Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s)...

47
Quark-gluon plasma – the perfect liquid Ulrich Heinz, The Ohio State University Symposium on Contemporary Subatomic Physics (Joe-Kapusta-Fest) McGill University, June 21-14, 2012 Work supported by the U.S. Department of Energy

Transcript of Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s)...

Page 1: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Quark-gluon plasma – the perfect liquid∗

Ulrich Heinz, The Ohio State University

Symposium on Contemporary Subatomic Physics (Joe-Kapusta-Fest)McGill University, June 21-14, 2012

∗Work supported by the U.S. Department of Energy

Page 2: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

The Little Bang

Gyulassy RBRC/BNL 12/16/04 11

"

�����$*H9� $X�������������������������������������������$*H9��$X��

U. Heinz Kapusta-Fest 1(32)

Page 3: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Ideal fluids don’t exist!

AdS/CFT universal lower viscosity bound conjecture:η

s>∼

h

4πkB

Kovtun, Son, Starinets, PRL 94 (2005) 111601

1 10 100 1000T, K

0

50

100

150

200

Helium 0.1MPaNitrogen 10MPaWater 100MPa

Viscosity bound

4π ηsh

Similar limit from the uncertainty relation derived by Danielewicz and Gyulassy in 1995.

U. Heinz Kapusta-Fest 2(32)

Page 4: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

The connection with phase transitions

L. Csernai, J. Kapusta,L. McLerran, Phys. Rev.Lett. 97 (2006) 152303

Hard to calculate.

Can we measure (η/s)QGP and its temperature dependence?

U. Heinz Kapusta-Fest 3(32)

Page 5: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

The QCD phase transition(s)

U. Heinz Kapusta-Fest 4(32)

Page 6: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Elliptic Flow

In non-central collisions the over-

lap region is elliptically deformed

=⇒ anisotropic pressure gradients

=⇒ anisotropic (“elliptic”) collec-

tive flow.

Elliptic flow→ peaks at midrapidity

→ driven by spatial deformation of reaction zone at thermalization

→ magnitude of signal probes degree and time of thermalization

→ “self-quenching”: it shuts itself off as dynamics reduces deformation (H. Sorge)

→ sensitive to Equation of State during first ∼ 5 fm/c

v2(y, pT , b) = 〈cos(2φ)〉y,pT ,b =

∫dφ cos(2φ) dN

dy pTdpT dφ(b)∫dφ dN

dy pTdpT dφ(b)

U. Heinz Kapusta-Fest 5(32)

Page 7: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Event-by-event shape and flow fluctuations rule!(Alver and Roland, PRC81 (2010) 054905)

• Each event has a different initial shape and density distribution, characterized by different set of

harmonic eccentricity coefficients εn

• Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow

coefficients vn and flow angles ψn

• At small impact parameters fluctuations (“hot spots”) dominate over geometric overlap effects

(Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Muller, PRC82 (2010) 064903)

U. Heinz Kapusta-Fest 6(32)

Page 8: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Panta rhei: “soft ridge”=“Mach cone”=flow!ATLAS (J. Jia), Quark Matter 2011 ALICE (J. Grosse-Oetringhaus), QM11

• anisotropic flow coefficients vn and flow angles ψn correlated over large rapidity range!

M.Luzum, PLB 696 (2011) 499: All long-range rapidity correlations seen at RHIC are consistent with being entirely

generated by hydrodynamic flow.

• in the 1% most central collisions v3>v2=⇒ prominent “Mach cone”-like structure!

=⇒ event-by-event eccentricity fluctuations dominate!

U. Heinz Kapusta-Fest 7(32)

Page 9: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Event-by-event shape and flow fluctuations rule!

ALICE (A. Bilandzic) Quark Matter 2011

• in the 1% most central collisions v3>v2 =⇒ prominent “Mach cone”-like structure!

• triangular flow angle uncorrelated with reaction plane and elliptic flow angles

=⇒ due to event-by-event eccentricity fluctuations which dominate the anisotropic flows in the

most central collisions

U. Heinz Kapusta-Fest 8(32)

Page 10: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

“The Little Bang”

The Movie

Featuring the QGP in one of itsfinest performances

Producer: Chun Shen

U. Heinz Kapusta-Fest 9(32)

Page 11: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

(η/s)QGP

U. Heinz Kapusta-Fest 10(32)

Page 12: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

How to use elliptic flow for measuring (η/s)QGP

Hydrodynamics convertsspatial deformation of initial state =⇒momentum anisotropy of final state,through anisotropic pressure gradients

Shear viscosity degrades conversion efficiency

εx=〈〈y2−x2〉〉〈〈y2+x2〉〉 =⇒ εp=

〈Txx−T yy〉〈Txx+T yy〉

of the fluid; the suppression of εp is monoto-nically related to η/s. 0 1 2 3 4 5 6 7

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p

(fm/c)

ideal /s = 0.08 /s = 0.16 /s = 0.24

Au+Au RHIC20~30%

The observable that is most directly related to the total hydrodynamic momentumanisotropy εp is the total (pT -integrated) charged hadron elliptic flow vch

2 :

εp=〈T xx−T yy〉

〈T xx+T yy〉⇐⇒

∑i

∫pTdpT

∫dφp p

2T cos(2φp)

dNidypTdpTdφp∑

i

∫pTdpT

∫dφp p2T

dNidypTdpTdφp

⇐⇒ vch2

U. Heinz Kapusta-Fest 11(32)

Page 13: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

How to use elliptic flow for measuring (η/s)QGP (ctd.)

