UNIT V.pdf

62
Analysis of Analog IC MOS amplifiers Dr. D. Meganathan Department of Electronics Engineering, Madras Institute of Technology

Transcript of UNIT V.pdf

  • Analysis of Analog IC MOS amplifiers

    Dr. D. Meganathan Department of Electronics Engineering, Madras Institute of Technology

  • Name the amplifier Mid Band Gain= ?

    Positive Power Supply Rejection

    Ratio ?

    Negative Power Supply Rejection

    Ratio?

    Common-Mode Rejection Ratio?

    Input Common Mode Voltage

    Range ?

    Output Common Mode Voltage

    Range?

    Output Voltage Swing?

    M1

    M3

    M5

    M7

    M2

    M4

    M6

    M8

    VDD

    M9

    Vb1

    Vb2

    Vb1

    Vb4

    Vb3

    Vin- Vin

    +

    Vb2

    Vb3

    VO+ VO

    -

  • Feedback Concepts

    Feedback concepts new

    to us? 6/19/2014 3 D.Meganathan, Anna University

  • Harold S. Black, 1927

    6/19/2014 4 D.Meganathan, Anna University

  • Feedback Amplifier by D.Meganathan 5

    General feedback structure

    A

    A

    x

    xA

    xxx

    xx

    Axx

    s

    of

    fsi

    of

    io

    1

    Open loop gain

    ALoop gain

    Closed-loop gain

    Mixer network

    Voltage series Current shunt

    Sampling network

    Voltage shunt Current Series

  • FEEDBACK CONCEPTS in biasing circuit

    ID = n/2 (VGS Vt)2

    ID D

    G

    S

    IREF

    VDD

    SIMPLE FEEDBACK

    NO EXTRA CIRCUIT IS INVOLVED 6/19/2014 6 D.Meganathan, Anna University

  • Integrated Circuit Biasing Circuit

    ID D

    G

    S

    IREF

    VDD CURRENT Source TO BIAS INTEGREATED CIRCUIT

    6/19/2014 7 D.Meganathan, Anna University

  • Analysis of Analog IC MOS amplifiers

    Small signal Analysis of Common Source Amplifier

    Input and Output Impedance measurement for Common source amplifier

    Small signal Analysis of Common Source degenerator Amplifier

    Input and Output Impedance measurement for Common source degenerator amplifier

  • Analysis of Analog IC MOS amplifiers

    Small signal Analysis of Common Drain Amplifier

    Input and Output Impedance measurement for Common Drain amplifier

    Small signal Analysis of Common Gate Amplifier

    Input and Output Impedance measurement for Common Gate amplifier

  • Analysis of MOS amplifiers MID BAND GAIN ANALYSIS

    Output Voltage swing

    Input common-mode voltage range

    Output common-mode voltage range

    Power supply rejection ratio

    Common mode rejection ratio

  • Small signal analysis

    TO DETERMINE MIDBAND GAIN OF THE CIRCUIT

    STEP 1 EVALUATE THE SMALL SIGNAL CIRCUIT CONSTANTS using DC Q-Point voltage and currents (gm, r0) gm = n(VGSQ-Vt) and r0 = VA/IDQ

    STEP2 DRAW THE SMALL SIGNAL EQUIVALENT DIAGRAM

    STEP 3

    DETERMINE THE MID BAND VOLTAGE GAIN AV=VO/VS

    +

    -

    vgs gm

    vgs

    r0 Vo

    +

    -

  • Determining Input impedance Step 1 Draw the small signal equivalent circuit diagram

    Step 2 Null the output to the circuit

    If it is a voltage source then short it

    If it is a current source then open it

    Step 3 Remove input voltage source from the circuit

    Step 4 Connect known voltage or current source at the input terminal

    Step 5 Measure the current supplied or voltage across the input source

    Step 6 Determine the ratio of Voltage/ current

  • Determining Output impedance Step 1 Draw the small signal equivalent circuit diagram

