Transmission gate latches. MSL with unprotected input (Gerosa et al. 1994), Copyright © 1994 IEEE.

40
Transmission gate latches (a) (c) Clk D Q Q S (b) Q S S Clk D Clk D

Transcript of Transmission gate latches. MSL with unprotected input (Gerosa et al. 1994), Copyright © 1994 IEEE.

Transmission gate latches

(a) (c)

Clk

D Q QS

(b)

QS

SClk

D

Clk

D

MSL with unprotected input(Gerosa et al. 1994), Copyright © 1994 IEEE

D

Q

Clk Clk1

Clk

QMSM SS

Clk 1

Clk1

Clk

MSL with input gate isolation(Markovic et al. 2001), Copyright © 2001 IEEE

D

Q

SM SS Q

Clk 1Clk

Clk Clk1

Clk1

Clk

QM

Clk1

removed

Sources of noise affecting the latch state node(Partovi in Chandrakasan et al. 2001), Copyright © 2001 IEEE

D2

3

2

1

Distantdriver

4 5

1

DVSS

VDD

QS

1 noise on input

2 leakage

3 -particle and cosmicrays

4 unrelated signal coupling

5 pow er supplyripple

Dynamic latches with gate isolation: (a) transmission gate, (b) C2MOS

D D

(a) (b)

Clk

Clk

Q QClk

Clk

removed

C2MOS latch (C2MOS)(Suzuki et al. 1973), Copyright © 1973 IEEE

D Q

Clk1

Clk

Clk

Clk 1

Clk

Clk1

Clk

QMClk

Clk 1

Clk1

Clk

Comparison of MSLs: (a) timing, (b) energy

(a) (b)

Hybrid-latch flip-flip(Partovi et al. 1996), Copyright © 1996 IEEE

D

Q

ClkS

Clk1

Semidynamic flip-flop(Klass 1998), Copyright © 1998 IEEE

Q

Clk

Clk 1

S

I

D

Clk

Clk

Illustration of SDFF output glitch

Sense-amplifier-based flip-flop(Montanaro et al. 1996), Copyright © 1996 IEEE

Clk

D D

RS

QQ

S-R Latch modifications:

(a) all-n-MOS push-pull (Gieseke et al. 1991); (b) complementary push-pull (Oklobdzija and Stojanovic 2001); (c) complementary push-pull with gated keeper (Nikolic et al. 1999).

QQQQ

QQ(a) (b) (c)

S R

S

RS

R

RS

SR

S

R

SR

S

R

S R

S R

S R

RS

S R

RS

Modified sense-amplifier-based flip-flop(Nikolic et al. 1999), Copyright © 1999 IEEE

SR

SR

Q Q

D D

Clk

CSE delay comparison (0.18 m, high load)

Min D-Q DelayComparison

0.00.5

1.01.52.02.5

3.03.54.04.55.0

MSL C2MOSHLF

FSDF

FSAFF M-SAFF

Del

ay[F

O4]

CSE energy breakdown (0.18 m, high load)

Energy breakdown (50% activity)

0

20

40

60

80

100

120

MSL C2MOSHLF

FSDF

FSAFF M-SAFF

En

erg

y [f

J]

Ext. clockExt. dataInt. clockInternal non-clk

Flip-flop Comparisons: (a) delay, (b) internal race immunity (0.25 m, light load)

(a) (b)

CSE energy-per-transition (0.25 m, light load)(Markovic et al. 2001), Copyright © 2001 IEEE

Gated MSL(Markovic et al. 2001), Copyright © 2001 IEEE

0.5

0.5comp

0.5 *

0.5

0.5

0.5 *

D

Clk

Clk

Clk 1

D

D

Q

QS

SS

Clk

Clk1

QS QSS

Clk1

Clk

SM QM

comp

Gated vs. conventional TG MSL:(a) timing, (b) energy

(a) (b)

Data-transition look-ahead latch(Nogawa and Ohtomo 1998), Copyright © 1998 IEEE

D Q

CP

CPCP

QM

Clk

CP

P1

CPI

CP

Data-TransitionLook-Ahead

Clock ControlPulse Generator

CP

CP

CP

DTLA-L without gating

CP

CPCP

CP

D

ClkCPCP

CP

CP

QQM

Pulse generator

C in(CC)