• If εp saturates before hadronization (e.g. in PbPb@LHC (?))

⇒ vch2 ≈ not affected by details of hadronic rescattering below Tc

but: v(i)2 (pT ),

dNidyd2pT

change during hadronic phase (addl. radial flow!), and these

changes depend on details of the hadronic dynamics (chemical composition etc.)

⇒ v2(pT ) of a single particle species not a good starting point for extracting η/s

• If εp does not saturate before hadronization (e.g. AuAu@RHIC), dissipative hadronicdynamics affects not only the distribution of εp over hadronic species and in pT , buteven the final value of εp itself (from which we want to get η/s)

⇒ need hybrid code that couples viscous hydrodynamic evolution of QGP to realisticmicroscopic dynamics of late-stage hadron gas phase

⇒ VISHNU (“Viscous Israel-Steward Hydrodynamics ’n’ UrQMD”)

(Song, Bass, UH, PRC83 (2011) 024912) Note: this paper shows that UrQMD 6= viscous hydro!

U. Heinz Kapusta-Fest 12(32)

Page 14: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Extraction of (η/s)QGP from AuAu@RHICH. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRL106 (2011) 192301

0 10 20 30 40(1/S) dN

ch/dy (fm

-2)

0

0.05

0.1

0.15

0.2

0.25

v 2/ε

0.0 0.4 810 0.08 0.6 810 0.16 0.9 810 0.24 0.9 810

. . . .

hydro (η/s)+UrQMD

η/s τ0 dN/dyGlauber / KLN(fm/c) max.

0.16 0.9 8100.24 1.2 810

0.08 0.6 8100.0 0.4 810

η/s0.0

0.08

0.16

0.24

0 10 20 30(1/S) dN

ch/dy (fm

-2)

0

0.05

0.1

0.15

0.2

0.25

v 2/ε

0 10 20 30 40(1/S) dN

ch/dy (fm

-2)

hydro (η/s) + UrQMD hydro (η/s) + UrQMDMC-GlauberMC-KLN0.00.08

0.16

0.24

0.0

0.08

0.16

0.24

η/sη/s

v2{2} / ⟨ε2

part⟩1/2

Gl

(a) (b)

⟨v2⟩ / ⟨ε

part⟩Gl

v2{2} / ⟨ε2

part⟩1/2

KLN

⟨v2⟩ / ⟨ε

part⟩KLN

1 < 4π(η/s)QGP < 2.5

• All shown theoretical curves correspond to parameter sets that correctly

describe centrality dependence of charged hadron production as well aspT -spectra of charged hadrons, pions and protons at all centralities

• vch2 /εx vs. (1/S)(dNch/dy) is “universal”, i.e. depends only onη/s but (in good approximation) not on initial-state model (Glauber

vs. KLN, optical vs. MC, RP vs. PP average, etc.)

• dominant source of uncertainty: εGlx vs. εKLN

x −→• smaller effects: early flow → increases

v2ε by ∼ few% → larger η/s

bulk viscosity → affects vch2 (pT ), but ≈ not vch2

Zhi Qiu, UH, PRC84 (2011) 024911

U. Heinz Kapusta-Fest 13(32)

Page 15: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Global description of AuAu@RHIC spectra and v2

VISHNU (H. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRC83 (2011) 054910)

0.0 0.5 1.0 1.5 2.010-11

10-9

10-7

10-5

10-3

10-1

101

103

105

107

0.0 0.5 1.0 1.5 2.010-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

/s = 0.0 (ideal hydro)

/s = 0.08 /s = 0.16 /s = 0.24

40%~60%/10

20%~40%

10%~20%*10

0%~10%*102

PHENIX STAR MC-KLN MC-Glauber

pT (GeV)

+

70%~80%/106

60%~70%/105

50%~60%/104

40%~50%/103

30%~40%/102

20%~30%/10

15%~20%*1

10%~15%*10

5%~10%*102

0%~5%*103

(a)

60%~80%/102

dN/(2

dy

p T dp T) (

GeV

-2)

dN/(2

dy

p T dp T) (

GeV

-2)

pT (GeV)

p

(b)0.0 0.4 0.8 1.2 1.60

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.0 0.4 0.8 1.2 1.6 2.0

s = 0.08 s = 0.16

v 2/

pT (GeV)

MC-Glauber initialization

200 A GeV Au+Au charged hadrons

MC-KLN initialization

(0-5%)+1.2

(5-10%)+1.0

(10-20%)+0.8

(20-30%)+0.6

(30-40%)+0.4

(40-50%)+0.2

(50-60%)

s = 0.16 s = 0.24

pT (GeV)

VISHNU PHENIX v2{EP}

• (η/s)QGP = 0.08 for MC-Glauber and (η/s)QGP = 0.16 for MC-KLN work wellfor charged hadron, pion and proton spectra and v2(pT ) at all collision centralities

• Note: Tchem=165MeV reproduces the proton spectra from STAR, but not fromPHENIX! =⇒ Slightly incorrect chemical composition in hadronic phase? Not enoughpp annihilation in UrQMD?