    Step 2 Null the input to the circuit

    If it is a voltage source short circuit it

    If it is a current source open circuit it

    Step 3 Remove output voltage source From the circuit

    Step 4 Connect known voltage or current source at the output terminal

    Step 5 Measure the current supplied or voltage across the output source

    Step 6 Determine the ratio of Voltage/ current

  • Common Source Amplifier

    gm

    vgs

    r0

    RD

    +

    -

    Vin Vgs

    +

    -

    +

    -

    Vo

    Av= -gm (r0 // RD)

    VDD

    RD

    Vin

    Vo

  • Input impedance It

    r0 Vt gm

    vgs

    Rin =

    RD

  • Output Impedance

    Rout = r0 // RD

    It

    r0 gm vgs Vt

    RD

  • Common Source with Source Degenerator Circuit

    +

    -

    Vo

    + +

    gm

    Vgs

    r0 Vgs

    -

    Rs

    RD

    -

    Vr0

    +

    -

    VRs

    I1

    ID

    ;

    ;

    ;

    ;

    ;

    1 D

    D 1

    D

    D

    S

    S

    S D

    D

    Vo = I R

    I = -I

    -VoI =

    R

    Vin = Vgs + VR

    Vgs =Vin VR

    -VoVR I Rs = Rs;

    R

    (1 )

    o

    D o D

    D o D

    D

    o

    D D D

    o o

    D D D

    o D DV

    D o o

    Vo=Vr + VRs;

    Vo = (I -gmVgs) r +I Rs;

    -VoVo -gm(Vin I Rs) r I Rs;

    R

    -Vo -Vo -VoVo -gm(Vin Rs) r Rs;

    R R R

    -Vo Vo VoVo+ r gm Rsr Rs=-gmVin

    R R R

    -gmr R -gmRA

    R r gmRsr Rs gmRs

    VDD

    RD

    Rs

    Vo

    +

    -

    Vin

  • Input Impedance

    Rin = gm Vgs

    r0 Vgs

    +

    -

    Rs

    Vt RD

  • Output Impedance

    Vt = Vr0 + VRs;

    Vt= (ID-gmVgs)r0 +VRs

    Vt= (ID + gmVRs) r0 + VRs;

    Vt= (ID+ gm IDRs) r0+ IDRs;

    VRs= -Vgs;

    VRs= IDRs

    gm

    Vgs

    r0 Vgs

    +

    -

    Rs

    +

    +

    -

    VRs

    Vt

    It

    ID

    I1

    RD -

    Vr0

    Rout Rout

    Rout= r0(1+ gm Rs) + Rs r0(1+ gm Rs); Rout = (r0(1+ gm Rs) + Rs) // RD

  • Common Drain Amplifier

    VDD

    Rs

    Vo

    ID

    gm

    Vgs

    r0 Vgs

    -

    Rs

    -

    Vr0

    +

    -

    Vo

    +

    -

    Vin

    +

    Vo= gm Vgs (Rs // r0);

    Vin = Vgs + Vo;

    Vin = Vgs (1+gm Vgs (Rs // r0));

    +

    V

    gm (ro//Rs)A =

    (1+gm(ro//Rs))

  • Input Impedance

    gm

    Vgs

    r0 Vgs

    +

    -

    Rs

    Vt Rin =

  • Output Impedance

    Vt

    gm Vgs

    r0

    Vgs

    +

    -

    Rs

    Vgs=-Vt

    A

    Apply KCL at junction A

    gmVgs + It = Vt/Rs + Vt/r0;

    It= Vt/Rs + Vt/r0+ gmVt;

    It

    OUT o

    1R = //r // Rs

    gm

  • Common Gate Amplifier

    VDD

    RD

    Rsi

    Vo

    Vin

    I2= (Vo-(Vgs)/r0;

    Vgs= Vo/-Av1; (Av1 is the gain of the circuit);

    I2= (Vo+ Vo/Av1 )/r0

    I2 Vo/r0

    ro

    Vin

    gm Vgs

    Vo

    +

    -

    Rsi

    Vgs RD

    G

    D S

    I2

    Vo = -Av1 Vgs;

    I1=(Vgs-Vo)/r0 Vo= -Av1Vgs; (Av1 is the gain of the circuit);

    I1=(Vgs-(- Av1Vgs)/r0 I1=Vgs(1+ Av1)/r0 RM = r0 /(1+ Av1)

