Transmission Design Report

26
4Speed Transmission 10/20/15 Group 44 Ryan Rampolla Ryland Ballingham Dr. Griffis

Transcript of Transmission Design Report

Page 1: Transmission Design Report

 

 

 

4-­‐Speed  Transmission  

10/20/15    

Group  44  

Ryan  Rampolla    

Ryland  Ballingham  

Dr.  Griffis

 

               

   

Page 2: Transmission Design Report

  2  

Table  of  Contents  

1.0  Preliminary  Need  .............................................................................................................  3  

2.0  Preliminary  Specifications  ............................................................................................  3  2.1  Constraints  Imposed  by  Boss  .................................................................................................  3  

3.0  Design  ...................................................................................................................................  4  3.1  Countershaft  Assembly  ............................................................................................................  5  3.2  Countershaft  Layout  ..................................................................................................................  5  

4.0  Theoretical  Overview  ......................................................................................................  6  4.1  Theoretical  Loads  ......................................................................................................................  6  4.2  Estimated  Performance  ........................................................................................................  17  4.3  Countershaft  Bearings  ...........................................................................................................  20  4.4  Countershaft  Critical  Locations  ..........................................................................................  21  4.5  Theoretical  Critical  Locations  .............................................................................................  21  4.6  Theoretical  Keys  ......................................................................................................................  25  

 

                                     

Page 3: Transmission Design Report

  3  

 

1.0  Preliminary  Need  

The  preliminary  need  provided  was,  “For  a  conventional  rear-­‐wheel  drive  sporty  vehicle,  there  is  a  need  for  a  4-­‐speed  manual  transmission  that  can  operate  in  any  gear  over  an  infinite  life.”    While  designing  this  transmission  it  will  be  crucial  to  take  the  strength  and  torque  requirements  of  all  the  components  into  consideration.  

2.0  Preliminary  Specifications  

The  specifications  that  were  provided  are  as  follows:  

1. Design  Point  (continuous):  40  HP  at  2000  RPM  (input  shaft)  2. Design  factor  (countershaft):  nd  =  1.75  3. Design  factor  (gears):  ng  =  1.25  4. Design  factor  (keys):  nk  =  1.1  5. Size  (Max):  

a. Length:  2  ft  (target  1  ft  on  main  body,  1  ft  on  tail  piece)  b. Width:  14  in  c. Height:  14  in  

6. Target  Ratios:  a. 1st  gear:  3.2  to  1  (+/-­‐  5%)  b. 2nd  gear:  2.2  to  1  (+/-­‐  5%)  c. 3rd  gear:  1.6  to  1  (+/-­‐  2%)  d. 4th  gear:  direct  drive  

2.1  Constraints  Imposed  by  Boss    The  constraints  given  by  the  boss  were:    

1. Assume  constant  torque  at  the  design  point  (even  though  it  isn’t).  2. Input-­‐output  shafts  collinear  (so  4th  can  be  direct  connect).  3. Helical,  parallel  axis  gearing,  all  gears  same  diametral  pitch.  4. Simplification:  no  reverse  gear  here.  5. Gears  Keyed  to  Countershaft  (idler  shaft).  6. Leave  3  in  spacing  between  1st  &  2nd  gears  and  also  between  3rd  &  4th  for  

synchronizers.  7. Gear  teeth  (counts)  should  be  chosen  for  even  wear.  8. Passenger  side  view  of  countershaft,  maintain  ordering  of  gears:  starting  on  left:  1st,  

2nd,  3rd  gear  with  countershaft  input  driver  gear  on  right.  9. Objective  is  to  fully  design  the  countershaft  (idler  shaft)  of  the  transmission.    The  

case,  the  input,  output  shafts,  the  synchronizers  are  not  being  designed  in  this  project.    For  those  parts,  include  enough  mainshaft  detail  (input,  output  shafts)  and  case  detail  to  allow  for  simulation,  provide  space  for  synchronizers,  use  solid  works  mates  to  simulate  synchronizers.  

Page 4: Transmission Design Report

  4  

3.0  Design    

                           

 The  above  figure  is  the  overall  design  of  the  4-­‐speed  transmission.    The  view  is  oriented  from  the  passenger  side  of  the  vehicle  showing  the  input  shaft  on  the  top  left  and  the  output  on  the  top  right.    The  shaft  assembly  on  the  bottom  is  the  countershaft  with  a  total  of  four  gears.    The  gear  on  the  far  right  is  the  idler  gear,  which  is  driven  by  the  driving  gear  directly  above  it  at  2000  RPM.    To  the  left  of  the  idler  are  the  1st,  2nd,  and  3rd  gears  (left  to  right),  which  are  all  attached  to  their  corresponding  output  gears.    This  design  incorporates  multiple  snap  rings,  key  ways,  bearings,  and  spacers  to  keep  the  gears  in  place.  

