Time evolution Masatsugu Sei Suzuki Department of Physics ...

60
Time evolution of system 1 12/28/2014 Time evolution Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 13, 2014) Here we discuss the time evolution operator. There are three kinds of pictures; Schrödinger picture, Heisenberg picture, and Dirac picture. In the Schrodinger picture, the eigenket depends on time, while the operator is independent of time. The Schrodinger equation indicates how the eigenket (wave function) changes with time. For simplicity, we discuss mainly the case when the Hamiltonian is independent of time t. In the Heisenberg picture, the eigenket is independent of time. The operator changes with time t according to the Heisenberg’s equation of motion. This equation of motion is similar to the corresponding equation in the classical mechanics. The Dirac picture is used when the Hamiltonian includes the interacting Hamiltonian as a perturbation. Both the eigenket and operator depends on time t. We will use this picture for the discussion of the time- dependent perturbation theory. ________________________________________________________________________ Erwin Rudolf Josef Alexander Schrödinger (12 August 1887– 4 January 1961) was an Austrian theoretical physicist who was one of the fathers of quantum mechanics, and is famed for a number of important contributions to physics, especially the Schrödinger equation, for which he received the Nobel Prize in Physics in 1933. In 1935, after extensive correspondence with personal friend Albert Einstein, he proposed the Schrödinger's cat thought experiment. http://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger ________________________________________________________________________ Werner Heisenberg (5 December 1901– 1 February 1976) was a German theoretical physicist who made foundational contributions to quantum mechanics and is best known

Transcript of Time evolution Masatsugu Sei Suzuki Department of Physics ...

Time evolution of system 1 12/28/2014

Time evolution Masatsugu Sei Suzuki

Department of Physics, SUNY at Binghamton (Date: October 13, 2014)

Here we discuss the time evolution operator. There are three kinds of pictures;

Schrödinger picture, Heisenberg picture, and Dirac picture. In the Schrodinger picture, the eigenket depends on time, while the operator is independent of time. The Schrodinger equation indicates how the eigenket (wave function) changes with time. For simplicity, we discuss mainly the case when the Hamiltonian is independent of time t. In the Heisenberg picture, the eigenket is independent of time. The operator changes with time t according to the Heisenberg’s equation of motion. This equation of motion is similar to the corresponding equation in the classical mechanics. The Dirac picture is used when the Hamiltonian includes the interacting Hamiltonian as a perturbation. Both the eigenket and operator depends on time t. We will use this picture for the discussion of the time-dependent perturbation theory. ________________________________________________________________________ Erwin Rudolf Josef Alexander Schrödinger (12 August 1887– 4 January 1961) was an Austrian theoretical physicist who was one of the fathers of quantum mechanics, and is famed for a number of important contributions to physics, especially the Schrödinger equation, for which he received the Nobel Prize in Physics in 1933. In 1935, after extensive correspondence with personal friend Albert Einstein, he proposed the Schrödinger's cat thought experiment.

http://en.wikipedia.org/wiki/Erwin_Schr%C3%B6dinger ________________________________________________________________________

Werner Heisenberg (5 December 1901– 1 February 1976) was a German theoretical physicist who made foundational contributions to quantum mechanics and is best known

Time evolution of system 2 12/28/2014

for asserting the uncertainty principle of quantum theory. In addition, he made important contributions to nuclear physics, quantum field theory, and particle physics. Heisenberg, along with Max Born and Pascual Jordan, set forth the matrix formulation of quantum mechanics in 1925. Heisenberg was awarded the 1932 Nobel Prize in Physics for the creation of quantum mechanics, and its application especially to the discovery of the allotropic forms of hydrogen.

http://en.wikipedia.org/wiki/Werner_Heisenberg ________________________________________________________________________

Paul Adrien Maurice Dirac (8 August 1902 – 20 October 1984) was a British theoretical physicist. Dirac made fundamental contributions to the early development of both quantum mechanics and quantum electrodynamics. He held the Lucasian Chair of Mathematics at the University of Cambridge and spent the last fourteen years of his life at Florida State University. Among other discoveries, he formulated the Dirac equation, which describes the behavior of fermions. This led to a prediction of the existence of antimatter. Dirac shared the Nobel Prize in physics for 1933 with Erwin Schrödinger, "for the discovery of new productive forms of atomic theory."

http://en.wikipedia.org/wiki/Paul_Dirac

Time evolution of system 3 12/28/2014

_______________________________________________________________________ 1 Time evolution operator

We define the Unitary operator as

)(),(ˆ)( 00 tttUt ,

),(ˆ)()( 00 ttUtt .

