V. Machines (A,B,C,J) Dennis Buckmaster [email protected] dbuckmas/ [email protected] OUTLINE...

80
V. Machines (A,B,C,J) Dennis Buckmaster [email protected] https://engineering.purdue.edu/~dbuck mas/ OUTLINE • Internal combustion engines • Hydraulic power circuits • Mechanical power transmission

Transcript of V. Machines (A,B,C,J) Dennis Buckmaster [email protected] dbuckmas/ [email protected] OUTLINE...

Page 1: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

V. Machines (A,B,C,J)Dennis Buckmaster

[email protected]://engineering.purdue.edu/~dbuckmas/

OUTLINE

• Internal combustion engines

• Hydraulic power circuits

• Mechanical power transmission

Page 2: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

References

• Engineering Principles of Agricultural Machinery, 2nd ed. 2006. Srivastava, Goering, Rohrbach, Buckmaster. ASABE.

• Off-Road Vehicle Engineering Principles. 2003. Goering, Stone, Smith, Turnquist. ASABE.

Page 3: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Other good sources

• Fluid Power Circuits and Controls: Fundamentals and Applications. 2002. Cundiff. CRC Press.

• Machine Design for Mobile and Industrial Applications. 1999. Krutz, Schueller, Claar. SAE.

Page 4: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Free & Online

http://hydraulicspneumatics.com/learning-resources/ebooks

ASABE members can access ASABE texts & Standards electronically at:

http://elibrary.asabe.org/toc.asp

Page 5: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Engines

• Power and Efficiencies

• Thermodynamics

• Performance

Page 6: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Engine Power Flows

Page 7: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Power & Efficiencies

• Fuel equivalent

Pfe,kW = (HgkJ/kg∙ṁf,kg/h)/3600

[Hg = 45,000 kJ/kg for No. 2 diesel]• Indicated

Pi,kW = pime,kPaDe,lNe,rpm/120000

• Brake

Pb,kW = 2πTNmNe,rpm/60000

• Friction

Pf = Pi-Pb

Page 8: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Power & Efficiencies

• Indicated Thermal

Eit = Pi/Pfe

• Mechanical

Em = Pb/Pi

• Overall (brake thermal)

Ebt = Pb/Pfe = Eit*Em

• Brake Specific Fuel Consumption

BSFC= ṁf,kg/h/Pb,kW

Page 9: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.
Page 10: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.
Page 11: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.
Page 12: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Dual Cycle

Page 13: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Related equations• Compression ratio = r

r = V1/V2

• Displacement

De,l = (V1-V2)*(# cylinders)

= π(borecm)2(strokecm)*(# cyl)/4000

• Ideal gas

p1V1/T1 = P2V2/T2

• Polytropic compression or expansion

p2/p1 = rn

[n = 1 (isothermal) to 1.4 (adiabatic), about 1.3 during compression & power strokes]

Page 14: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

• Air intake

ṁa,kg/h = .03De,lNe,rpmρa,kg/cu mηv,decimal

From Stoichiometry (fuel chemistry)• A/F = air to fuel mass ratio = 15:1 for cetane

Related equations

Page 15: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

What is the displacement of a 6 cylinder engine having a 116 mm bore and 120 mm stroke?

Page 16: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

For this same engine (7.6 l displacement, 2200 rpm rated speed), what is the air consumption if it is naturally aspirated and has a volumetric efficiency of 85%? Assume a typical day with air density of 1.15 kg/m3.

With a stoichiometric air to fuel ratio based on cetane, at what rate could fuel theoretically be burned?

Page 17: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Consider the this same (595 Nm, 137 kW @ 2200 rpm) engine which has a high idle speed of 2400 rpm and a torque reserve of 30%; peak torque occurs at 1300 rpm. Sketch the torque and power curves (versus engine speed).

Torque (Nm)

Speed (rpm)

Power (kW)

Page 18: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Consider the this same (595 Nm, 137 kW @ 2200 rpm) engine which has a high idle speed of 2400 rpm and a torque reserve of 30%; peak torque occurs at 1300 rpm. Sketch the torque and power curves (versus engine speed).

Torque (Nm)

Speed (rpm)

Power (kW)

Page 19: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Alternative fuels

What has to be similar?

•Self Ignition Temperature

•Energy density

•Flow characteristics

•Stoichiometric A/F ratio

Page 20: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Power Hydraulics

• Principles

• Pumps, motors

• Cylinders

• Pressure compensated & load sensing systems

• Electrohydraulics introduction

Page 21: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

21

About Pressure

• 14.7 psia STP (approx __ in Hg)• Gage is relative to atmospheric• Absolute is what it says … absolute & relative to

perfect vacuum

• What causes oil to enter a pump?

