-!+ --- ... \~"I·--·r-; t I I

-' . t : I ~ I I ·f --. ...11

- -1\-- ---.-~ 1 : ' ! I, ,

-.......... ~----

- ( i i ~ ~~"I -. 1·-- . -J.-.... --- _. -+-++-\-+---,-,+-"~~~ 0.7001+--+- -}---jf--+-, -+-+\-f\\-+-I !+-+--t--t-,-t--t--r-t-t-+-tr ,,--:-r-:-tj;i~

. I [ .... :.. ~ ,~ .. --. ---t- .. . -~~, '1~1 I\! ::~~

--j -.\ ... \. I .+ \ .... -- -+ ..... -.-- -- ·-.r--ft:---t-----t-'-.-:i::

o 600Jl-.~1-1-.-.-t-'i -+.-tl-t-+t,.-._+-_.-i'l~.k,\:-... +~-.. +._+.-+ _.-.. +. -._-t-T.-_t-it-,T, -:-, r~~.!t

- .!...-r .. j .. ··1 .. j .. , .. - .. _.Jt . ~~ ": 1~' ~:: i 1 1. ! /r (,~"""'-.l~ l ' .' It.' ! ••

0500! ! 1 I - ~-l~fJ .~ l~~.. rr.1-= ·tr; , t ,~ ~r ~t .. -... ~ ........ !.,.. -. t·· .- t·- I, (;. . ......... -'-r'- -.. . tJ' ~ ; it :i;f 1. ~ " 'u I 1 ( , rr: .": F

- ... - .. _+t'.· .. ·- '-1" .•.. "'-1---'-"- ~.- .- ·• .. f--------r-·- I. • ":

If. ,:t t ~ I ~ • j + ~

0400~~~-+-+-t-t-+-++-r-+~~r-r-+-;--r-r,-.~10.~:~.t,t.i~::~:1 ....... I ....

"-r:·+~-t-- --f--"l--~ .. #. ~,'. -, rl:tl7:nffi

H • t·· .t: :IU U

%x/bx

F-16 EEE Uncoo1ed Rig 43% Reaction Rotating Rig Vane Surface Statics - 11% Span

218

Page 234: !VASA ct-/05)',1

l­e.. ...... ~

N/.JT

o 350

o 280

6. 375

PR

41

41

41

'1"\ I "1 ,. i 1 tt !~~! t\ ~tL tl: t t! j I ,'lt oft;: t, .. l • ri': d~ ;;! +,t '-- _. ••• ••• •••• .~ ••• + •••••• "., ++.~ .++ "I~' ~-:-- .:: 'jLI ' .. ! I~:l' Ijlll:t rt I

I • ,!s.. ' . I + 1 " : I! It: t, tt it ~ PH l:tr ~

1t jl

, I

Itt t

, +

,

:t t , t +

Ii Itl

II P .. t

t

t

• •

~ 1 Ilt 1 ! ill li! iii !lW! 1; l t!!l ll411 t ~!ll4tt ~timlw HI 'lOO14mJ1 iummHummmfHffimfiOOiJ 0300 flU! II 1I HH tnt It! lililli!! lP 1 [iii! HifllllHIl tl

o 20 40 60 80 100

%x/bx

F-17 EEE Uncooled Rig 43% Reaction Rotating Rig Vane Surface Statics - 50% Span

219

Page 235: !VASA ct-/05)',1

'I" I : • ., . " " l .:< I" 1 000 '--+--+--+--+---+-....,IPIIoJf-,,· +-1f--t-f--:-,. +-rr .... !tIll" .. ·:.J.t :'I''":'t ::;..-1 +'"~r-, r.~--:-t .. -:;"T; ;-:-:1. ~ ;

"~~~··!lo.·~-'a"~----~-~~-+--+---4-~~---~~-~~~~-~~~--r-~~~"!7¥T~4~~~~'T.*01~"~'*"~" I j H, +1 I '1. • ~ ,. I' I,~, .. , tt"

f - "\ .. , .. r ,,' "" • :::; ".: • "1

.. : "~' ": ',:'t j .1 I Itt •• f

0900

-. I'--~~ -1-- K -.. -- .- -. -~ ... --- --_. ~ . -~ : ; [;;{I .. "'jf'

___ 1__ !\ --- -... -- -,- -.-- _l_~ •• '_._.. : :::~ 110- •

~-~~+--+-4--+-~-4--+-~~--r-~-+--r'~" ., : ' I: :-fl

c - --- -- - .. -- -.. -- - . ,_. .~ c--:--~ -- .~~tf::t11 ' I ...