Normalization

1)()()()( 00 tttt .

Then

)()()(),(ˆ),(ˆ)( 000000 tttttUttUt ,

or

1),(ˆ),(ˆ00 ttUttU (unitary operator),

tt0 t1 t2

We note that

)(),(ˆ),(ˆ)(),(ˆ)( 001121122 tttUttUtttUt .

This should be

),(ˆ),(ˆ),(ˆ011202 ttUttUttU .

It is easy to generalize this procedure

).,(ˆ),(ˆ)......,(ˆ),(ˆ),(ˆ12232111 ttUttUttUttUttU nnnnn

where t1, t2, ..., tn are arbitrary. If we assume that t1<t2<t3<...<tn, this formula is simple to interpret: to go from t1 to tn, the system progresses from t1 to t2, then from t2 to t3, ... , then finally from tn-1 to tn.

Time evolution of system 4 12/28/2014

2 Infinitesimal time-evolution operator We consider the infinitesimal time evolution operator

)(),(ˆ)( 0000 ttdttUdtt ,

with

1),(ˆlim 000

tdttUdt

.

We assert that all these requirements are satisfied by

dtitdttU ˆ1),(ˆ00 .

The dimension of

is a frequency or inverse time.

1

)ˆˆ(1

)ˆ1)(ˆ1(

)ˆ1()ˆ1(),(ˆ),(ˆ0000

dti

dtidti

dtidtitdttUtdttU

or

ˆˆ (Hermitian). We assume that

Hˆ ,

where H is a Hamiltonian. 3 Schrödinger equation

tt0 t t+dt

Time evolution of system 5 12/28/2014

),(ˆ)ˆ

1(

),(ˆ),(ˆ),(ˆ

0

00

ttUdtH

i

ttUtdttUtdttU

,

or

),(ˆˆ

),(ˆ),(ˆ000 ttUdt

HittUtdttU

,

),(ˆˆ),(ˆ),(ˆ

lim 000

0ttU

Hi

dt

ttUtdttUdt

,

or

),(ˆˆ

),(ˆ00 ttU

HittU

t

,

or

),(ˆˆ),(ˆ00 ttUHttU

ti

.

Since 1),(ˆ00 ttU , we get a formal solution for ),(ˆ

0ttU as

t

t

dtttUtHi

ttU0

'),'(ˆ)'(ˆ1),(ˆ00

,

when H is dependent on t. This is the Schrödinger equation for the time-evolution operator.

)(),(ˆˆ)(),(ˆ0000 tttUHtttU

ti

,

or

)(ˆ)( tHtt

i

.

4 Unitary operator for time independent H

What is the form of ),(ˆ0ttU when H is independent of t?

Time evolution of system 6 12/28/2014

tt0 tDt

N

ttt 0 ,

)](ˆ

exp[)](ˆ

1[lim 00 tt

Hi

N

ttHi N

N

,

from the definition of the mathematical constant e, or

)](ˆ

exp[),(ˆ00 tt

HittU

.

Using this, we have

)()](ˆexp[)( 00 tttHi

t

,

or simply, we have

)0(]ˆexp[)( tHi

t

,

for t0 = 0. 5. Time evolution (general case)

Suppose that the Hamiltonian is time dependent. We consider the state is given by

n

nn tCt )()( ,

where Cn(t) is a time-dependent coefficient and n is the orthonormal set of

eigenfunctions, where

nmmn .

The Schrodinger equation:

Time evolution of system 7 12/28/2014

)()(ˆ)( ttHtt

i

,

or

m

mmm

mm tHtCdt

tdCi )(ˆ)(

)( .

Multiplying n , we get

m

mnmm

mnm tHtCdt

tdCi )(ˆ)(

)( ,

or

m

mnmm

nmm tHtCdt

tdCi )(ˆ)(

)( ,

or

m

mmnn tCtH

dt

tdCi )()(ˆ)( .

For the system with only n = 1 and 2

)()()()()(

2121111 tCtHtCtH

dt

tdCi ,

)()()()()(

2221212 tCtHtCtH

dt

tdCi ,

or

)(

)(

)()(

)()(

)(

)(

2

1

2221

1211

2

1

tC

tC

tHtH

tHtH

tC

tC

dt

di .

This equation is a fundamental one for the maser with two energy levels. 6. Example-I We start with

Time evolution of system 8 12/28/2014

)0()ˆexp()( tHi

t

.