U. Heinz Kapusta-Fest 14(32)

Page 16: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Global description of AuAu@RHIC spectra and v2

VISHNU (H. Song, S.A. Bass, UH, T. Hirano, C. Shen, PRC83 (2011) 054910)

0.0 0.5 1.0 1.5 2.010-11

10-9

10-7

10-5

10-3

10-1

101

103

105

107

0.0 0.5 1.0 1.5 2.010-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

/s = 0.0 (ideal hydro)

/s = 0.08 /s = 0.16 /s = 0.24

40%~60%/10

20%~40%

10%~20%*10

0%~10%*102

PHENIX STAR MC-KLN MC-Glauber

pT (GeV)

+

70%~80%/106

60%~70%/105

50%~60%/104

40%~50%/103

30%~40%/102

20%~30%/10

15%~20%*1

10%~15%*10

5%~10%*102

0%~5%*103

(a)

60%~80%/102

dN/(2

dy

p T dp T) (

GeV

-2)

dN/(2

dy

p T dp T) (

GeV

-2)

pT (GeV)

p

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(5-10%)+0.6 (20-30%)+0.4 (30-40%)+0.2 (40-50%)

v 2/

s = 0.08 /s = 0.16 STAR v2{2}

MC-Glauber initialization

MC-Glauber initialization

VISHNU

Au + Au 200 A GeV s = 0.16 /s = 0.24

v 2/

pT (GeV)

MC-KLN initialization

p

p

pT (GeV)

MC-KLN initialization

• (η/s)QGP = 0.08 for MC-Glauber and (η/s)QGP = 0.16 for MC-KLN work well for charged hadron, pion and protonspectra and v2(pT ) at all collision centralities

• A purely hydrodynamic model (without UrQMD afterburner) with the same values of η/s does almost as well (except forcentrality dependence of proton v2(pT )) (C. Shen et al., PRC84 (2011) 044903)

Main difference: VISHNU develops more radial flow in the hadronic phase (larger shear viscosity), pure viscous hydro muststart earlier than VISHNU (τ0 = 0.6 instead of 1.05 fm/c), otherwise proton spectra are too steep

• These η/s values agree with Luzum & Romatschke, PRC78 (2008), even though they used EOS with incorrect hadronic

chemical composition =⇒ shows robustness of extracting η/s from total charged hadron v2

U. Heinz Kapusta-Fest 15(32)

Page 17: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Pre- and postdictions for PbPb@LHCVISHNU with MC-KLN (Song, Bass, UH, PRC83 (2011) 054912)

0 100 200 300 400N

part

0

2

4

6

8

(dN

ch/d

η)/

(Npart/2

)

LHC: η/s=0.16LHC: η/s=0.20LHC:η/s=0.24RHIC: η/s=0.16

0 100 200 300 400N

part

0

2

4

6

8

(dN

ch/d

η)/

(Npart/2

)

Au+Au 200 A GeV: STARPb+Pb 2.76 A TeV: ALICE

Au+Au 200 A GeV: PHOBOS

MC-KLNreaction plane

(b)

0 0.5 1 1.5 2p

T(GeV)

0

0.1

0.2

0.3

0.4

v2

RHIC: η/s=0.16LHC: η/s=0.16LHC: η/s=0.20LHC: η/s=0.24

STARALICE

VISHNU

MC-KLN

10-20%

20-30%

30-40%

40-50%

+0.3

+0.1

+0.2

reaction plane

v2{4}

0 20 40 60 80centrality

0

0.02

0.04

0.06

0.08

0.1

v2

RHIC: η/s=0.16LHC: η/s=0.16LHC: η/s=0.20LHC: η/s=0.24

STAR

ALICEv

2{4}

MC-KLNReaction Plane

• After normalization in 0-5% centrality collisions, MC-KLN + VISHNU (w/o running coupling, but

including viscous entropy production!) reproduces centrality dependence of dNch/dη well in both

AuAu@RHIC and PbPb@LHC

• (η/s)QGP = 0.16 for MC-KLN works well for charged hadron v2(pT) and integrated v2 in

AuAu@RHIC, but overpredicts both by about 10-15% in PbPb@LHC

• Similar results from predictions based on pure viscous hydro (C. Shen et al., PRC84 (2011) 044903)

• but: At LHC significant sensitivity of v2 to initialization of viscous pressure tensor πµν (Navier-Stokes

or zero) =⇒ need pre-equilibrium model.

=⇒ QGP at LHC not much more viscous than at RHIC!

U. Heinz Kapusta-Fest 16(32)

Page 18: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Why is vch2 (pT) the same at RHIC and LHC?

Answer: Pure accident! (Kestin & UH EPJC61 (2009) 545; Shen & UH, PRC85 (2012) 054902)

C. Shen, UH, P. Huovinen, H. Song, PRC84 (2011) 044903

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

+

p

v 2

pT (GeV)

RHIC LHC

20~30%

AuAu@ PbPb@ MC-KLN, /s = 0.20

vπ2 (pT ) increases a bit from RHIC to LHC, for heavier hadrons v2(pT ) at fixed pT decreases

(radial flow pushes momentum anisotropy of heavy hadrons to larger pT )

This is a hard prediction of hydrodynamics! (See also Nagle, Bearden, Zajc, NJP13 (2011) 075004)

U. Heinz Kapusta-Fest 17(32)

Page 19: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Confirmation of increased mass splitting at LHC

Data: ALICE @ LHC, Quark Matter 2011 (symbols), PHENIX @ RHIC (shaded)

Lines: Shen et al., PRC84 (2011) 044903 (VISH2+1 + MC-KLN, η/s=0.2)

• Qualitative features of data agree with VISH2+1 predictions

• VISH2+1 does not push proton v2 strongly enough to higher pT , both at RHIC and LHC

• At RHIC we know that this is fixed when using VISHNU – is the same true at LHC?U. Heinz Kapusta-Fest 18(32)

Page 20: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Successful prediction of v2(pT) for identified hadrons inPbPb@LHC

Data: ALICE, Quark Matter 2011 Prediction: Shen et al., PRC84 (2011) 044903 (VISH2+1)

Perfect fit in semi-peripheral collisions!