0800L-__ ~.-.-_.+.-.-_~.-._~_-_-.+-_.-.~_-._~I\---+---~t~---.+--_~ __ 4-_~.~+.-._-r.-4-~-_t~-.--r.--i-~.r\,t~~.~~.~~,.~~:~l , ,:1 II ,,,.

t I ~ .... I • t t

.. _. f- .. - •

- - --. f--. •••.••.• -. - -- .•

r-'

F-18 EEE Uncooled Rig 43% Reaction Rotating Rig Vane Surface Statics - 89% Span

220

Page 236: !VASA ct-/05)',1

41

41

0800

0700

~. [E1:;t;I::.~~~ti .;~:Ir:hl~~; ttl nbli:' I~ flil/ffl<iTI r} m f'- it Harn+t!lnl

~ ;J! Ii mGI nUi iHUW: fI Ii th rEi Ki~ ~l 0300 [1 r. Ii fE :t If ~. ~Ht eJ

Il ~l~

u ft il f1 o 20 40 60 80 100

%x/bx

F-19 EEE Uncooled Rlg 43% Reaction Rotating Rig Mid Gap 0.0. Statics vs. % x/bx

221

Page 237: !VASA ct-/05)',1

I­w ..J :2

I­~ ~

o 20 40 60 80 100

%x/bx

F-20 EEE Uncooled Rig 43% Reactlon Rotating Rig Mid Gap 0.0. Statlcs vs. % x/bx

222

Page 238: !VASA ct-/05)',1

N N W

06

I-w 04 ...J 2:

l-e.. -C ..: :!E a: 03

0 LL I-~ ...J e.. W ..,: w 2: ~ > en e..

20 40 60 80

%GAP

469

505

565

355

412

412

403

460

100 55

733

1254

F-2l EEE Uncooled Rlg 43% Reaction Rotating Rig 1.0. Platform Ps vs. % Gap

Page 239: !VASA ct-/05)',1

I­W -J 2

o -1'5

20 40 60

%GAP

--!--.I---,

, ; ..

80

;

733

1254

100 55

F-22 EEE Uncooled Rig 43% Reaction Rotating Rig 0.0. Platform Ps vs. % Gap

224

Page 240: !VASA ct-/05)',1

CI) c..

68

64

> 60 I-

~ <.J

!::

~.~ = rug 'F ;;:.

ll.

~

t!;j

::.:

~ t..'":: r::-

X 56 w I ~ ~:j! w 2

~ ~

52 . ~

48

44 o

:r t:: I" i I 1 11 1 ... .- :.! F;H :: ._t . ...: :-~.-: : I j

, . r;~ -' "'.Y: i i

: I ! r .. •• ,0 j .+- ~-+- l

:- , t::- I·:: :;j ~ I , 1-,.

f--; ." 1-: b-i 1:': ; I g .l._ ~I, L I ~ ~ ~ ~ ~ ~ :r ~ ~ ~ :~ :::

"- ....... t-t-:: j...I'r' ~ -::.. l--'" 7"'; ~ t-::; I!· .:.~ -;~ :~ J : ,.t..-- I-'"

t1 I 1 i .J-r--r; ~ J.-. ~ ~ I'"" f.-....... :: ", ,I~ :;.1 I

1£1i 1!1 r'·h l-t-I-i ---....... Lrf: ~ l...-~ j. .. -: F p.. •. ,i !

,. ~ ~

I-~ r--r." :.-V:...r-~ .......... ~ I ~: 's ';;:i:

';:<',1. ....... f.-r .-r- J..-.-~ t::-t-" : .';j .:' :!;., :1. :i * .' L- ......