When )0( is described by the combination of the eigenkets of H

nn

nc )0( ,

then we have

nn

nnnn

n cti

ctHi

t )exp()ˆexp()(

,

where

nnnH .

We consider the particle in the one-dimensional box with the potential V=0 for 0<x<a and V= infinity for x<0 and x>a. The initial state is described by

]2[6

1)0( 123 ,

with

)sin(2

a

xn

ax n

,

21

222

)(2

nEnamn

,

]6

1

6

2

6

1

]2[6

1)ˆexp(

)0()ˆexp()(

123

123

123

ti

ti

ti

eee

tHi

tHi

t

or

Time evolution of system 9 12/28/2014

1236

2

6

1

6

1)(

123

xexexetxt

it

it

i

,

2

)(),( txtxP .

It is interesting to make a plot of P(x, t) as a function of x at various t using Mathematica' ((Mathematica)) Wave function in the One dimensional box ; time dependence of the wav e function

x_, n_ :2

aSin n x

a;

∂k_ :—2

2 m

k

a

2

;

1

6 ∂3 t

— x, 3 2 ∂2 t

— x, 2 ∂1 t

— x, 1;

rule1 m 1, — 1, a 1; 1 . rule1 Simplify;

2 Abs12;

R1 PlotEvaluateTable2, t, 0, 5, 0.5, x, 0, 1,

PlotStyle TableThick, Hue0.1 i, i, 0, 10,

Background LightGray, AxesLabel "x", "Prob",

Ticks Range0, 1, 0.5, Range0, 4, 2

Time evolution of system 10 12/28/2014

0.5 1.x

2

4

Prob

Time dependence of the probability

n_ : 2 . t n

50; xn_ n 50 N

0.02 n

Gn_ : Plotn, x, 0, 1, DisplayFunction Identity,

PlotLabel xn , Ticks Range0, 1, 0.5, Range0, 4, 1,

PlotStyle Red, Thick;

pt2 EvaluateTableGn, n, 0, 50;

ShowGraphicsGridPartitionpt2, 4,

DisplayFunction $DisplayFunction

Time evolution of system 11 12/28/2014

Time evolution of system 12 12/28/2014

Fig. Time dependence of P(t) as a function of x, at t = 0 – 0.78. 7. Example-II

Suppose that the Hamiltonian operator H is given by the matrix element of the basis

{ nb }. We assume the unitary operator U such that

nn bU .

We consider the eigenvalue problem;

nnnH ˆ ,

or

nnn bUbUH ˆˆˆ ,

or

Time evolution of system 13 12/28/2014

nnn bbUHU ˆˆˆ .

Thus the matrix form of UHU ˆˆˆ is given by the diagonal matrix with the diagonal element of the eigenvalues.

n

UHU

000

0.00

000

000

ˆˆˆ 2

1

.

Similary,

2

21

2

000

0.00

00.0

000

ˆˆˆ

n

UHU

,

ti

ti

n

e

e

UtHi

U

000

0.00

00.0

000

ˆ)ˆexp(ˆ

1

.

Thus we have

U

e

e

UtHi

ti

ti

n

ˆ

000

0.00

00.0

000

ˆ)ˆexp(

1

.

Once one can determine the matrix element of )ˆexp( tHi

, one can calculate the time

dependence of wavefunction )(t in the basis of { nb }.

8. Calculation of exponential of matrix

Here we calculate the matrix )ˆexp( tHi

(see also the APPENDIX for the derivation

detail)

Time evolution of system 14 12/28/2014

with

12

21H ,

in the basis of .2,1

Eigensystem[ H ].

2

12

1

1 , for the eigenvalue = 3

2

12

1

2 . for the eigenvalue = -1

The unitary operator is

2

1

2

12

1

2

1

U ,

2

1

2

12

1

2

1

U ,

ti

ti

e

e

tUHUi

UtHi

U

0

0

)ˆˆˆexp(ˆ)ˆexp(ˆ

3 ,

or

Time evolution of system 15 12/28/2014

)2

cos()2

sin(

)2

sin()2

cos(ˆ

0

0ˆ)ˆexp(3

tti

ti

t

eUe

eUtHi t

i

ti

ti

.