                                 

The  above  illustration  is  used  to  declare  important  values  of  the  gears  and  overall  transmission  design.    The  image  provides  the  face  width  values  for  the  output  and  driving  gears  along  with  the  tooth  numbers  for  all  gears.  Gear  teeth  numbers  were  chosen  in  order  to  achieve  the  desired  gear  ratios.    In  addition  the  pitch  for  all  gears  was  established  to  be  5  T/in  and  a  diametral  pitch  of  7.011.    Also,  a  centerline  distance  from  the  mainshaft  to  countershaft  was  chosen  to  be  5.9  in  which  allowed  gears  enough  clearance  to  work  properly  while  achieving  the  desired  torque  values.  

Page 5: Transmission Design Report

  5  

Since  location  A  only  experiences  radial  loading  and  spins  at  an  RPM  greater  than  100,  we  chose  to  use  a  1in  roller  bearing  at  this  location.  At  location  B,  axial  and  radial  loading  occurs  and  thus  we  need  to  a  1.25in  tapered-­‐roller  bearing  to  account  for  this  extra  force  component.    As  for  the  keys,  we  chose  to  use  the  same  key/keyway  for  all  the  gears.  We  chose  to  use  a  woodruff  key  with  a  length  of  0.75in  and  a  radius  of  0.303  in.  The  keyways  were  sized  accordingly  to  this  size  with  a  depth  of  0.06in  and  length  of  0.44  in.  The  keys  are  made  out  of  316  stainless  steel.    In  order  to  fix  bearing  A  to  the  countershaft,  two  1in  snap  rings  are  used  on  both  sides  of  the  bearing.  Bearing  B  is  held  in  place  by  the  1.5  in  shoulder  and  a  1.25in  snap  ring.  There  is  nothing  to  hold  the  gears  in  place  axially,  which  is  a  design  flaw  in  our  design.  

3.1  Countershaft  Assembly    The  countershaft  can  easily  be  assembled  due  to  its  design  by  following  a  series  of  simple  steps.    The  first  step  in  the  countershaft  assembly  is  to  insert  all  the  keys  into  their  mating  key  ways,  since  all  the  keys  are  the  same  it  doesn’t  matter  which  key  goes  to  which  key  way.    Once  all  the  keys  are  installed,  gear  3  would  be  slid  over  the  countershaft  followed  by  a  0.125in  spacer  and  gear  2  would  be  slid  over  the  countershaft  and  against  the  spacer.    Following  this,  a  3in  spacer  and  gear  1  would  be  slid  over  the  counter  shaft.  Now  the  idler  gear  along  with  a  spacer  can  be  slid  onto  the  end  by  gear  3  followed  on  the  end  by  a  1.25in  snap  ring.    Finally  the  1in,  1.25in  roller  bearings  would  be  held  in  place  onto  the  ends  of  the  counter  shaft  with  the  appropriately  sized  snap  rings.  

3.2  Countershaft  Layout    

   The  image  above  is  a  passenger  view  of  the  countershaft  alone.    On  both  the  far  left  and  far  right  of  the  countershaft  are  flat  ends  which  is  where  the  specific  rolling  bearing  will  be  implicated  in  order  to  allow  the  shaft  to  spin  freely  within  the  case.    Starting  from  the  left  

Page 6: Transmission Design Report

  6  

side  of  the  shaft  we  have  the  two  1in  snap  rings  (to  hold  the  roller-­‐bearing  in  place)  followed  by  the  1st  gear,  2nd  gear,  3rd  gear  keys  ways  followed  by  the  1.25in  shoulder  and  idler  gear  key  way  followed  by  the  1.50  in  shoulder  and  finally  the  1.25  in  snap  ring  to  hold  the  tapered  roller  bearing  in  place.  

4.0  Theoretical  Overview  

 

4.1  Theoretical  Loads    The  following  figures  are  the  fbd’s  of  the  countershaft  gears.    All  dimensions  are  detailed  along  with  locations  of  all  the  forces.    All  images  are  a  passenger  view  of  the  countershaft  and  its  gears.    

 The  figure  above  is  the  fbd  of  the  1st  gear.    