The problem with insufficient proton radial flow exists only in more central collisions

Adding the hadronic cascade (VISHNU) helps:

U. Heinz Kapusta-Fest 19(32)

Page 21: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

v2(pT) in PbPb@LHC: ALICE vs. VISHNUData: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)

Dashed lines: Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, (η/s)QGP=0.2)

Solid lines: Song, Shen, UH 2011 (VISHNU, MC-KLN, (η/s)QGP=0.16)

0

0.1

0.2

0.3

5−10%

v2

ALICE Preliminary

π+

K+

p

10−20%

(η/s)QGP = 0.16VISHNU

20−30%

η/s = 0.20VISH2+1

0 1.0 2.0 00

0.1

0.2

0

30−40%

pT (GeV)

v2

0 1.0 2.0 040−50%

pT (GeV)0 1.0 2.0 3.0

50−60%

pT (GeV)

VISHNU yields correct magnitude and centrality dependence of v2(pT ) for pions, kaons and protons!

Same (η/s)QGP =0.16 (for MC-KLN) at RHIC and LHC!

U. Heinz Kapusta-Fest 20(32)

Page 22: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Back to the“elephant in the room”:

How to eliminate the largemodel uncertainty

in the initial eccentricity?

U. Heinz Kapusta-Fest 21(32)

Page 23: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Two observations:

I. Shear viscosity suppresses higher flow harmonics more strongly

Alver et al., PRC82 (2010) 034913

(averaged initial conditions)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.08 0.16

v n/ε

n

η/s

v2/ε2v3/ε3v4/ε4v5/ε5

Schenke et al., arXiv:1109.6289

(event-by-event hydro)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6v n

(vis

cous

)/v n

(idea

l)

n

20-30% vn(η/s=0.08)/vn(ideal) vn(η/s=0.16)/vn(ideal)

=⇒ Idea: Use simultaneous analysis of elliptic and triangular flow to constrain initial state models

(see also Bhalerao, Luzum Ollitrault, PRC 84 (2011) 034910)

U. Heinz Kapusta-Fest 22(32)

Page 24: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Two observations:

II. ε3 is ≈ model independentZhi Qiu, UH, PRC84 (2011) 024911

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b (fm)

ε 3

(b)〈ε3(e)〉 (MC-KLN)〈ε3(s)〉 (MC-KLN)〈ε3(e)〉 (MC-Glb)〈ε3(s)〉 (MC-Glb)

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b (fm)

ε 4

(c)〈ε4(e)〉 (MC-KLN)〈ε4(s)〉 (MC-KLN)〈ε4(e)〉 (MC-Glb)〈ε4(s)〉 (MC-Glb)

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b (fm)

ε 5

(d)〈ε5(e)〉 (MC-KLN)〈ε5(s)〉 (MC-KLN)〈ε5(e)〉 (MC-Glb)〈ε5(s)〉 (MC-Glb)

Initial eccentricities εn and angles ψn:

εneinψn = −

∫rdrdφ r2einφ e(r,φ)∫rdrdφ r2 e(r,φ)

• MC-KLN has larger ε2 and ε4, but

similar ε5 and almost identical ε3 asMC-Glauber

• Angles of ε2 and ε4 are correlated

with reaction plane by geometry,whereas those of ε3 and ε5 are

random (purely fluctuation-driven)

• While v4 and v5 have mode-couplingcontributions from ε2, v3 is

almost pure response to ε3 andv3/ε3 ≈ const. over a wide range of

centralities

=⇒ Idea: Use total charged hadron vch3 to determine (η/s)QGP,

then check vch2 to distinguish between MC-KLN and MC-Glauber!

U. Heinz Kapusta-Fest 23(32)

Page 25: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Combined v2 & v3 analysis: η/s is small!Zhi Qiu, C. Shen, UH, PLB707 (2012) 151 (VISH2+1)

0

0.1

0.2

0.3

0.4

v2/ε2

(a)

ALICE v2{2}/ε2{2}

ALICE v2{4}/ε2{4}

MC-KLN v2/ε2

0 10 20 30 40 50 60 700

0.1

0.2

0.3

Centrality (%)

v3/ε3

MC-KLN η/s = 0.20 (b)

ALICE v3{2}/ε3{2}

MC-KLN v3/ε3

0

0.2

0.4

v2/ε2

(c)

ALICE v2{2}/ε2{2}

ALICE v2{4}/ε2{4}

MC-Glb. v2/ε2

0 10 20 30 40 50 60 700

0.1

0.2

0.3

Centrality (%)

v3/ε3

MC-Glb. η/s = 0.08 (d)

ALICE v3{2}/ε3{2}

MC-Glb. v3/ε3

• Both MC-KLN with η/s=0.2 and MC-Glauber with η/s=0.08 give very gooddescription of v2/ε2 at all centralities.