Note that using the Mathematica, one can directly calculate the exponential of the matrix, even if the matrix is a diagonal one. We need to use

MatrixExp[A], where A is an arbitrary matrix. ((Mathematica))

Time evolution of system 16 12/28/2014

Clear"Global`"; exp_ : exp . Complexre_, im_ Complexre, im;

H 1, 2, 2, 1; eq1 EigensystemH3, 1, 1, 1, 1, 1

1 Normalizeeq12, 1; 2 Normalizeeq12, 2; a1 eq11, 1;

a2 eq11, 2;

1.2

0

UT 1, 2 1

2,

1

2, 1

2,

1

2

U TransposeUT; UH UT; H1 UH.H.U Simplify

3, 0, 0, 1

K1 Exp —

t a1, 0, 0, Exp —

t a2 Simplify

3 t— , 0, 0,

t—

p1 U.K1.UH Expand

1

2 t—

1

23 t

— , 1

2 t—

1

23 t

— , 1

2 t—

1

2 3 t

— ,1

2 t—

1

2 3 t

Direct calculation for comparison

p2 MatrixExp —

t H FullSimplify

t— Cos2 t

—,

t— Sin2 t

—, t

— Sin2 t

—,

t— Cos 2 t

p1 p2 Simplify

0, 0, 0, 0 ________________________________________________________________________ 9. Spin precession

We consider the motion of spin S (=1/2) in the presence of an external magnetic field B along the z axis. The magnetic moment of spin is given by

ˆ z

2Bˆ S z

B

ˆ z .

Time evolution of system 17 12/28/2014

Then the spin Hamiltonian (Zeeman energy) is described by

ˆ H ˆ z B (

2Bˆ S z

)B B

ˆ z B.

Since the Bohr magneton µB is given by B

e

2mc,

BB

eB

2mc

2

eB

mc

20 (e>0).

or

0 eB

mc, (angular frequency of the Larmor precession)

Thus the Hamiltonian can be rewritten as

ˆ H

2 0

ˆ z .

Thus the Schrödinger equation is obtained as

)0(]ˆ2

exp[)0(]ˆexp[)( 0 tti

ttHi

t z

.

Note that the time evolution operator coincides with the rotation operator

ˆ R z (0t) exp[i

20

ˆ z t].

((Note)) Classical physics

Time evolution of system 18 12/28/2014

Fig. Precession motion of spin around the z axis, where the magnetic field B is applied

along the z axis.

The torque is exerted on the magnetic moment

Sμ B2

, in the form

BS

Bμτ )2

(

B .

So the spin vector S rotates around the z axis in counter-clock wise. ________________________________________________________________________ We assume that

Time evolution of system 19 12/28/2014

)2

sin(

)2

cos(]ˆ

2exp[]ˆ

2exp[)0(

2

2

i

i

yz

e

ez

iit n ,

ˆ R z (0t) exp[

i

20

ˆ z t],

The average

nn ]ˆ2

exp[]ˆ2

exp[2

)(ˆ)( 00 ti

ti

tStS zxzxtx ,

nn ]ˆ2

exp[]ˆ2

exp[2

)(ˆ)( 00 ti

ti

tStS zyzyty ,

nn ]ˆ2

exp[]ˆ2

exp[2

)(ˆ)( 00 ti

ti

tStS zzzztz .

Here we have

0

0

0

001

10

0

0]ˆ2

exp[]ˆ2

exp[

0

0

0

0

0

0

2

2

2

2

00

it

it

it

it

it

it

zxz

e

e

e

e

e

eti

ti

0

0

0

00

0

0

0]ˆ2

exp[]ˆ2

exp[

0

0

0

0

0

0

2

2

2

2

00

it

it

it

it

it

it

zyz

ie

ie

e

ei

i

e

eti

ti

10

01]ˆ

2exp[]ˆ

2exp[ 00 t

it

izzz ,

Thus we have

Time evolution of system 20 12/28/2014

]sin)sin(cos)[cos(sin2

)cos(sin2

00

0

tt

tStx

]sin)cos(cos)[sin(sin2

)[sin(sin2

00

0

tt

tSty

cos2

tzS .

At t = 0,

cossin20

xS ,

sinsin20

yS ,

cos20

zS .

Using this we have

)sin()cos( 0000tStSS yxtx ,

)cos()sin( 0000tStSS yxty ,

cos20

ztz SS .

Note that

)(00

0yx

ti

tytx SiSeSiS ,

nn

nn

)sin(ˆ)cos(ˆ2

]ˆ2

exp[ˆ]ˆ2

exp[2

)(ˆ)(

00

00

tt

ti

ti

tStS

yx

zxzxtx

,

Time evolution of system 21 12/28/2014

where

nn xxS 20

.