Page 7: Transmission Design Report

  7  

 The  figure  above  is  the  fbd  of  the  2nd  gear.      

 The  figure  above  is  the  fbd  of  the  3rd  gear.  

Page 8: Transmission Design Report

  8  

The  following  table  shows  the  calculations  used  to  find  the  various  tooth  and  reaction  forces  along  with  torques  from  the  three  countershaft  fbd’s  above.      

Table  I  Diameter  of  drive  gear   𝑑! = 7𝑖𝑛  Pressure  angle   ϕ! = 14.5°  Helix  angle   ψ = 45°  Length   L=15.62in  B  coordinate   𝑥! = 14.4575𝑖𝑛  Input-­‐shaft  torque   𝑇! =

40  𝐻𝑃2000  𝑟𝑝𝑚

5252  𝑙𝑏𝑓  𝑓𝑡  12  𝑖𝑛  𝑟𝑝𝑚𝑓𝑡  𝐻𝑃

=  1260  𝑙𝑏𝑓  𝑖𝑛  

Counter-­‐shaft  torque  𝑇! =

𝑁!𝑁!

𝑇! =  3524

1260  𝑙𝑏𝑓  𝑖𝑛 = 1838  𝑙𝑏𝑓  𝑖𝑛  

Tangential  tooth  force  at  drive  gear  𝐹!" = 2

𝑇!𝑑!

= 21838  𝑙𝑏𝑓  𝑖𝑛

7  𝑖𝑛= 525  𝑙𝑏𝑓  

Normal  tooth  force  at  drive  gear   𝐹! =𝐹!"

cos ϕ! cos  (ψ)=

525  𝑙𝑏𝑓cos 14.5 cos  (45)

= 767  𝑙𝑏𝑓  

Radial  tooth  force  at  drive  gear   𝐹!" = 𝐹! sin ϕ! = 767  𝑙𝑏𝑓 sin 14.5 = 192  𝑙𝑏𝑓  Axial  tooth  force  at  drive  gear   𝐹!" = 𝐹! cos ϕ! sin ψ = 767  𝑙𝑏𝑓 cos 14.5 sin 45 = 525  Drive  gear  coordinate   𝑥! = 𝑥! − 𝑥! = 11.975  𝑖𝑛  Drive  gear  pitch  radius   𝑦! =

7𝑖𝑛2= 3.5𝑖𝑛  

Diameter  of  1st  gear   𝑑! = 3.6𝑖𝑛  Tangential  tooth  force  at  1st  gear  

𝐹!! =𝑑!𝑑!

𝐹!" =7  𝑖𝑛3.6  𝑖𝑛

525  𝑙𝑏𝑓 = 1021  𝑙𝑏𝑓  

Normal  tooth  force  at  1st  gear   𝐹! =𝐹!!

cos ϕ! cos  (ψ)=

1021  𝑙𝑏𝑓cos 14.5 cos  (45)

= 1491  𝑙𝑏𝑓  

Radial  tooth  force  at  1st  gear   𝐹!! = 𝐹! sin ϕ! = 1491  𝑙𝑏𝑓 sin 14.5 = 373  𝑙𝑏𝑓  Axial  tooth  force  at  1st  gear   𝐹!! = 𝐹! cos ϕ! sin ψ = 1491  𝑙𝑏𝑓 cos 14.5 sin 45

= 1021  𝑙𝑏𝑓  1st  gear  torque  

𝑇! = 𝐹!!𝑑!2

= 525  𝑙𝑏𝑓3.6𝑖𝑛2

= 1838  𝑙𝑏𝑓𝑖𝑛  

1st  gear  output  torque  𝑇!! = 𝐹!!

𝑑!!2

= 525  𝑙𝑏𝑓8.2𝑖𝑛2

= 2153  𝑙𝑏𝑓𝑖𝑛  

1st  gear  coordinate   𝑥! = 2.02125𝑖𝑛  1st  gear  pitch  radius  

𝑦! =𝑑!2

=3.6𝑖𝑛2

= 1.8𝑖𝑛  

Right-­‐side  bearing  reaction  (axial)   𝑅!" = 𝐹!! − 𝐹!" = 496  𝑙𝑏𝑓  Right-­‐side  bearing  reaction  (vertical)   𝑅!" =

1𝑥!

𝑥!𝐹!! + 𝑦!𝐹!! + 𝑥!𝐹!" − 𝑦!𝐹!" = 211  𝑙𝑏𝑓  

Right-­‐side  bearing  reaction  (horizontal)   𝑅!" =1𝑥!