~~ r l • ~ f-H'" , .-:,...-- --t. :.....- : !~; CT',

j'::l1; ,. f'~ I.;...-~ :. lr-' ~;;...... ~ ~ : : . ..:; rtf' f.-f-. .jl ::-; ~ _rarr:.' ~ i--'!'" -~ ~ I :~ 'Ii f~'" m

,: r·· .' t...-~ f'" ~ fZP i 1 : ,.; :-=c,. ~::f F:,~ -:' i :! !;--' :rffi -:r.t'.: ~ .ii+!~ 1_

ft~:

b:~

10

F-23

t F=' r:t ~ ..... ~ ~ ~ r 1-, --', r~

k1~ I . ': "I : I"::; .. ;:: !~i~ i .. ::

2:1.; . . , i i j J : :' 1·,- i'ii;] [f~ fl" ;" ,,: . ':

! j" .J! ..; '~ ~i'! 1$:

'.:; ... ~:. " 1 : I ; tr;1 f.~: j ..

. Ii. : .;' ':, I . ; N/F PR -'

~- '! ..: .J:: t~:;: .' i : : . : :'!; g 3514 412 ,.", :':

fW-!j::;~ :,: 12:: I·· .. .'= .: r. i ,:1' I , I' 3488 412 ;'. ~. :;;-.;.c 2;- ~;-! ':' ': == t .' 1- ':h;:-- .?-: ,~~ 0 351 2 412

F:S hI. .~ :.: [;- : :: f..: r~ '" '':~ 0 • !1~::; ;.. : ·'t :: . , '- 2805 403 .-' &" :-.,; t:c:· ~.!' I:: ! . F: '~, .:~ .'!± o 3741 408

11:: Fi:...j h~ II ~ .. : t:: I.!. : iT, I,;;

20 30 40 50 60 70 80 90

% SPAN

EEE Uncooled Rig 43% Reaction Rotating Rig Vane Exit Cavity vs. % Span

: :1 (:'r: r::? ,~~ :."< E?£: ;E 1:,- r:::: :.::: S ~.

%WclW

733

1254

100

Page 241: !VASA ct-/05)',1

en 0-

>­t: ~ U l-X w w c <C ...J CIl

% SPAN

N/F

3514

3519

3489

3510

3500

2805

2794

3741

PR

412

469

505

565

355

403

460

408

F-24 EEE Uncooled Rig 43% Reaction Rotating Rig Blade Exit Cavity vs. % Span

226

,

Page 242: !VASA ct-/05)',1

o EXIT TT RAKES

~ CONCENTRIC PT. TT

o T E PLATFORM STATICS - VANE

o INLETPT

o INLETTT o EXIT PT RAKES

~ EXIT WEDGE PROBES

o SURFACESTATICS-VANE

o MID-CHANNELSTATICS-VANE

VIEW LOOKING UPSTREAM

F-25 EEE Uncooled Rig 43% Reaction Rotatlng Rlg Clrcumferential Instrumentation Location

227

Page 243: !VASA ct-/05)',1

This Page Intentionally left Blank

Page 244: !VASA ct-/05)',1

NASA Headquarters 600 Independence Ave , S W

WashIngton, rx; 20546 Attn RTP-6 R S Colladay

NASA-Lew.lS Research Center 21000 Brookpark Road Cleveland, OH 44135 C C Clepluch, MS 301-4 (20 cop)

NASA-Lew.lS Research Center 21000 Brookpark Roacl Cleveland, OH 44135 LIbrary, MS 60-3 (2 copies)

NASA-Lew.ls Research Center 21000 Brookpark Roacl Cleveland, OH 44135 Attn M A Berel1ll, MS 86-1

NASA-Lew.lS Research Center 21000 Brookpark Road Cleveland, OH 44135 Tech UtIlIzatIon Off , MS 3-19

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn W M BraithwaIte, MS 60-6

NASA-Lew.ls Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn J 0 VanVleet, MS 21-4

NASA SClen and Tech Inf Fac. POBox 33 College Park, Maryland 20740 AqUlsltlon Branch (10 Copies)