We also get

nn

nn

)cos(ˆ)sin(ˆ2

]ˆ2

exp[ˆ]ˆ2

exp[2

)(ˆ)(

00

00

tt

ti

ti

tStS

yx

zyzyty

by using the Baker-Hausdorf lemma,

nn yyS 20

,

and

0

00

ˆ2

]ˆ2

exp[ˆ]ˆ2

exp[2

)(ˆ)(

zz

zzz

ztz

S

ti

ti

tStS

nn

nn

Then

)sin()cos( 0000tStSS yxtx ,

)cos()sin( 0000tStSS yxty ,

and

0ztz SS .

Time evolution of system 22 12/28/2014

q

x

y

z

________________________________________________________________________ 10 Baker- Hausdorff lemma Baker-Campbell-Hausdorff Theorem

Henry Frederick Baker, John Edward Campbell, Felix Hausdorff.

(We will discuss this theorem in the topics of coherent state and squeezed state later).

In the commutation relations, yxz JiJJ ˆ]ˆ,ˆ[ , we put zzJ 2

ˆ and xxJ

Then we have

yxz i ˆ2

]ˆ2

,ˆ2

[

or yxz i ˆ2]ˆ,ˆ[ .

Similarly, we have

zyx i ˆ2]ˆ,ˆ[ , xzy i ˆ2]ˆ,ˆ[ .

We notice the following relations which can be derived from the Baker-Hausdorf

lemma:

Time evolution of system 23 12/28/2014

...]]]ˆ,ˆ[,ˆ[,ˆ[!3

]]ˆ,ˆ[,ˆ[!2

]ˆ,ˆ[!1

ˆ)ˆexp(ˆ)ˆexp(32

BAAAx

BAAx

BAx

BxABxA

sinˆcosˆ]ˆ2

exp[ˆ]ˆ2

exp[ yxzxz ii ,

exp[i2

ˆ z ] ˆ y exp[i2

ˆ z ] ˆ x sin ˆ y cos .

((Proof))

We note that

2

ix , zA ˆ , and xB ˆ .

yxz iBA ˆ2]ˆ,ˆ[]ˆ,ˆ[

Then we have

]]]ˆ,ˆ[,ˆ[,ˆ[!3

]]ˆ,ˆ[,ˆ[!2

]ˆ,ˆ[!1

ˆ

]ˆexp[ˆ]ˆexp[32

xzzzxzzxzx

zxz

xxx

xxI

.....]]]]ˆ,ˆ[,ˆ[,ˆ[,ˆ[!4

4

xzzzz

x

.]]]ˆ2,ˆ[,ˆ[,ˆ[2!4

1

]]ˆ2,ˆ[,ˆ[2!3

1]ˆ2,ˆ[

2!2

1ˆ2

2!1

4

32

yzzz

yzzyzyx

ii

ii

ii

ii

I

or

Time evolution of system 24 12/28/2014

...]]ˆ,ˆ[,ˆ)[2)(2(2!4

1

]ˆ,ˆ)[2)(2(2!3

ˆ22

ˆˆ

]]].....ˆ,ˆ[,ˆ[,ˆ)[2(2!4

1

]]ˆ,ˆ[,ˆ)[2(2!3

]ˆ,ˆ[2

ˆˆ

4

4

3

3

2

2

4

4

3

3

2

2

xzz

xzxyx

zyzz

zyzzyyx

ii

iii

ii

i

ii

iI

or

cosˆcosˆ

...)!3

1(ˆ...)!42

1(ˆ

...ˆ!4

ˆ!3

ˆ2

ˆˆ

...ˆ)2)(2)(2)(2(2!4

1ˆ)2)(2(

2!3ˆ

2ˆˆ

342

432

4

42

3

32

yx

yx

xyxyx

xyxyx iiiiiii

I

______________________________________________________________________ 11 Schrödinger picture The Schrödinger equation

)()( tt s ,

)(),(ˆ)( 00 tttUt ss ,

where ˆ U (t, t0 ) is the time evolution operator;

ˆ U (t, t0 ) ˆ U 1(t, t0 ) .

In the Schrodinger picture, the average of the operator sA in the state )(ts is defined

by

)(ˆ)( tAt sss .

12 Heisenberg picture

The state vector, which is constant, is equal to

)()( 0tt sH .