𝑥!𝐹!" − 𝑥!𝐹!! = 292  𝑙𝑏𝑓  

Left-­‐side  bearing  reaction  (vertical)   𝑅!" = 𝐹!! + 𝐹!! − 𝑅!" = 354  𝑙𝑏𝑓  Left-­‐side  bearing  reaction  (horizontal)   𝑅!" = 𝐹!" − 𝐹!! − 𝑅!" = −788  𝑙𝑏𝑓  Diameter  of  2nd  gear   𝑑! = 4.6𝑖𝑛  Tangential  tooth  force  at  2nd  gear  

𝐹!! =𝑑!𝑑!

𝐹!" =7  𝑖𝑛4.6  𝑖𝑛

525  𝑙𝑏𝑓 = 799  𝑙𝑏𝑓  

Normal  tooth  force  at  2nd  gear   𝐹! =𝐹!!

cos ϕ! cos  (ψ)=

799  𝑙𝑏𝑓cos 14.5 cos  (45)

= 1167  𝑙𝑏𝑓  

Radial  tooth  force  at  2nd  gear   𝐹!! = 𝐹! sin ϕ! = 1167  𝑙𝑏𝑓 sin 14.5 = 292  𝑙𝑏𝑓  

Page 9: Transmission Design Report

  9  

Axial  tooth  force  at  2nd  gear   𝐹!! = 𝐹! cos ϕ! sin ψ = 1167  𝑙𝑏𝑓 cos 14.5 sin 45= 799  𝑙𝑏𝑓  

2nd  gear  torque  𝑇! = 𝐹!!

𝑑!2

= 799  𝑙𝑏𝑓4.6𝑖𝑛2

= 1838  𝑙𝑏𝑓𝑖𝑛  

2nd  gear  output  torque  𝑇!! = 𝐹!!

𝑑!!2

= 799  𝑙𝑏𝑓7.2𝑖𝑛2

= 2876  𝑙𝑏𝑓𝑖𝑛  

2nd  gear  coordinate   𝑥! = 6.33625𝑖𝑛  2nd  gear  pitch  radius  

𝑦! =𝑑!2

=4.6𝑖𝑛2

= 2.3𝑖𝑛  

Right-­‐side  bearing  reaction  (axial)   𝑅!" = 𝐹!! − 𝐹!" = 274  𝑙𝑏𝑓  Right-­‐side  bearing  reaction  (vertical)   𝑅!" =

1𝑥!

𝑥!𝐹!! + 𝑦!𝐹!! + 𝑥!𝐹!" − 𝑦!𝐹!" = 287  𝑙𝑏𝑓  

Right-­‐side  bearing  reaction  (horizontal)   𝑅!" =1𝑥!

𝑥!𝐹!" − 𝑥!𝐹!! = 85  𝑙𝑏𝑓  

Left-­‐side  bearing  reaction  (vertical)   𝑅!" = 𝐹!! + 𝐹!" − 𝑅!" = 197  𝑙𝑏𝑓  Left-­‐side  bearing  reaction  (horizontal)   𝑅!" = 𝐹!" − 𝐹!! − 𝑅!" = −359  𝑙𝑏𝑓  Diameter  of  3rd  gear   𝑑! = 5.6𝑖𝑛  Tangential  tooth  force  at  3rd  gear   𝐹!! =

𝑑!𝑑!

𝐹!" =7  𝑖𝑛5.6  𝑖𝑛

525  𝑙𝑏𝑓 = 656  𝑙𝑏𝑓  

Normal  tooth  force  at  3rd  gear   𝐹! =𝐹!!

cos ϕ! cos  (ψ)=

656  𝑙𝑏𝑓cos 14.5 cos  (45)

= 959  𝑙𝑏𝑓  

Radial  tooth  force  at  3rd  gear   𝐹!! = 𝐹! sin ϕ! = 959  𝑙𝑏𝑓 sin 14.5 = 240  𝑙𝑏𝑓  Axial  tooth  force  at  3rd  gear   𝐹!! = 𝐹! cos ϕ! sin ψ = 959  𝑙𝑏𝑓 cos 14.5 sin 45 = 656  𝑙𝑏𝑓  3rd  gear  torque  

𝑇! = 𝐹!!𝑑!2

= 656  𝑙𝑏𝑓5.6𝑖𝑛2

= 1838  𝑙𝑏𝑓𝑖𝑛  

3rd  gear  output  torque  𝑇!! = 𝐹!!