NASA Dryden FlIght Research Ctr POBox 273 Edwards, Cahfocnia 93523 Attn LIbrary

Department of Defense Washington, D C 20301 Attn R Standahar

3Dl089 Pentagon

WClght-Patterson Air Force Base Dayton, OH 45433 Attn E E BaIley (NASA Liaison)

AFAPL/DO

NASA Headquarters 600 Independence Ave , S W WashIngton, rx; 20546 Attn RJP-2 D J Pbferl (2 Cop)

NASA-LewlS Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn D L Nored, MS 301-2

NASA-LewlS Research Center 21000 Brookpark Road Cleveland, OH 44135 Report Control OffIce MS 5-5

NASA-Lewis Research Center 21000 Brookpark Road Cl eve land, OH 4413 5

Attn R W. Schroeder, MS 500-207

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 AFS; Llasion OffIce MS 501-3

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn A J Glassman, MS 77-2

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn L ReId, MS 5-9

NASA Ames Research Center Moffett Field, CA 94035 Attn 202-7/M H Waters

NASA Langley Research Center Langley Field, VA 23365 Attn LIbrary

Wright-Patterson AIr Force Base Dayton, OH 45433 Attn R P Carmichael

ASD/XRHI

WrIght-Patterson Air Force Base Dayton, OH 45433 Attn H J P VonOhain

AFAPL/CCN

NASA Headquarters 600 Independence Ave , S W WashIngton, rx; 20546 Attn RTM-6/L HarrIs

NASA-Lew.lS Research 21000 Brookpark Road Cleveland, OH 44135 Attn J W Schaefer, MS 301-4

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn M J Hartmann MS 5-3

NASA-Lew.lS Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn N T Saunders

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn R J Weber MS 500-127

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn D C MIkkelson, MS 86-1

NASA-LewIS Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn R W. Graham, MS 77-2

NASA Ames Research Center Moffett FIeld, CA 94035 Attn 202-7/L J WIllIams

NASA Langley Research Center Langley Field, VA 23365 Attn D Malden

Wr.lght-Patterson ~r Force Base Dayton, OH 45433 Attn R EllIS

ASD/YZN

WrIght-Patterson Alr Force Base Dayton, OH 45433 Attn E C Simpson

AFAPL/TB

NASA Headquarters 600 Independence Avenue I SW WashIngton, rx; 20546 Attn LIbrary

NASA-LewIS Research 21000 Brookpark Road Cleveland, OH 44135 Attn L E MaCIoce, MS 301-4

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn W L Stewart, MS 3-5

NASA-Lew.lS Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn R A. Rudey, MS 60-4

NASA-Lew.lS Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn T P. Moffitt, MS 77-2

NASA-Lewis Research Center 21000 Brookpark Road Clevelancl, OH 44135 Attn K E Skeels, MS 500-305

NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn Army R&T Prop Lab, MS 106-2

NASA Dryden Plight Research Ctr POBox 273 Eawards, CA 93523 Attn J A Albers

NASA Langley Research Center Langley Field, VA 23365 Attn R Leonard

Wright-Patterson Alr Force Base Dayton, OH 45433 Attn Col. C. E Painter

ASD/EN

WrIght-Patterson Air Force Base Dayton, OH 45433 Attn H.I Bush

AFAPL/TB

Page 245: !VASA ct-/05)',1

BoeIng Aerospace Co POBox 3999 Seattle, Washlngton 98124 Attn H Hlgglns

Lockheed Callfornia Co Burbank, CA 91502 Attn R Tullis, Dept 75-21

Boeing Aerospace Co POBox 3999 Seattle, WA 98124 Attn H Hlgglns

Lockheed Georgla Co Harietta, GA 30060 Attn H S SWeet

General ElectrIc Co lAD:: One Jimson Road Evendale, OH 45215 Attn T F Donohue

Pan American World Airways, Inc JFK Internatlonal AIrport Jamlca, NY 11430 Attn J G Boeger