Time evolution of system 25 12/28/2014

From the definition

sssHHH tAtA )(ˆ)(ˆ ,

or

ˆ A H(t) ˆ U ( t,t0)ˆ A s (t)

ˆ U (t,t0 ). In general, ˆ A H(t) depends on time, even if ˆ A s (t) does not. 13 Heisenberg’s equation of motion

The Schrödinger equation can be described in the Schrödinger picture

)()(ˆ)( ttHtt

i sss

,

or

)(),(ˆ)(ˆ)(),(ˆ0000 tttUtHtttU

dt

di sss ,

or

),(ˆ)(ˆ),(ˆ00 ttUtHttU

dt

di s ,

or

d

dtˆ U (t,t0 )

i

ˆ H s (t)

ˆ U (t, t0 ),

and

d

dtˆ U (t,t0 )

i

ˆ U (t, t0 ) ˆ H s (t),

where ˆ H s

(t) ˆ H s (t) . Therefore

Time evolution of system 26 12/28/2014

Hs

HH

sss

sssss

sss

H

dt

tAdtAtH

i

ttUdt

tAdttUttUtAtHttU

i

ttUdt

tAdttUttUtH

itAttUttUtAtHttU

i

ttUdt

tAdttU

dt

ttUdtAttUttUtA

dt

ttUd

dt

tAd

))(ˆ

()](ˆ),(ˆ[

),(ˆ)(ˆ),(ˆ),(ˆ)](ˆ),(ˆ)[,(ˆ

),(ˆ)(ˆ),(ˆ),(ˆ)(ˆ)(ˆ),(ˆ),(ˆ)(ˆ)(ˆ),(ˆ

),(ˆ)(ˆ),(ˆ),(ˆ

)(ˆ),(ˆ),(ˆ)(ˆ),(ˆ)(ˆ

0000

000000

000

000

where

),(ˆ)(ˆ),(ˆ)(ˆ00 ttUtHttUtH sH

.

Finally we obtain the Heisenberg’s equation of motion

i

d

dtˆ A H(t) [ ˆ A H(t), ˆ H H (t)] i(

d ˆ A s (t)

dt)H

14 Simple example for the Heisenberg picture

ˆ H s( t) ˆ H , ˆ A s (t) ˆ A , t0 = 0

tHi

eUˆ

ˆ

,

tHi

s

tHi

sH eAeUAUAˆˆ

ˆˆˆˆˆ ,

sH HH ˆˆ .

Then we have the Heisenberg’s equation of motion:

]ˆ,ˆ[ˆHHH HAA

dt

di .

We get an analogy between the classical equations of motion in the Hamiltonian form

and the quantum equations of motion in the Heisenberg’s form. HA is called a constant

of the motion, when ]ˆ,ˆ[ HH HA =0 at all times.

Time evolution of system 27 12/28/2014

UHAU

UAUUHUUHUUAUHA

SS

SSSSHH

ˆ]ˆ,ˆ[ˆ

ˆˆˆˆˆˆˆˆˆˆˆˆ]ˆ,ˆ[

Therefore ]ˆ,ˆ[ HH HA means 0]ˆ,ˆ[ SS HA

15. Ehrenfest’s theorem: Schrodinger picture Paul Ehrenfest (January 18, 1880 – September 25, 1933) was an Austrian and Dutch physicist and mathematician, who made major contributions to the field of statistical mechanics and its relations with quantum mechanics, including the theory of phase transition and the Ehrenfest theorem.

http://en.wikipedia.org/wiki/Paul_Ehrenfest ____________________________________________________________________ Schrödinger equation:

)(ˆ)( tHtt

i

or )(ˆ)( tHi

tt

.

Taking the Hermitian conjugate of both sides,

HtHttt

i ˆ)(ˆ)()(

,

or

Hti

Hti

tt

ˆ)(ˆ)()(

.

We now consider the time dependence of the average defined by )(ˆ)( tAt

Time evolution of system 28 12/28/2014

)(ˆ

)()(]ˆ,ˆ[)(

)()(ˆ)()(ˆ

)()(ˆˆ)(

))((ˆ)()(ˆ

)()(ˆ))(()()(ˆ)(

tt

AttHAt

i

ti

Attt

AttAHt

i

tt

Attt

AttAt

tttAt

dt

d

or

)(ˆ

)()(]ˆ,ˆ[)()(ˆ)( tt

AttHAt

itAt

dt

d

.

When 0ˆ

t

A, we have

)(]ˆ,ˆ[)()(ˆ)( tHAti

tAtdt

d

,

where

AHHAHA ˆˆˆˆ]ˆ,ˆ[ .