Clk

CPIPulse Generator

Energy comparison of DTLA-L and CMSL

(a)

(b)

Clock-on-demand PL(Hamada et al. 1999), Copyright © 1999 IEEE

XNOR

Pulse Generator

Data-TransitionLook-Ahead

D

Clk

CPCP

CP

CPCP

Q

Straightforward implementation with CMOS gates (energy inefficient)

"1"

"0"

"1" "1"

C int

Clk

XNOR

Energy-efficient implementation with compound AND-NOR gate

XNOR

inv XNOR

inv

CompoundAND-NOR

"1 "

"0"

Clk

Clk

Clk

Clk

CP

Impact of circuit sizing on the energy efficiency of COD-PL(Markovic et al. 2001), Copyright © 2001 IEEE

Conditional capture flip-flop(Kong et al. 2000), Copyright © 2000 IEEE

D

Clk

D

QQ

SS R R

Clk**

QQ

N N

R

S

S

R

Clk1

Timing parameters in latches and flip-flops with local clock gating(Markovic et al. 2001), Copyright © 2001 IEEE

(a) (b)

Energy and EDP in latches and flip-flops with local clock gating(Markovic et al. 2001), Copyright © 2001 IEEE

(a) (b)

N-only clocked latches: (a) conventional TG MSL, (b) pulsed-latch, (c) conventional PL, (d) push-pull PL

D

QClkQM

SM

Clk

SS

Clk

D

QCP

SS

D

QCP

SS

N1

N2

d1

D

CP

Clk CP

Pulse Generator (b)-(d)

(a)

(c) (d)

(b)

Clk

Clk

CP

Q

N-MSL

N-PL N-PPL

N-FF

CSE energy and delay: (a) high-Vdd and (b) low-swing Clk

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6Data-to-Q delay (FO3 inverter delay)

En

ergy

/ cy

cle

(nor

m)

N-MSL

N-PPL

N-FF

N-PL

Low-Swing Clk

0.0

0.2

0.4

0.6

0.8

1.0

1.2

En

ergy

/ cy

cle

(nor

m)

PL

N-PPLMSL

N-FF

0

High-Vdd

Effect of clock noise on low-swing clock latch delay

0%

4%

8%

12%

16%

20%

0% 3% 6% 9% 12%Noise on low-swing clock

Clk

-Q d

ela

y d

eg

rad

ati

on

N-CLN-PPL

N-FF

DET Latch-mux circuit(Llopis and Sachdev 1996), Copyright © 1996 IEEE

QD

Clk Clk

Clk Clk

Clk ClkClk

Clk Clk

Clk

C2MOS Latch-mux(Gago et al. 1993), Copyright © 1993 IEEE

Clk

ClkN2

N3

Clk

ClkN4

N5

N4

N5

N2

N3

D Q

Pulsed-latch: (a) single - edge, (b) dual - edge triggered

Clk

Clk

Clk Clk 1

Clk

D

D

Clk

(a) (b)

Q

Clk Clk

Q

Clk Clk1 Clk1

Clk 2

ClkClk2

Clk

Clk1

Clk2

Clk2

Clk2

Clk2

Clk1 Clk1

Clk 1

Clk1

Clk

Clk

Clk

DET symmetric pulse generator flip-flop

Clk

D

Clk

D

SX

Clk

1st STAGE: X 1st STAGE: Y2nd STAGE

Q

Clk Clk1 Clk1 Clk2

Clk 1

Clk

Clk

Clk2

SY

Delay comparison, SET vs. DET

0

1

2

3

4

5

6

MSL/LM C2MOS-LM PL SPGFF

Del

ay [

FO

4]

SEDE

Power consumption comparison, SET vs. DET (0.18 m, high load)

0

20

40

60

80

100

120

140

160

180

MSL LM PL SE PL DE C2MOS SE C2MOS DE SPGFF

Po

wer

[u

W]

Clk

Non-clk

EDP comparison, single vs. dual-edge triggered clocks (0.18 m, high load)

0

10

20

30

40

50

60

M SL/LM C2M OS PL SPGFF

ED

P [

fJ/5

00

MH

z],

[fJ

/25

0M

Hz]

Single Edge

Double Edge