United Alr llnes san Franc~sco Int A~rport

Haint Operations Cntr San Franc lSCO, CA 94128

Attn J J Overton

BrunSWIck Corporation 2000 Brunswlck Lane Deland, FlorIda 32720 Attn A ErIckson

George Shev lln POBox 1925 Washlngton, DC 20013

BoeIng Aerospace Co POBox 3999 seattle, WA 98124 Attn D S Hlller HS 40-26

Lockheed California Co Burbank, CA 91502 Attn J I Benson

Gates Lear]et Corp P O. Box 7707 Wichlta, KS 67277 Attn E Schiller

Gruman Aerospace Corp South Oyster Bay Road Bethpage, NY ll7l4 Attn C Hoeltzer

Amer~can Airl~nes

HaInt & Engr Center Tulsa, OK 74151 Attn W R Neeley

Pan AmerIcan World Al.rways, Inc JFK International Airport Jamica, NY 11430 Attn A. HacLarty

General Electric Co I AIX;

One Jimson Road Evendale, OH 45215 Attn B L Koff

FluiDyne Engineering Corp 5900 Olson HelOOr ,al Hlghway Hlnneapolls, HN 55422 Attn J S Holdhusen

UnIversIty of Tennessee Space Instltute Tullahoma, TN 37388 Attn Fr V. Smith

Gas DynamICS LaboratorIes Aerospace Englneering Buildlng UniversIty of HIchigan Ann Arbor, HI 48109

Attn Dr C W Kaufmann

The Boeing Co , Wlchlta D,V WIchIta, KS 67210 Attn D Tarkelson

General DynamICS Covalr P. 0 Box 80847 san DI~O, CA 92138 Attn S Campbell, HZ 632-00

HcDonnell AIrcraft Co HcDonnel Douglas Corp POBox 516 St LoulS, HO 63166

Attn F C Claser Dept 243

Eastern Air lines International AIrport Hiami, FL 33148 Attn A E FIshbein

Delta AIr lines, Inc Hartsfield-Atlanta Int Airport Atlanta, GA 30320 Attn C. C. DaVIS

Hamilton Standard Bradley Field Windsor Locks, CT 06096 Attn P J DumaIS, HS l"A-3-l

ROM Corporation POBox 878 - Foot & H Street Chula Vista, CA 92012 Attn LIbrary

TIM Equipment Corp TIM Inc 23555 Euclid Ave Cleveland, OH 44117

Attn I Toth

Hassachusetts Inst of Tech Dept of Structural MechanIcs CambrIdge, HA 02139

Attn James Har

Lockheed CalifornIa Co Burbank, CA 91502 Attn J F Stroud, Dept 75-42

Boeing Aerospace Co POBox 3999 seattle, WA 98124 Attn D SHiller HS 40-26

Lockheed Georgia Co Harietta, GA 30060 WIchIta, KS 67277 Attn E Schiller

Rockwell International InternatIonal Al.rport Los Angeles Divlsion Los Angelos, CA 90009

Attn A W HartIn

Transworld AirlInes 60S ThIrd Avenue New York, NY 10016 Attn A E. Carrol

HamIl ton Standard Bradley FIeld Windsor Locks, CT 06096 Attn A T Reiff, HS 1-2-2

Solar Division International Harvester 2200 Pacific HIghway san DI~O, CA 92112 LIbrary

Iowa State UnIversIty Dept of Hechamcal Eng Ames, Iowa 50011 Attn Dr. P Kavanagh

Hassachusetts Inst of Tech Dept of AstronautIcs and Aero CambrIdge, HA 02139 Attn Jack Kerrebrock

Penn State UnIversIty Dept of Aerospace Eng. 233 Hammond BuIldIng UnIversIty Park, Penn 16802 Attn Dr B LakshmInarayana

Page 246: !VASA ct-/05)',1

USAVRAD Command ro rox 209 sr Louis, MO 63166 Attn R M TItus (AstIO)

Eust~s Dlrectorate U S Army MobIlity R&D Laboratory Fort Eustis, VA 23604 Attn J Lane, SAVDIr-W-Tapp

Federal Aviation Administration NOJ.Se Abatement Dlvlslon Washin9ton, DC 20590 Attn J Woodhall