    I1

  • Common Gate Amplifier

    Vo = -gm Vgs (ro // RD)

    Vo/Vin = Av=

    Apply KCL at node S

    Ii +gm Vgs+ I1=0

    Ii = -gmVgs-Vgs/RM Vin = Ii Rsi Vgs Vin = (-gmVgs-Vgs/RM)Rsi-Vgs

    ( / / )

    ( )

    o Dgm r R

    1 gm Rsi

    Vo Vin

    gm Vgs

    +

    -

    Rsi

    Vgs RD

    G

    D S

    ro

    Ii

    I2

    RM

    I1

    ;

    M M

    M

    M

    M M

    M

    M

    -(gmR Rsi+Rsi+R )Vin Vgs;

    R

    -RVgs

    Vin (gmR Rsi+Rsi+R )

    -RVgs -1

    Vin (gmRsi+1)R (gmRsi+1)

  • Input Impedance

    It=-gmVgs+I1;

    Vt=-Vgs;

    Rin = r0 // 1/gm;

    Rin 1/gm;

    gm Vgs

    +

    -

    Vgs RD

    G

    S

    Vt

    It

    ro

    D

    I1

  • Output Impedance

    Rout =ro // RD

    gm Vgs

    +

    -

    Vgs RD

    G

    D S

    ro

    Vt

    It 0

  • Output impedance and Small Signal gain of MOS IC amplifier

    Vo

    VDD

    Vbias

    Vin

    gm1

    vgs

    r01

    +

    -

    Vin Vgs

    +

    -

    M1

    M2

    r02

    Output Impedance of a IC MOS resistor

    r02 gm vgs Vt 0

    It

    Small signal gain of MOS IC amplifier

    +

    -

    Vo

    Rout = r02

    Small Signal Gain = -gm1(r01//r02)

  • Differential Amplifier

    VDD

    RD

    VDD

    RD

    -Vin/2 +Vin/2

    -Vo/2 +Vo/2

    ID Rs

    ID/2 ID/2

    Virtual

    ground

  • Differential Amplifier

    ADM = -gm (r0 // RD)

    VDD

    RD

    VDD

    RD

    -Vin/2 +Vin/2

    -Vo/2 +Vo/2

    ID

    Rs

    ID/2+ ID ID/2+ID

    Vin Vin

    0

    Virtual

    ground

    Differential Mode gain

    VDD

    RD

    +Vin

    Vo

    Rout = r0

  • Differential Amplifier

    VDD

    RD

    VDD

    RD

    -Vo -Vo

    ID Rss

    ID/2+ ID ID/2+ID

    Vin Vin

    2ID Vin

    VDD

    RD

    Rss

    Vo

    (1 2 )

    DCM

    -gmRA =

    gmRss

    Vin

    Rout = (r0(1+ 2gm Rss) + 2Rss) // RD

    COMMON MODE GAIN

  • Power Supply Rejection Ratio

    VDD

    -Vin/2 +Vin/2

    -Vo/2 +Vo/2

    Vb1 Vb1

    Vb2

    M1 M2

    M3 M4

  • Power Supply Rejection Ratio+ Power supply rejection ratio+ = Adm/A+

    Adm = -gm (ro1 // ro3)

    A+= Vo/Vdd

    Vdd

    -Vo/2 +Vo/2

    Vb1 Vb1

    Vb2

    M1 M2

    M3 M4

    M5

  • Power Supply Rejection Ratio+

    M3 device act as common-gate amplifier

    Small Signal gain of the M3 is gm3 (r03 // Rdown)

    Vdd

    Vo

    M1

    M3

    M5

    Rdown

    M5

    M1

    Rdown

    Rdown gm1ro1ro5

    M1

    Rdown

    r05

    r01

    A+ =gm3 (r03 // gm1ro1ro5)

    PSRR+ = -gm1 (ro1 // ro3)

    gm3 (r03 // gm1ro1ro5)

  • Power Supply Rejection Ratio- Power supply rejection ratio- = Adm/A-

    Adm = -gm1 (ro1 // ro3)

    A-= Vo/Vss

    Vss

    -Vo/2 +Vo/2

    Vb1 Vb1

    Vb2

    M1 M2

    M3 M4

    M5 M5

  • Power Supply Rejection Ratio-

    Vss

    Vo

    Vb1

    M1

    M3

    M5

    A- = Vo/Vss

    M5 transistor act as common-gate

    amplifier.