When 0]ˆ,ˆ[ HA , we get

consttAt )(ˆ)( .

16. Heisenberg’s principle of uncertainty ((Messiah, Quantum mechanics, Townsend problem (4-15) first edition of Quantum Mechanics))

Consider any observable A associated with the state of the system in quantum mechanics. Show that there is an uncertainty relation of the form

2||

Adt

dA

E ,

provided the operator A does not depend on explicitly on time. The quantity

||/ Adt

dA is a time we may call t. What is the physical significance of t.?

Time evolution of system 29 12/28/2014

((Solution)) We recall that

CiBA ˆ]ˆ,ˆ[ , implies that

2

CBA .

We start with the commutator ]ˆ,ˆ[ HA ; then

|]ˆ,ˆ[|2

1HAEA .

But since

]ˆ,ˆ[ˆ HAi

Adt

d

,

then we get

||2

Adt

dEA

,

or

2||

Adtd

AE

.

If we define

|| A

dt

dA

t

,

then

2

tE .

Time evolution of system 30 12/28/2014

For example, for position, if x = 1 cm and scmxdt

d/1.0 . then we have

dt

xdx

10 s,

which is the time necessary for x to shift by an amount x.

17. Example for the Ehrenfest theorem

We consider a particle in a stationary potential.

)ˆ(2

ˆˆ2

xVm

pH .

So that we can write

)(]ˆ

)(

)(]2

ˆ,ˆ[)(

)(]ˆ,ˆ[)()(ˆ)(

2

tm

pti

i

tm

pxt

i

tHxti

txtdt

d

or

)(]ˆ

)()(ˆ)( tmp

ttxtdtd ,

or

pm

xdtd 1

.

Similarly

)()]ˆ(ˆ

)(

)()]ˆ(,ˆ[)(

)(]ˆ,ˆ[)()(ˆ)(

txVx

ti

i

txVpti

tHpti

tptdt

d

Time evolution of system 31 12/28/2014

or

)()]ˆ(ˆ

)()(ˆ)( txVx

ttptdt

d

,

or

dxdV

pdtd

,

The equations

pm

xdt

d 1 ,

and

dx

dVp

dt

d

express the Ehrenfest’s theorem. These forms recall that of classical Hamiltonian-Jacobi equations for a particle. 18 The same example in the Heisenberg picture

)ˆ(ˆ2

1 2SSS xVp

mH , (Schrödinger picture)

HH 1

2mˆ p H

2 V( ˆ x H ), (Heisenberg’s picture)

1ˆˆˆ]ˆ,ˆ[ˆ

ˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆ]ˆ,ˆ[

iUUiUpxU

UxUUpUUpUUxU

xppxpx HHHHHH

H

HH

pi

UpUi

UpxUpx

ˆ2

ˆˆˆ2

ˆ]ˆ,ˆ[ˆ]ˆ,ˆ[ 22

Heisenberg’s equation for the free particles,

Time evolution of system 32 12/28/2014

HHH

HHHHH pim

pp

im

pxm

Hxxdt

di ˆ

2

ˆ2

1]ˆ,ˆ[

2

1]ˆ,ˆ[ˆ 22

,

or

d

dtˆ x H [ ˆ x H , ˆ H H ]

1

mˆ p H .

Similarly

)ˆ(ˆ

)(ˆ)]ˆ(ˆ,ˆ[ˆˆ]ˆ,ˆ[ˆ]ˆ,ˆ[ˆ HH

HHH xVx

iUxVpUUHpUHppdt

di

,

or

H

HH x

xVp

dt

)ˆ()(ˆ

.

We consider a simple harmonics.

22 ˆ2

1)ˆ( HH xmxV ,

HH xmpdt

dˆˆ 2 .

Now consider the linear combination,

)ˆˆ()ˆˆ( HHHH pm

ixip

m

ix

dt

d

,

ti

HHH eApm

ix

ˆ)ˆˆ( ,

or

)ˆ()ˆˆ(

m

ixip

m

ix

dt

dHHH ,

ti

HHH eBpm

ix

ˆ)ˆˆ( .

where HA and HB are time-independent operators:

Time evolution of system 33 12/28/2014

)0(ˆ)0(ˆˆHHH p

m

ixA

,

)0(ˆ)0(ˆˆHHH p

m

ixB

.