• Typical pressures:– Pneumatic system– Off-road hydraulic systems

Page 22: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

22

Liquids Have no Shape of their own

Page 23: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

23

Liquids are Practically Incompressible

Page 24: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pascal’s Law

• Pressure Exerted on a Confined Fluid is Transmitted Undiminished in All Directions and Acts With Equal Force on Equal Areas and at Right Angles to Them.

24

Page 25: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Application Principles1 lb (.45kg)Force

1 sq in (.65cm2)Piston Area

1 psi

(6.9kpa)

10 sq in (6.5cm2)Piston Area

10 lbs (4.5kg)

25

Page 26: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

26

Hydraulic “lever”

Page 27: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

27

Types of Hydraulic Systems

Open Center

Closed Center

The control valve that regulates the flow from the pump determines if system is open or closed.

Do not confuse Hydraulics with the “Closed Loop” of the Power Train. (Hydro)

Page 28: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

28

Trapped Oil

Closed Center HydraulicsOpen CenterFlow in Neutral

Page 29: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Extend 29

Page 30: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Retract 30

Page 31: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Neutral Again 31

Page 32: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pumps

Page 33: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pump Inefficiency

• Leakage: you get less flow from a pump than simple theory suggests.– Increases with larger pressure difference

• Friction: it takes some torque to turn a pump even if there is no pressure rise– Is more of a factor at low pressures

Page 34: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Efficiency of pumps & motors

• Em – mechanical efficiency < 1 due to friction, flow resistance

• Ev – volumetric efficiency < 1 due to leakage

• Eo =overall efficiency = Em * Ev

• Eo = Power out/power in

Page 35: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Speed

Flow

Qgpm = Dcu in/rev Nrpm /231

Page 36: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Speed

Flow

Qgpm = Dcu in/rev Nrpm /231

Page 37: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pressure Rise

TorqueRequired

Tinlb = Dcu in/rev ∆Ppsi /(2π)

Page 38: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pressure Rise

TorqueRequired

Tinlb = Dcu in/rev ∆Ppsi /(2π)

Page 39: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pressure

Flow

Theoretical pump

Effect of leakage

Relief valve or pressure compensator

Page 40: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pressure

Flow

Constant power curve

Php = Ppsi Qgpm/1714

Page 41: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

1a. If a pump turns at 2000 rpm with a displacement of 3 in3/rev, theoretically, how much flow is created?

1b. If the same pump is 95% volumetrically efficient (5% leakage), how much flow is created?

Example pump problems

Page 42: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

1a. If a pump turns at 2000 rpm with a displacement of 3 in3/rev, theoretically, how much flow is created?

1b. If the same pump is 95% volumetrically efficient (5% leakage), how much flow is created?

Example pump problems

Page 43: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Example pump problems

2a. If 8 gpm is required and the pump is to turn at 1750 rpm, what displacement is theoretically needed?

2b. If the same pump will really be is 90% volumetrically efficient (10% leakage), what is the smallest pump to choose?

Page 44: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Example pump problems

2a. If 8 gpm is required and the pump is to turn at 1750 rpm, what displacement is theoretically needed?

2b. If the same pump will really be is 90% volumetrically efficient (10% leakage), what is the smallest pump to choose?

Page 45: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

3a. A 7 in3/rev pump is to generate 3000 psi pressure rise; how much torque will it theoretically take to turn the pump?

3b. If the same pump is 91% mechanically efficient (9% friction & drag), how much torque must the prime mover deliver?

Example pump problems

Page 46: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

3a. A 7 in3/rev pump is to generate 3000 psi pressure rise; how much torque will it theoretically take to turn the pump?

3b. If the same pump is 91% mechanically efficient (9% friction & drag), how much torque must the prime mover deliver?

Example pump problems

Page 47: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Example motor problem

If a motor with 2 in3/rev displacement and 90% mechanical and 92% volumetric efficiencies receives 13 gpm at 2000 psi …

a. How much fluid power is received?

b. What is it’s overall efficiency?

c. How fast will it turn?

d. How much torque will be generated?

Page 48: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Example motor problem

If a motor with 2 in3/rev displacement and 90% mechanical and 92% volumetric efficiencies receives 13 gpm at 2000 psi …

a. How much fluid power is received?

b. What is it’s overall efficiency?

c. How fast will it turn?

d. How much torque will be generated?

Page 49: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Example motor problem

If a motor with 2 in3/rev displacement and 90% mechanical and 92% volumetric efficiencies receives 13 gpm at 2000 psi …

a. How much fluid power is received?

b. What is it’s overall efficiency?

c. How fast will it turn?

d. How much torque will be generated?