    The gain of M5 transistor is gm5 RD

    RD= Rup // Rdown

    Rup

    Rdown

    Rup = r03

    Rdown = gm1r01r05

    A- = gm5 (gm1r01r05 // r03)

    PSRR- = -gm1 (ro1 // ro3)

    gm5 (gm1r01r05 // r03)

  • Common Mode Rejection Ratio

    VDD

    -Vin/2 +Vin/2

    -Vo/2 +Vo/2

    Vb1 Vb1

    Vb2

    M1 M2

    M3 M4

    CMRR = Adm/Acm

    CMRR= gm (ro1 // ro3) (1+2gm1ro5)

    gm1 ro3

    Adm = -gm1 (ro1// ro3);

    Acm= -gm1 ro3/ (1+2gm1ro5);

    M5

  • Input Common Mode Range

    VDD

    RD

    Vin

    Vout

    VCMI

    Vin

    Vt

    time

    Voltage

    VCMI

    Vin

    Vt

    time

    Voltage

    VCMI

  • Input Common Mode Range

    Input common-mode range

    (VoV5 + Vgs1 )< VCMI

  • Input Common Mode Range

    VoV5

    VDD

    Vb1

    Vb2

    M1

    M3

    Vo

    VCMI

    +

    -

    M5

    +

    -

    Vgs1

    VCMI (MIN)= Vgs1 + VoV5

    From Vss

    VDD

    Vb1

    Vb2

    M1

    M3

    Vo

    VCMI

    +

    -

    M5

    +

    - Vgs1

    VoV3

    + +

    - M1

    + +

    -

    +

    - -

    VoV1

    Vgs1

    Vdg1 Vdg1

    VCMI= VDD-|VoV3|-Vdg1

    Vdg1= VoV1-Vgs1 ;

    Vdg1= VoV1 (VoV1+Vt1);

    Vgs1= VoV1+Vt1

    VCMI(MAX) = VDD-|VoV3|-Vt1

    VCMI (MIN)

  • Output Common Mode Voltage

    VDD

    RD

    Vin

    VCMO

    VCMI

    VOUT

    VGS-Vt

    Voltage

    time

    VCMO

    VOUT

    VGS-Vt

    Voltage

    time

    VCMO

  • Output Common Mode Voltage

    VDD

    -Vin/2 +Vin/2

    -Vo/2 +Vo/2

    Vb1 Vb1

    Vb2

    M1 M2

    M3 M4

    VoV5 M5

    +

    -

    +

    -

    VoV1

    +

    -

    VoV3

    Output common-mode range

    VCMO(MIN) = VoV5+VoV1

    VCMO(MAX) = VDD-VoV3

    (VoV5+VoV1 )< VCMO< (VDD-VoV3)

  • Output Voltage Swing

    VDD

    -Vin/2 +Vin/2

    -Vo/2 +Vo/2

    Vb1 Vb1

    Vb2

    M1 M2

    M3 M4

    VoV5 M5

    +

    -

    +

    -

    VoV1

    +

    -

    VoV3

    Maximum Output Voltage Swing

    Differential End

    2(VDD-(VoV5 +VoV1+| VoV3|))

  • Telescopic OTA

    Mid Band Gain= ?