• Only η/s=0.08 (with MC-Glauber initial conditions) describes v3/ε3!PHENIX, comparing to calculations by Alver et al. (PRC82 (2010) 034913), come to similar conclusions at RHIC energies

(Adare et al., arXiv:1105.3928, and Lacey et al., arXiv:1108.0457)

• Large v3 measured at RHIC and LHC requires small (η/s)QGP ≃ 1/(4π) unlessthe fluctuations predicted by both models are completely wrong and ε3 is really 50%larger than we presently believe!

U. Heinz Kapusta-Fest 24(32)

Page 26: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Conclusions• The QGP is the most perfect liquid ever measured. Its specific shear viscosity at RHIC and

LHC energies is

(η/s)QGP(Tc<T<2Tc) =1

4π± 50%

A moderate increase between 2Tc and 3Tc can at present not be excluded but is not mandated

by the data.

• Ingredients that matter at the 50% level and are under control:

– relativistic viscous fluid dynamics

– realistic EOS with correct non-equilibrium composition in HG phase

– microscopic description of the highly dissipative hadronic stage, including all resonance decays

– fluctuating initial conditions, simultaneous study of v2 and v3

• Ingredients that matter at the < 25% level and require further study:

– bulk viscosity

– temperature dependence of (η/s)QGP

– pre-equilibrium flow

– event-by-event hydro evolution vs. single-shot hydro with averaged initial profiles

– (3+1)-d vs. (2+1)-d evolution

– study of higher harmonics; influence of nucleon growth with√s on fluctuations

– flow fluctuations and flow angle correlations for different harmonics

The ultimate theoretical question:Why is (η/s)QGP as small as it is?

U. Heinz Kapusta-Fest 25(32)

Page 27: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Outlook: A beautiful analogy with the Big Bang:

The fluctuation “power spectrum” of the Little Bang

Mishra, Mohapatra, Saumia, Srivastava, PRC77 (2008) 064902 and C81 (2010) 034903

Mocsy & Sorensen, NPA855 (2011) 241, PLB705 (2011) 71

U. Heinz Kapusta-Fest 26(32)

Page 28: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

The fluctuation “power spectrum” of the Little BangStaig & Shuryak, JPG38 (2011) 124039

• Relating the measured “anisotropic flow power spectrum” (i.e. vn vs. n) to the “initial fluctuation

power spectrum” (i.e. εn vs. n) provides access to the QGP transport coefficients (likely not only η/s,

but also ζ/s, τπ, τΠ . . .)

• Power spectrum of initial fluctuations (in particular its√s dependence) can (probably) be calculated

from first principles via CGC effective theory (Dusling, Gelis, Venugopalan, NPA872 (2011) 161)

• Collisions between different species, at different collision centralities, and at different√s create

Little Bangs with characteristically different power spectra

−→ The Concordance Model of Little Bang Cosmology!U. Heinz Kapusta-Fest 27(32)

Page 29: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Higher order event plane correlations in PbPb@LHCData: ATLAS Coll., J. Jia et al., Hard Probes 2012

Event-by-event hydrodynamics: Zhi Qiu (VISH2+1, MC-Glauber, (η/s)QGP=0.08)

0

0.2

0.4

0.6

0.8

1

cos(4ΨEP2 −4ΨEP

4 )

0

0.2

0.4

0.6

0.8

1

cos(8ΨEP2 −8ΨEP

4 )

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6 cos(12ΨEP2 −12ΨEP

4 )

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

cos(6ΨEP2 −6ΨEP

3 )

0 100 200 300 400−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6cos(6ΨEP

2 −6ΨEP6 )

0 100 200 300 4000

0.1

0.2

0.3

0.4

0.5

0.6 cos(6ΨEP3 −6ΨEP

6 )

0 100 200 300 400−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

cos(12ΨEP3 −12ΨEP

4 )

0 100 200 300 400

−0.1

−0.05

0

0.05

0.1

0.15cos(10ΨEP

2 −10ΨEP5 )

Viscous hydro, MC-Glauber, η/s = 0.08

ATLAS dataNpart

Very preliminary assessment:

VISH2+1 reproduces qualitative features of the centrality dependence of all measured event-plane

correlations but is quantitatively off by up to 50%

U. Heinz Kapusta-Fest 28(32)

Page 30: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Higher order event plane correlations in PbPb@LHCData: ATLAS Coll., J. Jia et al., Hard Probes 2012

Event-by-event hydrodynamics: Zhi Qiu (VISH2+1, MC-Glauber, (η/s)QGP=0.08)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cos(2ΨEP2 + 3ΨEP

3 −5ΨEP5 )

−0.1

−0.05

0

0.05

0.1

cos(−8ΨEP2 + 3ΨEP

3 + 5ΨEP5 )

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

cos(2ΨEP2 + 4ΨEP

4 −6ΨEP6 )

0 100 200 300 400−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cos(−10ΨEP2 + 4ΨEP

4 + 6ΨEP6 )

0 100 200 300 400−0.2

−0.1

0

0.1

cos(2ΨEP2 −6ΨEP

3 + 4ΨEP4 )

0 100 200 300 400−0.1

−0.05

0

0.05

0.1

cos(−10ΨEP2 + 6ΨEP

3 + 4ΨEP4 )

Viscous hydro, MC-Glauber, η/s = 0.08

ATLAS dataNpart

Very preliminary assessment:

VISH2+1 reproduces qualitative features of the centrality dependence of all measured event-plane

correlations but is quantitatively off by up to 50%

U. Heinz Kapusta-Fest 29(32)

Page 31: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Higher order event plane correlations in PbPb@LHCData: ATLAS Coll., J. Jia et al., Hard Probes 2012

