UConn BioGrid REU Summer 2008 Primer Design for Multiplex PCR

19
UConn BioGrid REU Summer 2008 Primer Design for Multiplex PCR Nikoletta DiGirolamo

description

UConn BioGrid REU Summer 2008 Primer Design for Multiplex PCR. Nikoletta DiGirolamo. Primer Design: The Challenge. One criteria to achieve highly specific amplification product in MP-PCR reactions is to keep the concentration of amplification primers low. - PowerPoint PPT Presentation

Transcript of UConn BioGrid REU Summer 2008 Primer Design for Multiplex PCR

Page 1: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

UConn BioGrid REU Summer 2008

Primer Design for Multiplex PCR

Nikoletta DiGirolamo

Page 2: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design: The Challenge

DPS-HDR MDPSP DPS-HDE MDPSP with Errors

NEW

New Algorithms for Problems

One criteria to achieve highly specific amplification product in MP-PCR reactions is to keep the concentration of amplification primers low.

In research, the dilemma associated with the primer minimization is formulated as the Multiple Degenerate Primer Selection Problem (MDPSP).

Page 3: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design: What is PCR?

Primers

3' 5' 3' 5' 3' 5'

Denaturation Hybridization Elongation 2nd round

The Polymerase Chain Reaction

5' 3' 5' 3' 5' 3'

5' 3'

3' 5'

Targeted DNA

3' 5' 5' 3'

The Multiplex Polymerase Chain Reaction

Page 4: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design: What is a Degenerate Primer?

A{C|G}TA{A|G|T}CA: ACTAACAACTAGCAACTATCAAGTAACAAGTAGCAAGTATCA

Degenerate Positions

Degeneracy = 6

Why use degenerate primers?

Page 5: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design:The Problem

The Higher the value of degeneracy, the greater the primers'

concentration!

Aim : minimizing the number of degenerate primers

bounded degeneracy maximizing coverage (dmax)

Page 6: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

The Multiple Degenerate Primer Selection Problem (MDPSP):

Definition 1:

Find a set of degenerate primers with the length of l , degeneracy at most d, and maximum coverage that would collectively amplify all the n input sequences.

Primer Design:Definition 1

Page 7: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design:Earlier Works

Algorithms:

HYDEN: Maximum Coverage DPD ( Linhart and Shamir [2002])MIPS: Multiple Degenerate Primer Design (Souvenir et. Al, [2007])DPS: Maximum Coverage DPDP (Balla et. al, [2007])

DPS-HD: Multiple Degenerate Primer Selection Problem (Balla et. al,[2007])

Common goal: maximize coverage at each step of the iteration

Page 8: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design:Hamming Distancel-mers

Hamming Distance (HD): u: ACGTAACT v: ACTTACGT

HDuv = 3

# Introduction of DPS-HD

L-mer : a substringof sequence n with the length of l

(m – l + 1)

n

l-mers

Last l-mer

Page 9: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design:Algorithm DPS-HDR1

s1

Sn

k

m

(m – l + 1)

u 1

n

(m – l + 1)

4 3 2 5

3 4 6 7

2 6 8 5

4 8 3 2

4 4 9 2

HDmin = 2

Step #1 Step #2

Page 10: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design: Algorithm DPS-HDR 2

S1

kK

HD = 0

Step #3

Random v

Hdmin = 2

u

v

Degenerate primer : u'

vv

v

v

Coverage of u = 2

Sn

Page 11: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design:Definition 2

Multiple Degenerate Primer Selection Problem

with Errors (MDPSPE)

Error ( E ): is an input constant corresponding to the number of mismatches allowed between primer u and the input sequence to be covered.

Definition 2 : given n DNA sequences, each with the length of m, and integers d, l, and E, find the set P of degenerate u that would match all the n input sequences with up to E errors (mismatches) such that u ∊ P has l length and at most D degeneracy.

Page 12: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design: New AlgorithmsDPS-HDE

HD = 2HD = 4

HD = 0

HD = 5HD = 3

HD = 5

E = 3

HD <= 3

Coverage of u = 3

*Increases the coverage of the primers

*Decreases the cardinality of the final degenerate primer set

*Reduction in running time

S1

Sn

Page 13: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design: Results: 1 - 2

D = 10000, l = 15 D = 100000, l = 15

DPS-HDR

Page 14: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

D = 100000, l = 15

D = 10000, l = 15

Page 15: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design: Future Work

Optimize the efficiency of the Perl program

Implement the algorithm not only on random but also on real biological data

Initiate collaboration with molecular biologists to validate the algorithms performance in wet-lab experiments

Page 16: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Thank You

July 31, 2008

Page 17: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

DPS-HD vs. DPS-HDRPrimer Design :

Set of vs

u

u'

u' with the best coverage

Step #3

Page 18: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design: ComparisonMIPS, DPS, DPS-HD

D = 10000, l = 15

DPS-HD

Page 19: UConn BioGrid REU Summer 2008 Primer Design for Multiplex  PCR

Primer Design: ComparisonMIPS, DPS, DPS-HD

D = 100000, l = 15

DPS-HD