    M1

    M3

    M5

    M7

    M2

    M4

    M6

    M8

    VDD

    M9

    Vb1

    Vb2

    Vb1

    Vb4

    Vb3

    Vin- Vin

    +

    Vb2

    Vb3

    AV=-gm1 RD

    RD= Rup // Rdown

    Rdown

    VO+ VO

    -

    Vin

    RD

    M1

    VO

    Vin+

    M1

    M3

    M5

    M7 Vb1

    Vb2

    Vb3

    Virtual

    ground

    Rup

    Single stage

  • Mid Band Gain of a Telescopic OTA

    Rup

    M5

    M7 Vb1

    Vb2

    Vo

    M1

    M3 Vb3

    Rdown

    Vin+

    M5 looks like common source with

    degenerator circuit; its output

    resistance is (1+gm5ro7)ro5

    gm5ro5ro7 Rup gm5ro5ro7

    M5

    M7 Vb1

    Vb2

    Vo Rup

    M5 r05

    r07

    Rup

    S

    D

  • Mid Band Gain of a Telescopic OTA

    M1

    M3 Vb3

    Rdown

    M3

    Rdown

    r01

    r03

    M3 looks like common source with

    degenerator circuit; its output

    resistance is (1+gm3ro1)ro3

    gm3ro1ro3

    Rdown gm3ro1ro3

    Overall gain of the Telescopic OTA is

    -gm1 RD

    RD= Rup // Rdown

    Overall Midband gain -gm1 (gm3ro1ro3)// gm5ro5ro7

  • Power Supply Rejection Ratio+

    Power supply rejection ratio+ = Adm/A+

    Adm = -gm1 (gm3ro1ro3)// gm5ro5ro7

    Rup

    M5

    M7 Vb1

    Vb2

    Vo

    M1

    M3 Vb3

    Rdown

    Vdd

    A+ =gm7 RD RD = Rup // Rdown

    Rup = gm5ro5ro7 and Rdown = gm3ro1ro3

    Hence A+ =gm7 (gm5ro5ro7 // gm3ro1ro3)

    PSRR+ = -gm1 (gm3ro1ro3)// gm5ro5ro7 gm7 (gm5ro5ro7 // gm3ro1ro3)

  • Power Supply Rejection Ratio-

    Vss

    A- = gm1RD RD = Rup // Rdown

    Rup gm5ro5ro7 Rdown gm3ro3gm1ro1ro9

    Vo

    Rup

    M5

    M7 Vb1

    Vb2

    Vo

    Rdown

    M1

    M3 Vb3

    Vb4 M9 M1

    R1

    r01

    r09

    M3 Vb3

    Rdown

    R1

    r03

    gm3ro3R1

    gm1ro1ro9

    Rdown gm3gm1ro1ro3ro9

    PSRR- =Adm/A-

    PSRR- = -gm1 (gm3ro1ro3)// gm5ro5ro7 gm1 (gm3gm1ro1ro3ro9 // gm5ro5ro7)

  • Common Mode Rejection Ratio

    CMRR = Adm/Acm

    Vin+

    M1

    M3

    M5

    M7 Vb1

    Vb2

    Vb3

    Virtual

    ground

    Rup

    Single stage

    Adm -gm1 (gm3ro1ro3)// gm5ro5ro7

    Vo

    Vin+

    Acm -gm1 (ro3//gm5ro5ro7)

    (1+2gm1 ro9) Rup

    M5

    M7 Vb1

    Vb2

    Rdown

    M1

    M3 Vb3

    Vb4 M9

    CMRR ((gm1 (gm3ro1ro3)// gm5ro5ro7 ) (1+2gm1 ro9))

    gm1 (ro3//gm5ro5ro7)

  • Input Common Mode range

    VCMI (MIN) = VOV9 + Vgs1

    M5

    M7 Vb1

    Vb2

    Vo

    M1

    M3 Vb3

    VDD

    M9

    VCMI (MAX) = VDD- |VOV7|- |VOV5| - |VOV3| +Vt1

    VCMI (MIN) < VCMI < VCMI (MAX)

  • Output Common Mode range

    M5

    M7 Vb1

    Vb2

    Vo

    M1

    M3 Vb3

    VDD

    M9

    VCMO(MIN) = VOV9 + VOV1 + VOV3

    VCMO(MAX) = VDD- |VOV7 | - | VOV5 |

    VCMO (MIN)

  • Output Voltage Swing

    M5

    M7 Vb1

    Vb2

    Vo

    M1

    M3 Vb3

    VDD

    M9

    For Differential End

    2(VDD- |VOV7 | - | VOV5 |- VOV3 VOV1 - VOV9)

    Output Voltage Swing is

  • Mid band gain of Folded Cascoded OTA

    VDD

    M1

    M3

    M5

    M7 M2

    M4

    M6

    M8

    VDD

    Vb1

    Vb2

    Vb1

    Vb4

    Vb3

    Vb2

    Vb3 Vin

    + Vin-

    M9 M10

    Vb4

    Vo+ Vo-

    Vb5 M11

  • Mid band gain=?