𝑑!!2

= 656  𝑙𝑏𝑓6.2𝑖𝑛2

= 2034  𝑙𝑏𝑓𝑖𝑛  

3rd  gear  coordinate   𝑥! = 7.03125𝑖𝑛  3rd  gear  pitch  radius  

𝑦! =𝑑!2

=5.6𝑖𝑛2

= 2.8𝑖𝑛  

Right-­‐side  bearing  reaction  (axial)   𝑅!" = 𝐹!! − 𝐹!" = 131𝑙𝑏𝑓  Right-­‐side  bearing  reaction  (vertical)   𝑅!" =

1𝑥!

𝑥!𝐹!! + 𝑦!𝐹!! + 𝑥!𝐹!" − 𝑦!𝐹!" = 276𝑙𝑏𝑓  

Right-­‐side  bearing  reaction  (horizontal)   𝑅!" =1𝑥!

𝑥!𝐹!" − 𝑥!𝐹!! = 116𝑙𝑏𝑓  

Left-­‐side  bearing  reaction  (vertical)   𝑅!" = 𝐹!! + 𝐹!" − 𝑅!" = 156𝑙𝑏𝑓  Left-­‐side  bearing  reaction  (horizontal)   𝑅!" = 𝐹!" − 𝐹!! − 𝑅!" = −247𝑙𝑏𝑓                            

Page 10: Transmission Design Report

  10  

The  following  images  show  the  shear  and  bending  moments  of  all  the  gears  in  order.  

 

Page 11: Transmission Design Report

  11  

 

Page 12: Transmission Design Report

  12  

 

Page 13: Transmission Design Report

  13  

 

Page 14: Transmission Design Report

  14  

 

Page 15: Transmission Design Report

  15  

 

Page 16: Transmission Design Report

  16  

 

         

Page 17: Transmission Design Report

  17  

 

4.2  Estimated  Performance      The  following  images  are  the  results  for  all  the  gears  in  the  transmission.    

 1st  gear  results.    

 1st  gear  output  results    

Page 18: Transmission Design Report

  18  

 2nd  gear  results.    

 2nd  gear  output  results.    

Page 19: Transmission Design Report

  19  

 3rd  gear  results.    

 3rd  gear  output  results.    

Page 20: Transmission Design Report

  20  

 Drive  gear  results.    

 Input  gear  results.    When  comparing  the  torque  calculations  in  4.1  to  the  rush  gear  results  above  for  each  gear,  it  is  clear  that  the  gear  will  be  strong  enough  to  handle  the  transmitted  torque.    

4.3  Countershaft  Bearings    Since our countershaft at the design point spins at 1371 RPMs, we must select bearings that are rated for speeds greater than 1371RPMs. Since the radial loads at location A equals: 𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! = 788 lbf+359 lbf +247 lbf= 1394 lbf

Page 21: Transmission Design Report

  21  

𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! = 354 lbf+197 lbf +156 lbf= 707 lbf

Since 1394 lbf >707 lbf, we need to select a bearing that can handle that is rated for more than 1394 lbf of dynamic loading. Since we have only radial loads at point A and 𝜔 > 100 RPMS, we chose to use a double sealed ball bearing. The one chosen is rated up to 2500 RPMs, has a maximum dynamic load capacity of 1480 lbf and its designed for a 1in diameter shaft. Now we analyze the bearing at point B. Since point B has axial and radial loading, we chose to use a tapered-roller bearing. First we will analyze the radial loading. 𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! = 292 lbf+85 lbf +116 lbf= 493 lbf

𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! =211 lbf+287 lbf +276 lbf= 774 lbf

Since 774 lbf >493 lbf, we need to choose a bearing that can handle more than 774 lbf radially. Now we will analyze the axial loading 𝑅!" =    𝑅!"! + 𝑅!"!   + 𝑅!"! =496 lbf+274 lbf +131 lbf= 901 lbf So we need a bearing that can handle more than 901 lbf axially and 774 lbf radially. Because of this we chose a tapered steel roller bearing with a maximum radial dynamic load rating of 2,130 lbf, a maximum axially axial dynamic load rating of 1,500 lbf and is designed for a shaft with a diameter of 1.25 in.  