Page 50: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Cylinders

Force balance on piston assembly: Fexternal

P1 * A1P2 * A2

Page 51: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

51

• 3000 psi system• 2” bore cylinder• Extends 24 inches in 10

seconds• Q: max force generated• max work done• power used• flow required

Example cylinder problem

Page 52: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

• Tractor source with 2500 psi and 13 gpm available

• Return pressure “tax” of 500 psi• Cylinder with 3” bore, 1.5” rod

diameters

• Q1: How much force will the cylinder generate?

• Q2: How long will it take to extend 12 inches?

Example cylinder problem

Page 53: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

• Pressure builds due to resistance

• A fixed displacement pump delivering flow with the capability of 3000 psi does not always deliver 3000 psi!

• How much pressure does a pump deliver?

• What limits pressure delivered?

Page 54: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Load Sensing Advantage

Open CenterPump size & speed sets flowRelief valve sets pressure

Page 55: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pressure compensated Pump

Page 56: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pressure Compensated Circuit

Page 57: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Load Sensing Advantage

Open CenterPump size & speed sets flowRelief valve sets pressure

Closed Center, Pressure CompensatedCompensator adjusts displacement & flowCompensator sets pressure

Page 58: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

LOAD SENSING CIRCUIT

Page 59: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Load Sensing Advantage

Open CenterPump size & speed sets flowRelief valve sets pressure

Closed Center, Pressure CompensatedCompensator adjusts displacement & flowCompensator sets pressure

Load SensingCompensator adjusts displacement & flowLoad sensing compensator sets pressure

Page 60: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.
Page 61: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

HYDRAULIC PLUMBING

-- SIZE

Page 62: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Pulse Width Modulation

Page 63: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Spool valve

Page 64: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Typical Valve Performance

Page 65: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Power Transmission

Page 66: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Transmissions transform powera torque for speed tradeoff

Page 67: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Gears

Page 68: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Planetary Gear Sets

Page 69: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Belt & Chain Drives

• Speed ratio determined by sprocket teeth or belt sheave diameter ratio

Page 70: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

FIRST GEAR

Page 71: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

First gear speeds … if … Input shaft: 1000 rpm

Main countershaft: 1000 (22/61) = 360 rpm

Ratio = input speed/output speed = 1000/360 = 2.78

Ratio = output teeth/input teeth = 61/22 = 2.78

Secondary countershaft: 360 rpm (41/42) = 351 rpm

Output shaft: 351 rpm (14/45) = 109 rpm

RATIO: input speed/output speed = 1000/109 = 9.2

Product of output teeth/input teeth = (61/22)(42/41)(45/14) = 9.2

FIRST GEAR

Page 72: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

• If 50 kW @ 2400 rpm drives a pinion gear with 30 teeth and the meshing gear has 90 teeth (assume 98% efficiency)…

• Q1: What is the speed of the output shaft?

• Q2: How much power leaves the output shaft?

• Q3: How much torque leaves the output shaft?

Example gear problem

Page 73: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

If the sun of a planetary gear set turns at 1000 rpm, what speed of the ring would result in a still planet carrier? Teeth on gears are sun: 20 and ring: 100.

Example planetary gear problem

Page 74: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

If a belt drive from a 1750 rpm electric motor is to transmit 5 hp to a driven shaft at 500 rpm and the small sheave has a pitch diameter of 4” …

Q1: What should the pitch diameter of the other pulley be?

Q2: Which shaft gets the small sheave?

Q3: How much torque does the driven shaft receive?

Example belt problem

Php = Tft-lbNrpm/5252

Page 75: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

THE END

• Skip what follows

Page 76: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

ElectricityElectricityVoltage = Current * Resistance

Vvolts = Iamps * Rohms

Power = voltage times current

PWatts = Vvolts*Iamps

V

I R

Page 77: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Three Types of CircuitsThree Types of Circuits

Series

Same current, voltage divided

+

-12 v.

Parallel Same voltage, current divided

Series / Parallel

Page 78: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

A 12 V DC solenoid a hydraulic valve has a 5 amp fuse in its circuit.

Q1: What resistance would you expect to measure as you troubleshoot its condition?

Q2: How much electrical power does it consume?

Example 12 V DC problem

Page 79: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Q1: Identify specifications for a relay of a 12 V DC lighting circuit on a mobile machine if the circuit has four 60W lamps.

Q2: Would the lamps be wired in series or parallel?

Example 12 V DC problem

Page 80: V. Machines (A,B,C,J) Dennis Buckmaster dbuckmas@purdue.edu dbuckmas/ dbuckmas@purdue.edu OUTLINE Internal combustion engines.

Good luck on the PE Exam!

• My email address:

[email protected]

• My web page:

https://engineering.purdue.edu/~dbuckmas/

Note … ASABE members can access ASABE texts electronically at:

http://elibrary.asabe.org/toc.asp