Event-by-event hydrodynamics: Zhi Qiu (VISH2+1, MC-KLN, (η/s)QGP=0.2)

0

0.2

0.4

0.6

0.8

1

cos(4ΨEP2 −4ΨEP

4 )

0

0.2

0.4

0.6

0.8

1

cos(8ΨEP2 −8ΨEP

4 )

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6 cos(12ΨEP2 −12ΨEP

4 )

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

cos(6ΨEP2 −6ΨEP

3 )

0 100 200 300 400−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6cos(6ΨEP

2 −6ΨEP6 )

0 100 200 300 4000

0.1

0.2

0.3

0.4

0.5

0.6 cos(6ΨEP3 −6ΨEP

6 )

0 100 200 300 400−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

cos(12ΨEP3 −12ΨEP

4 )

0 100 200 300 400

−0.1

−0.05

0

0.05

0.1

0.15cos(10ΨEP

2 −10ΨEP5 )

Viscous hydro, MC-KLN, η/s = 0.2

ATLAS dataNpart

Very preliminary assessment:

VISH2+1 reproduces qualitative features of the centrality dependence of all measured event-plane

correlations but is quantitatively off by up to 50%

U. Heinz Kapusta-Fest 30(32)

Page 32: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Higher order event plane correlations in PbPb@LHCData: ATLAS Coll., J. Jia et al., Hard Probes 2012

Event-by-event hydrodynamics: Zhi Qiu (VISH2+1, MC-KLN, (η/s)QGP=0.2)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cos(2ΨEP2 + 3ΨEP

3 −5ΨEP5 )

−0.1

−0.05

0

0.05

0.1

cos(−8ΨEP2 + 3ΨEP

3 + 5ΨEP5 )

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

cos(2ΨEP2 + 4ΨEP

4 −6ΨEP6 )

0 100 200 300 400−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cos(−10ΨEP2 + 4ΨEP

4 + 6ΨEP6 )

0 100 200 300 400−0.2

−0.1

0

0.1

cos(2ΨEP2 −6ΨEP

3 + 4ΨEP4 )

0 100 200 300 400−0.1

−0.05

0

0.05

0.1

cos(−10ΨEP2 + 6ΨEP

3 + 4ΨEP4 )

Viscous hydro, MC-KLN, η/s = 0.2

ATLAS dataNpart

Very preliminary assessment:

VISH2+1 reproduces qualitative features of the centrality dependence of all measured event-plane

correlations but is quantitatively off by up to 50%

U. Heinz Kapusta-Fest 31(32)

Page 33: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Happy Birthday, Joe!

U. Heinz Kapusta-Fest 32(32)

Page 34: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Supplements

U. Heinz Kapusta-Fest 33(32)

Page 35: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Global description of AuAu@RHIC spectra and v2

VISHNU (H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, PRC83 (2011) 054910)

0.0 0.5 1.0 1.5 2.010-11

10-9

10-7

10-5

10-3

10-1

101

103

105

107

0.0 0.5 1.0 1.5 2.010-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

/s = 0.0 (ideal hydro)

/s = 0.08 /s = 0.16 /s = 0.24

40%~60%/10

20%~40%

10%~20%*10

0%~10%*102

PHENIX STAR MC-KLN MC-Glauber

pT (GeV)

+

70%~80%/106

60%~70%/105

50%~60%/104

40%~50%/103

30%~40%/102

20%~30%/10

15%~20%*1

10%~15%*10

5%~10%*102

0%~5%*103

(a)

60%~80%/102

dN/(2

dy

p T dp T) (

GeV

-2)

dN/(2

dy

p T dp T) (

GeV

-2)

pT (GeV)

p

(b)0.0 0.4 0.8 1.2 1.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.0 0.4 0.8 1.2 1.6 2.0

s = 0.08 s = 0.16

v 2/

pT (GeV)

MC-Glauber initialization200 A GeV Au+Au charged hadrons

MC-KLN initialization

(0-5%)+1.6

(5-10%)+1.4

(10-20%)+1.2

(20-30%)+1.0

(30-40%)+0.8

(40-50%)+0.6

(50-60%)+0.4

(60-70%)+0.2

(70-80%)

s = 0.16 s = 0.24

pT (GeV)

VISHNU STAR v2{EP}

• (η/s)QGP = 0.08 for MC-Glauber and (η/s)QGP = 0.16 for MC-KLN works well forcharged hadron, pion and proton spectra and v2(pT ) at all collision centralities

U. Heinz Kapusta-Fest 34(32)

Page 36: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Pre- and postdictions for PbPb@LHCVISHNU with MC-KLN (Song, Bass, UH, PRC83 (2011) 054912)

0 100 200 300 400N

part

0

2

4

6

8

(dN

ch/d

η)/

(Npart/2

)

LHC: η/s=0.16LHC: η/s=0.20LHC:η/s=0.24RHIC: η/s=0.16

0 100 200 300 400N

part

0

2

4

6

8

(dN

ch/d

η)/

(Npart/2

)

Au+Au 200 A GeV: STARPb+Pb 2.76 A TeV: ALICE

Au+Au 200 A GeV: PHOBOS

MC-KLNreaction plane

(b)

0 0.5 1 1.5 2p

T(GeV)