4.4  Countershaft  Critical  Locations    Critical  locations  occur  at  locations,  which  undergo  high  bending  moments,  high  stress  concentrations,  small  cross  sectional  area,  and/or  heavy  torque.    Throughout  the  countershaft  design  there  are  several  critical  locations  that  can  be  recognized.    These  locations  include  key  ways,  snap  ring  grooves,  and  shoulders.    The  keyways  and  keys  themselves  have  a  very  small  cross  sectional  area  and  the  gears  are  torqueing  the  keys.  The  snap  rings  are  critical  locations  because  they  involve  keeping  the  gears  from  walking  around  on  the  countershaft.  

4.5  Theoretical  Critical  Locations    The  Mcomp  graph  image  in  section  4.1  will  be  used  to  find  the  correct  moment  values  used  for  the  analysis  of  the  critical  locations.    This  section  is  used  primarily  to  determine  what  material  and  dimensions  of  the  countershaft  should  be  used  in  order  for  the  shaft  to  be  strong  enough  for  the  applied  forces.    Tables  and  equations  were  all  found  in  the  McGraw-­‐Hill  textbook.        First  we  will  analyze  the  critical  point  at  the  shoulder  to  the  right  of  gear  3.    The  material  used  for  the  countershaft  was  AISI  1045  steel  CD  with  a  diameter,  d=  1in.  From  the  material  properties  in  Solid  Works,  Sut=  91kpsi,  and  Sy=  77kpsi.    In  order  to  find  Se  we  must  find  ka  &  

Page 22: Transmission Design Report

  22  

kb  first.    From  table  6-­‐2  for  cold  drawn  finish  we  get,  a=  2.7  &  b=  -­‐0.265.      From  Eq.  6-­‐19,20  we  get:    

𝑘! = 𝑎𝑆!"!  𝑘! = 2.7(91𝑘𝑝𝑠𝑖)!!.!"#  

𝑘! = 0.817  𝑘! = 0.879𝑑!!.!"#  

𝑘! = 0.879(1𝑖𝑛)!!.!"#  𝑘! = 0.879  

 

𝑆! = 𝑘!𝑘!𝑆!"2

 

𝑆! = (0.817)(0.879)91𝑘𝑝𝑠𝑖2

 𝑆! = 32.68  𝑘𝑝𝑠𝑖  

 For  the  shoulder  at  gear  3,  its  estimated  that  Ma=  2000lbf  in.    Using  

!!= 1.5𝑖𝑛  &   !

!=

0.1𝑖𝑛,  gives  kt=  1.65,  and  kts=  1.425  when  using  table  A15-­‐7,8.    Next  from  figure  6-­‐20,21  q=  0.825,  and  qs=  0.84.    All  these  values  will  now  be  used  in  Eq.  6-­‐32:    

𝑘! = 1 + 𝑞 𝑘! − 1  𝑘! = 1 + 0.825 1.65 − 1  

𝑘! = 1.53625    

𝑘!" = 1 + 𝑞 𝑘!" − 1  𝑘!" = 1 + 0.84 1.425 − 1  

𝑘!" = 1.357    Next  the  Alternating  and  Midrange  Von  Mises  Stresses  will  be  solved  for  with  all  the  given  values  from  above.    

σ!! =32𝑘!𝑀!

π𝑑!  

σ!! =32(1.53625)(2000  𝑙𝑏𝑓  𝑖𝑛)

π(1𝑖𝑛)!  

σ!! = 31.296  𝑘𝑝𝑠𝑖    

σ!! = 316𝑘!"𝑇!π𝑑!

 

σ!! = 316(1.357)(1838  𝑙𝑏𝑓  𝑖𝑛)

π(1𝑖𝑛)!  

σ!! = 22.002  𝑘𝑝𝑠𝑖    Finally  the  fatigue  factor  of  safety  and  Langer  will  be  calculated:    

1𝑛!=σ!!

𝑆!+σ!!

𝑆!"  

Page 23: Transmission Design Report

  23  

1𝑛!=31.296  𝑘𝑝𝑠𝑖32.68  𝑘𝑝𝑠𝑖

+22.002  𝑘𝑝𝑠𝑖91  𝑘𝑝𝑠𝑖

 

𝑛! = 0.834    

1𝑛!

=σ!!

𝑆!+σ!!

𝑆!  

1𝑛!

=31.296  𝑘𝑝𝑠𝑖77  𝑘𝑝𝑠𝑖

+22.002  𝑘𝑝𝑠𝑖77  𝑘𝑝𝑠𝑖

 

𝑛! = 1.44    These  are  not  acceptable  factors  of  safety  for  the  shoulder  to  the  right  of  gear  3.    The  target  factor  of  safety  was  at  least  1.75.    In  order  to  obtain  this  factor  of  safety  the  material  of  the  countershaft  could  be  changed  to  a  stronger  material  but  more  importantly  the  diameter  of  1in  should  be  increased.    Next  we  will  find  the  Alternating/Midrange  Von  Mises  Stresses  and  fatigue/Langer  factors  of  safety  of  the  shoulder  to  the  right  of  the  drive  gear.    At  this  point  it  is  estimated  that  Ma=  690  lbf  in  and  the  midrange  stress  is  equal  to  the  previous  shoulders.    