U S Naval Air Test Center Code Sf-53 patuxent River, MS 20670 Attn E A Lyzrh

~Research Han Co III South 34th Street ro Box 5217 Phoenix, Arizona 85010

Attention C E CorrIgan (93-120/503-4F)

Teledyne CAE, Turbine En9ines V30 Laskey Road Toledo, OH 43612 Attn W 0 Wagner

Williams Research Co. 2280 Maple Road Walled Lake, HI 48088 Attn R Horn

AVCO/Lycomin9 550 SHain Street stratford, CT 06497 Attn H Moellmann

Douglas Aircraft Co McDonnell Douglas Corp 3655 Lakewood Boulevard Lon9 Beach, CA 90846

Attn R T Kawai, Code 36-41

Envlronmental Protectlon Agency 1835 K Street, NW Attn J Tyler

Pederal AVIatIon )1rminlstratlon 12 New F'nglanrt ExecutIve Parle' Rurllngton, NA 18083 Attn J A <;'aln, AN8-200

Naval Alr PropulSIon Test Center Trenton, NJ 08628 Attn J J Curry

Environmental Protection Agency 2565 Plymouth Road Ann Arbor, MI 48105 Attn R Hunt

Cummins En9lne Co Tech Center 500 S Poplar Columbus, IN 47201 Attn J R Drake

The Garrett Corporatlon AiResearch Manufacturin9 Co Torrance, CA 90509 Attn F E Faulkner

General Electric Co /AEC One Jimson Road Evandale, OH 45215 Attn T Hampton (3 Coples)

General Electrlc Co /AFG 1000 Western Ave Lynn, HA 01910 Attn R E Neitzel

The Garrett Corporation AIResearch Aviatlon Co 19201 Susana Road Compton, CA 90221 N J. Palmer

Douglas Aircraft Co McDonnell Douglas Corp. 3655 Lakewood Boulevard Lon9 Beach, CA 90846

Attn M Klotzsche

NAVY Department Naval AIr Systems Command WaShIn9ton, D C 20361 Attn E A Lichtman, AIR-330E

Navy Department Naval AIr Systems Command Washln9ton, DC 20361 Attn W Koven, AIR-03E

Naval Alr PropulSIon Test Center Trenton, NJ 08628 Attn A A Martlno

CurtISS WrIght Corporation Woodrzdge, NJ 07075 Attn S Lombardo

Detroit DIesel Alllson Dlv GMC POBox 894 Indianapolls, IN 46206 Attn W L HcIntIre

WIllIams Research Co 2280 W Maple Road Walled Lake, HI 48088 Attn R Van N11Tl<legen

Boein9 CommercIal AIrplane Co POBox 3707 Seattle, WA 98124 Attn D C Nordstrom

Pratt & Whitney AIrcraft Group Government ProdUcts DIVISIon POBox 2691 West Palm Beach, FL 33402

Attn B A Jones

Aerospace CorporatIon R&D Center Los Angeles, CA 90045 Attn Library

Pratt & r'lll1tnr>l/ AJrcraft Group 400 I.ll n ~t rpf"t

F1St lI~rt("rri. rT 06102 Attn rrlccfnt"'r (3 ('r)1') anrl '5('n5

NAVY Department Naval AIr Systems Command Washln9ton, D C 20361 Attn G Derderian, AIR-5362C

Navy Department Naval A~r Systems Command Washlngton, DC 20361 Attn J L Byers, AIR-53602

Env~ronmental Protect~on Agency 1835 K Street, NW Washlngton, DC 20460 Attn J Schettino

Curt~ss Wr~ght Corporat~on

WoodrIdge, N J 07075 Attn S Hoskowltz

Detrolt Dlesel Allison DlV GHC 333 West FIrst Street Dayton, OH 45402 Attn F Walters

The Garrett Corporat~on ~Research Manufactur~ng Co 402 S 36 Street Phoenlx, AZ 85304

Attn F B Wallace

Boelng Commercial Alrplane Co POBox 3707 Seattle, WA 98124 Attn P Johnson, MS 40-53

West~nghouse Electr~c Corp P. 0 Box 5837 Beulah Road Plttsburgh, PA 15236

Attn Library

Page 247: !VASA ct-/05)',1

End of Document