0

0.1

0.2

0.3

0.4

v2

RHIC: η/s=0.16LHC: η/s=0.16LHC: η/s=0.20LHC: η/s=0.24

STARALICE

VISHNU

MC-KLN

10-20%

20-30%

30-40%

40-50%

+0.3

+0.1

+0.2

reaction plane

v2{4}

0 20 40 60 80centrality

0

0.02

0.04

0.06

0.08

0.1

v2

RHIC: η/s=0.16LHC: η/s=0.16LHC: η/s=0.20LHC: η/s=0.24

STAR

ALICEv

2{4}

MC-KLNReaction Plane

• After normalization in 0-5% centrality collisions, MC-KLN + VISHNU (w/o running coupling, but

including viscous entropy production!) reproduces centrality dependence of dNch/dη well in both

AuAu@RHIC and PbPb@LHC

• (η/s)QGP = 0.16 for MC-KLN works well for charged hadron v2(pT) and integrated v2 in

AuAu@RHIC, but overpredicts both by about 10-15% in PbPb@LHC

• Similar results from predictions based on pure viscous hydro (C. Shen et al., PRC84 (2011) 044903)

• but: At LHC significant sensitivity of v2 to initialization of viscous pressure tensor πµν (Navier-Stokes

or zero) =⇒ need pre-equilibrium model.

=⇒ QGP at LHC not much more viscous than at RHIC!

U. Heinz Kapusta-Fest 35(32)

Page 37: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Why is vch2 (pT) the same at RHIC and LHC?

Answer: Pure accident! (Kestin & UH EPJC61 (2009) 545; Shen & UH, PRC85 (2012) 054902)

C. Shen, UH, P. Huovinen, H. Song, PRC84 (2011) 044903

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

+

p

v 2

pT (GeV)

RHIC LHC

20~30%

AuAu@ PbPb@ MC-KLN, /s = 0.20

vπ2 (pT ) increases a bit from RHIC to LHC, for heavier hadrons v2(pT ) at fixed pT decreases

(radial flow pushes momentum anisotropy of heavy hadrons to larger pT )

This is a hard prediction of hydrodynamics! (See also Nagle, Bearden, Zajc, NJP13 (2011) 075004)

U. Heinz Kapusta-Fest 36(32)

Page 38: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Confirmation of increased mass splitting at LHC

Data: ALICE @ LHC, Quark Matter 2011 (symbols), PHENIX @ RHIC (shaded)

Lines: Shen et al., PRC84 (2011) 044903 (VISH2+1 + MC-KLN, η/s=0.2)

• Qualitative features of data agree with VISH2+1 predictions

• VISH2+1 does not push proton v2 strongly enough to higher pT , both at RHIC and LHC

• At RHIC we know that this is fixed when using VISHNU – is the same true at LHC?U. Heinz Kapusta-Fest 37(32)

Page 39: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Successful prediction of v2(pT) for identified hadrons inPbPb@LHC

Data: ALICE, Quark Matter 2011 Prediction: Shen et al., PRC84 (2011) 044903 (VISH2+1)

Perfect fit in semi-peripheral collisions!

The problem with insufficient proton radial flow exists only in more central collisions

Adding the hadronic cascade (VISHNU) helps:

U. Heinz Kapusta-Fest 38(32)

Page 40: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

v2(pT) in PbPb@LHC: ALICE vs. VISHNUData: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)

Dashed lines: Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, (η/s)QGP=0.2)

Solid lines: Song, Shen, UH 2011 (VISHNU, MC-KLN, (η/s)QGP=0.16)

0

0.1

0.2

0.3

5−10%

v2

ALICE Preliminary

π+

K+

p

10−20%

(η/s)QGP = 0.16VISHNU

20−30%

η/s = 0.20VISH2+1

0 1.0 2.0 00

0.1

0.2

0

30−40%

pT (GeV)

v2

0 1.0 2.0 040−50%

pT (GeV)0 1.0 2.0 3.0

50−60%

pT (GeV)

VISHNU yields correct magnitude and centrality dependence of v2(pT ) for pions, kaons and protons!

Same (η/s)QGP =0.16 (for MC-KLN) at RHIC and LHC!

U. Heinz Kapusta-Fest 39(32)

Page 41: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

PbPb@LHC pT -spectra: ALICE vs. VISH2+1 and VISHNU:

10−1

100

101

102

103 0~5%

dN

/(d

ydp

T)

ALICE Preliminaryπ+

K+

p

5~10%

(η/s )QGP = 0 .16

VISHNU

10~20%

η/s = 0 .20

VISH2+1

20~30%

0 1.0 2.0 010

−1

100

101

102

103 30~40%

pT (GeV)

dN

/(d

ydp

T)

0 1.0 2.0 0

40~50%

pT (GeV)0 1.0 2.0 0

50~60%

pT (GeV)0 1.0 2.0 3.0

60~70%

pT (GeV)

• Good description also of identified hadron spectra for centralities < 50%

• VISHNU better than VISH2+1 in central collisions (more radial flow)

• Both models give too much radial flow in peripheral collisions =⇒ initial conditions?

• Both models overpredict proton yield by 50-70%!?U. Heinz Kapusta-Fest 40(32)

Page 42: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

The new “proton anomaly”: disagreement with the thermal modelData: ALICE, preliminary (A. Kalweit, Strange Quark Matter 2011)

Model: A. Andronic et al., PLB673 (2009) 142; similar: S. Wheaton et al. (THERMUS), Comp. Phys. Comm. 180 (2009) 84

• “Standard” Tchem =164MeV reproduces strange hadrons but overpredicts (anti-)protons by 50%!