σ!! =32𝑘!𝑀!

π𝑑!  

σ!! =32(1.53625)(690  𝑙𝑏𝑓  𝑖𝑛)

π(1𝑖𝑛)!  

σ!! = 10.8  𝑘𝑝𝑠𝑖    

1𝑛!=σ!!

𝑆!+σ!!

𝑆!"  

1𝑛!=

10.8  𝑘𝑝𝑠𝑖32.68  𝑘𝑝𝑠𝑖

+22.002  𝑘𝑝𝑠𝑖91  𝑘𝑝𝑠𝑖

 

𝑛! = 1.75    

1𝑛!

=σ!!

𝑆!+σ!!

𝑆!  

1𝑛!

=10.8  𝑘𝑝𝑠𝑖77  𝑘𝑝𝑠𝑖

+22.002  𝑘𝑝𝑠𝑖77  𝑘𝑝𝑠𝑖

 

𝑛! = 2.35    These  are  acceptable  factors  of  safety  for  the  shoulder  to  the  right  of  the  drive  gear.    The  target  factor  of  safety  was  at  least  1.75,  which  was  just  obtained.    Next  we  will  find  the  Alternating  Von  Mises  Stresses  and  fatigue/Langer  factor  of  safety  of  the  snap  ring  groove  closest  to  gear  1,  directly  to  the  right  of  the  bearing.    For  this  snap  ring  groove,  its  estimated  that  Ma=  200lbf  in.    Using  

!!= 0.2𝑖𝑛  &   !

!= !.!

!.!= 1.2,  gives  kt=  4.35  when  using  table  A15-­‐16.    

Next  from  figure  6-­‐20,21  q=  0.58,  when  using  r=  (0.2)(0.5)=  0.1.    All  these  values  will  now  be  used  in  Eq.  6-­‐32:    

𝑘! = 1 + 𝑞 𝑘! − 1  𝑘! = 1 + 0.58 4.35 − 1  

𝑘! = 2.943  

Page 24: Transmission Design Report

  24  

 Next  the  Alternating  Von  Mises  Stresses  will  be  solved  for  with  all  the  given  values  from  above.        

σ!! =32𝑘!𝑀!

π𝑑!  

σ!! =32(2.943)(200  𝑙𝑏𝑓  𝑖𝑛)

π(1𝑖𝑛)!  

σ!! = 6  𝑘𝑝𝑠𝑖    Finally  the  fatigue/Langer  factor  of  safety  will  be  calculated,  since  there  is  no  torque  acting  at  this  location  the  midrange  stress  is  equal  to  zero:    

1𝑛!=σ!!

𝑆!+σ!!

𝑆!"  

1𝑛!=σ!!

𝑆!  

1𝑛!=

6  𝑘𝑝𝑠𝑖32.68  𝑘𝑝𝑠𝑖

 

𝑛! = 5.45    

1𝑛!

=σ!!

𝑆!+σ!!

𝑆!  

1𝑛!

=σ!!

𝑆!  

1𝑛!

=6  𝑘𝑝𝑠𝑖77  𝑘𝑝𝑠𝑖

 

𝑛! = 12.8        These  exceed  the  acceptable  factor  of  safety  for  the  snap  ring  groove  to  the  right  of  the  bearing  closest  to  gear  1.    The  target  factor  of  safety  was  at  least  1.75.    Next  we  will  find  the  Alternating  Von  Mises  Stresses  and  fatigue/Langer  factor  of  safety  of  the  snap  ring  groove  to  the  right  of  the  bearing  closest  to  the  drive  gear.    At  this  point  it  is  estimated  that  Ma=  600  lbf  in.    

σ!! =32𝑘!𝑀!

π𝑑!  

σ!! =32(2.943)(600  𝑙𝑏𝑓  𝑖𝑛)

π(1𝑖𝑛)!  

σ!! = 18  𝑘𝑝𝑠𝑖    Finally  the  fatigue/Langer  factor  of  safety  will  be  calculated,  since  there  is  no  torque  acting  at  this  location  the  midrange  stress  is  equal  to  zero:    

1𝑛!=σ!!