    Vin

    RD

    M1

    AV=-gm1 RD

    Vin

    VO Vo

    Rdown

    Rup M1

    M3

    M5

    M7

    Vb1

    Vb2

    Vb3

    M9

    Vb4

    Virtual

    Ground

    Single Stage

    RD= Rup // Rdown

  • Overall Mid band gain

    M5 looks like common source with

    degenerator circuit; its output resistance is

    (1+gm7ro9)ro7 gm7ro7ro9 Rup gm7ro7ro9

    M7

    M9 Vb1

    Vb2

    Vo Rup

    M7 r07

    r09

    Rup

    S

    D M1

    M3 Vb3

    Rdown

    M5

    M3

    Rdown

    r05

    r03

    r01

    M3 looks like common source with

    degenerator circuit; its output

    resistance is (1+gm3(ro1 // r05))ro3 Rdown gm3 ro3 (ro1//ro5)

    -gm1 RD RD= Rup // Rdown

    Overall Midband gain -gm1 (gm3 ro3 (ro1//ro5) //(gm7ro7ro9))

  • Power Supply Rejection Ratio+ Power supply rejection ratio+ = Adm/A+

  • Mid band gain of Simple Two Stage OTA

    VDD

    M1 M2

    VDD

    M3

    Vb3 Vin-

    Vin+

    Vb1 M4

    VDD

    M5 M6

    M7 M8

    Vb1

    Vb2 Vb2

    Stage 1 Stage 2

    Vo- Vo+

  • Overall Midband gain

    Vin

    M1

    M3

    V1 M5

    M7

    Vo+

    V1

    Stage 1 Gain

    AV1=-gm1 (ro1 // ro3)

    Stage 2 Gain

    AV2= -gm5 (ro5 // ro7)

    Overall gain = AV1 AV2

    = gm1 gm5 (ro1 // ro3) (ro5 // ro7)

  • Mid band gain of Two Stage OTA with telescopic first stage

    M1

    M3

    M5

    M7

    M2

    M4

    M6

    M8

    VDD

    M9

    Vb1

    Vb2

    Vb1

    Vb4

    Vb3

    Vin- Vin

    +

    Vb2

    Vb3

    M10

    M12

    Vb5

    Vo-

    VDD VDD

    Vo+

    Vb4 M11

    Stage 2 Stage 1

  • Mid band gain

    M1

    M3

    M5

    M7 Vb1

    Vb2

    Vb3

    Vin

    Stage 1

    V1 M9

    M11 Vb4

    Vo

    V1

    Stage 2

    AV1 -gm1 (gm3ro1ro3)// gm5ro5ro7

    AV2= -gm9 (ro9 // ro11)

    Overall Midband gain = AV1 AV2

    gm1 gm9((gm3ro1ro3)// (gm5ro5ro7)) (ro9 // ro11)

  • Mid band gain of Two Stage OTA with folded cascode first stage

    VDD

    M1

    M3

    M5

    M7 M2

    M4

    M6

    M8

    VDD

    Vb1

    Vb2

    Vb1

    Vb4

    Vb3

    Vb2

    Vb3 Vin

    + Vin-

    M9 M10

    Vb4

    M11

    M13 Vb5

    Vo+

    Stage 2

    VDD

    M12

    M14 Vb5

    Vo-

    VDD

    Stage 1

    Vb6 M15

  • Mid band gain

    M1

    M3

    M5

    M7

    Vb1

    Vb2

    Vb3

    M9

    Vb4

    Virtual

    Ground

    Stage 1

    M11

    M13 Vb4

    Vo

    V1

    Stage 2

    V1

    Av1 -gm1 ((gm3 ro3 (ro1//ro5) ) //(gm7ro7ro9)) Av2=-gm11 (ro11 // ro13)

    Overall gain gm1 gm11 (gm3 ro3 (ro1//ro5) //(gm7ro7ro9)) (ro11 // ro13)

  • THE END