• pp annihilation in UrQMD not strong enough to repair this

• Similar problem already seen at RHIC but not taken seriously (STAR/PHENIX disagreement)

???U. Heinz Kapusta-Fest 41(32)

Page 43: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Comparison of ALICE PbPb@LHC v2 data with VISH2+1

Data: ALICE (Snellings, Krzewicki, Quark Matter 2011)

Prediction: C. Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, η/s=0.2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

pion kaon anti-proton VISH2+1

( /s = 0.20)

v 2

5%~10%Pb+Pb @ 2.76 A TeV

10%~20%data: ALICE Preliminary

20%~30%

v 2

pT (GeV)

30%~40%

pT (GeV)

40%~50%

pT (GeV)

50%~60%

U. Heinz Kapusta-Fest 42(32)

Page 44: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

PbPb@LHC pT -spectra: Glauber vs. KLN

10−1

100

101

102

103 0~5%

dN

/(dydp

T)

[email protected] TeVALICE Preliminary

π+

K+

p

5~10%

η/s = 0 .20MC−KLN

10~20%

η/s = 0 .08MC−Glb

20~30%

0 1.0 2.0 010

−1

100

101

102

103 30~40%

pT (GeV)

dN

/(dydp

T)

0 1.0 2.0 0

40~50%

pT (GeV)0 1.0 2.0 0

50~60%

pT (GeV)0 1.0 2.0 3.0

60~70%

pT (GeV)

• In central collisions no difference between the models.

• In peripheral collisions pT -spectra from MC-Glauber IC too steep!

This is an artifact of single-shot hydro with averaged initial profile; for small η/s=0.08 (but not

for η/s=0.2!), e-by-e hydro gives flatter pT -spectra in peripheral collisions, due to hot spots

U. Heinz Kapusta-Fest 43(32)

Page 45: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

Smearing effects from nucleon growth at high energiesU. Heinz & Scott Moreland, PRC84 (2011) 054905

-6-4-2 0 2 4 6

x (fm)

-6 -4 -2 0 2 4 6y (fm)

200 GeV Disk

0

10

20

30

40

50

60

-6-4-2 0 2 4 6

x (fm)

-6 -4 -2 0 2 4 6y (fm)

200 GeV Gauss

0 5 10 15 20 25 30 35 40 45 50

-6-4-2 0 2 4 6

x (fm)

-6 -4 -2 0 2 4 6y (fm)

2.76 TeV Gauss

0 10 20 30 40 50 60 70 80 90 100

23.5 GeV

-8-6-4-2 0 2 4 6 8

y (

fm)

0 2 4 6 8 10 12 14 16

200 GeV

0 5 10 15 20 25 30 35 40 45 50

2.76 TeV

-8 -6 -4 -2 0 2 4 6 8x (fm)

-8-6-4-2 0 2 4 6 8

y (

fm)

0 10 20 30 40 50 60 70 80 90 100

7 TeV

-8 -6 -4 -2 0 2 4 6 8x (fm)

0

20

40

60

80

100

120

Between√s = 23.5 and 7,000GeV, nucleon area grows

by factor O(2) =⇒ significant smoothing of event-by-event

density fluctuations from RHIC to LHC

U. Heinz Kapusta-Fest 44(32)

Page 46: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

s95p-PCE: A realistic, lattice-QCD-based EOSHuovinen, Petreczky, NPA 837 (2010) 26

Shen, Heinz, Huovinen, Song, PRC 82 (2010) 054904

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.00.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p (G

eV/fm

3 )

s95p-PCE SM-EOS Q EOS L

c2 S

e (GeV/fm3)

High T : Lattice QCD (latest

hotQCD results)

Low T : Chemically frozen HRG

(Tchem = 165MeV)

No softest point!

U. Heinz Kapusta-Fest 45(32)

Page 47: Ulrich Heinz, The Ohio State University · U. Heinz Kapusta-Fest 3(32) The QCD phase transition(s) U. Heinz Kapusta-Fest 4(32) Elliptic Flow In non-central collisions the over-lap

s95p-PCE: A realistic, lattice-QCD-based EOS

Huovinen, Petreczky, NPA 837 (2010) 26Shen, Heinz, Huovinen, Song, PRC 82 (2010) 054904

1E-4

1E-3

0.01

0.1

1

10

100

1000

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.0 0.5 1.0 1.5 2.0 2.5 3.00.000.020.040.060.080.100.120.140.160.180.200.22

0.0 0.5 1.0 1.5 2.0 2.5 3.00.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

central Au+Au(b = 2.33 fm)

1/2

*dN

/(dyp

TdpT)

PHENIX data s95p-PCE SM-EOS Q EOS L

p/10

Au+Au 20~30% (b = 7.5 fm)

v 2

/s = 0.16Tdec = 140 MeV

0 = 0.4 fm/cCGC initialization

Au+Au 20~30% (b = 7.5 fm)

v 2

pT (GeV)

charged hadrons

s95p-PCE without f SM-EOS Q without f EOS L without f

Au+Au 20~30% (b = 7.5 fm)

v 2

pT (GeV)

p

Generates less radial

flow than SM-EOS Q

and EOS L but larger

momentum anisotropy

Smooth transition leads to

smaller δf at freeze-out

=⇒ larger v2

U. Heinz Kapusta-Fest 46(32)