𝑆!+σ!!

𝑆!"  

Page 25: Transmission Design Report

  25  

1𝑛!=σ!!

𝑆!  

1𝑛!=

18  𝑘𝑝𝑠𝑖32.68  𝑘𝑝𝑠𝑖

 

𝑛! = 1.82    

1𝑛!

=σ!!

𝑆!+σ!!

𝑆!  

1𝑛!

=σ!!

𝑆!  

1𝑛!

=18  𝑘𝑝𝑠𝑖77  𝑘𝑝𝑠𝑖

 

𝑛! = 4.28      These  are  acceptable  factors  of  safety  for  the  snap  ring  groove  to  the  right  of  the  bearing  closest  to  the  drive  gear.    The  target  factor  of  safety  was  at  least  1.75.    

4.6  Theoretical  Keys    Next  we  will  analyze  the  keyway  critical  location  at  gear  2,  all  keyways  are  critical  locations  but  the  keyway  here  has  the  highest  bending  moment.    At  this  point  its  estimated  that  Ma=  2500lbf  in.    Using  !

!= 0.02𝑖𝑛,  gives  kt=  2.14,  and  kts=  3.0  when  using  table  7-­‐1.    Next  from  

figure  6-­‐20,21  q=  0.65,  and  qs=  0.7.    All  these  values  will  now  be  used  in  Eq.  6-­‐32:    

𝑘! = 1 + 𝑞 𝑘! − 1  𝑘! = 1 + 0.65 2.14 − 1  

𝑘! = 1.741    

𝑘!" = 1 + 𝑞 𝑘!" − 1  𝑘!" = 1 + 0.7 3.0 − 1  

𝑘!" = 2.4    Next  the  Alternating  and  Midrange  Von  Mises  Stresses  will  be  solved  for  with  all  the  given  values  from  above.    

σ!! =32𝑘!𝑀!

π𝑑!  

σ!! =32(1.741)(2500  𝑙𝑏𝑓  𝑖𝑛)

π(1𝑖𝑛)!  

σ!! = 44.33  𝑘𝑝𝑠𝑖    

σ!! = 316𝑘!"𝑇!π𝑑!

 

σ!! = 316(2.4)(1838  𝑙𝑏𝑓  𝑖𝑛)

π(1𝑖𝑛)!  

Page 26: Transmission Design Report

  26  

σ!! = 38.91  𝑘𝑝𝑠𝑖    Finally  the  fatigue  factor  of  safety  and  Langer  will  be  calculated:    

1𝑛!=σ!!

𝑆!+σ!!

𝑆!"  

1𝑛!=44.33  𝑘𝑝𝑠𝑖32.68  𝑘𝑝𝑠𝑖

+38.91  𝑘𝑝𝑠𝑖91  𝑘𝑝𝑠𝑖

 

𝑛! = 0.56    

1𝑛!

=σ!!

𝑆!+σ!!

𝑆!  

1𝑛!

=44.33  𝑘𝑝𝑠𝑖77  𝑘𝑝𝑠𝑖

+38.91  𝑘𝑝𝑠𝑖77  𝑘𝑝𝑠𝑖

 

𝑛! = 0.93    These  are  not  acceptable  factors  of  safety  for  the  keyway  at  gear  2.    The  target  factor  of  safety  was  at  least  1.1.    In  order  to  obtain  this  factor  of  safety  the  material  of  the  countershaft  could  be  changed  to  a  stronger  material  but  more  importantly  the  diameter  of  1in  should  be  increased.    Finally  we  will  calculate  the  static  failure  factor  of  safety  for  the  keys.    The  keys  used  had  a  length  and  width  of  0.065  and  0.25  inches.    The  key  is  made  out  of  316  stainless  steel  which  has  a  σy=  30  kpsi.    

𝑉 =2𝑇!𝑑

=2(1838  𝑙𝑏𝑓  𝑖𝑛)

1𝑖𝑛= 3.7  𝑘𝑝𝑠𝑖  

τ =𝑉ℎ𝑙=

3.7  𝑘𝑝𝑠𝑖(0.065𝑖𝑛)(0.25𝑖𝑛)

= 226  𝑘𝑝𝑠𝑖  

𝑛!"" =σ!2τ

=30  𝑘𝑝𝑠𝑖

2(226  𝑘𝑝𝑠𝑖)= 15.1  

 This  factor  of  safety  exceeds  the  target  factor  of  safety  at  1.1.