Note that )0(ˆHx and )0(ˆ Hp correspond to the operators in the Schrödinger picture. From these equations, we get final results

tpm

txx HHH

sin)0(ˆ1

cos)0(ˆˆ ,

txmtpp HHH sin)0(ˆcos)0(ˆˆ .

These look to the same as the classical equation of motion. We see that Hx and Hp operators oscillate just like their classical analogue. An advantage of the Heisenberg picture is therefore that it leads to equations which are formally similar to those of classical mechanics. ((Note))

HHHHHHH

HH

H xi

xpxm

pm

Hm

pH

dt

xdx

dt

di ˆ2

2]ˆ,ˆ[

2]ˆ

2,ˆ[

1]ˆ,

ˆ[]ˆ,

ˆ[ˆ

22

22

2

2

2

,

or

HH xxdt

dˆˆ 2

2

2

,

with the initial condition

)0(ˆ1

|ˆ 0 HtH pm

xdt

d , )0(ˆ|ˆ 0 HtH xx .

The solution is

)sin(ˆ)cos(ˆˆ 21 tCtCxH ,

1ˆ)0(ˆ CxH ,

Time evolution of system 34 12/28/2014

m

pCtnCtC

dt

xd Htt

H )0(ˆˆ)](cosˆ)sin(ˆ[|ˆ

20210 .

Thus we have

m

pC H )0(ˆˆ

2 ,

and

)sin()0(ˆ

)cos()0(ˆˆ tm

ptxx H

HH

.

________________________________________________________________________ 19 Analogy with classical mechanics

In the classical mechanics, dynamical variables vary with time according to the Hamilton’s equations of motion,

j

j

p

H

dt

dq

,

where qj and pj are a set of canonical co-ordinate and momentum, and H is the Hamiltonian expressed as a function of them,

),...,,,,....,,,( 321321 nn ppppqqqqHH .

where n is the degree of freedom. For a given variable ),...,,,,....,,,( 321321 nn ppppqqqqvA ,

classical

j jjjj

j

j

j

j

j

HA

q

H

p

A

p

H

q

A

dt

dp

p

A

dt

dq

q

A

dt

dA

],[

[ ]classical:a classical definition of a Poisson bracket. 20 Dirac picture (Interaction picture)

ˆ H ˆ H 0 ˆ V s (t) ,

Time evolution of system 35 12/28/2014

where ˆ H 0 is independent of t.

)()(0

ˆ

tet I

tHi

s

,

or

)()(0

ˆ

tet s

tHi

I .

We assume that

)(ˆ)()()(ˆ)( tAtttAt sssIII .

For convenience, ˆ A s is independent of t. or

)(ˆ)()()(ˆ)(00

ˆˆ

tAttetAet ssss

tHi

I

tHi

s

,

or

s

tHi

I

tHi

AetAe ˆ)(ˆ 00ˆˆ

,

or

tHi

s

tHi

I eAetA00

ˆˆˆ)(ˆ

,

or

]ˆ),(ˆ[

]ˆˆˆˆ[)(ˆ

0

0

ˆˆˆˆ

0

0000

HtA

HeAeeAeHi

itAdt

di

I

tHi

s

tHi

tHi

s

tHi

I

.

Thus every operator behaves as if it would in the Heisenberg representation for a non-interacting system.

Time evolution of system 36 12/28/2014

)()(ˆ

)()(

00

0

ˆˆ

0

ˆ

tt

ieteH

tet

itt

i

s

tHi

s

tHi

s

tHi

I

Since

)()](ˆˆ[)( 0 ttVHtt

i sss

,

)()](ˆˆ[)(ˆ)()( 0

ˆˆ

0

ˆ000

ttVHeteHtet

itt

i s

tHi

s

tHi

s

tHi

I

,

or

)()(ˆ)()(ˆ)(00

ˆˆ

ttVtetVett

i III

tHi

tHi

I

,

or

)()(ˆ)( ttVtt

i III

,

where

tHi

s

tHi

I etVtV00

ˆˆ

)(ˆ)(ˆ

(Schrödinger-like)

which is a Schrödinger equation with the total ˆ H replaced by ˆ V I . We assume that

)(),(ˆ)( 00 tttUt III ,

satisfies the equation

)()(ˆ)( ttVtt

i III

.

Then we have the following relation.

),(ˆ)(ˆ),(ˆ00 ttUtVttU

ti III

,

Time evolution of system 37 12/28/2014

with the initial condition

'),'(ˆ)'(ˆ1),(ˆ

0

00 dtttUtVi

ttUt

t

III

.

We can obtain an approximate solution to this equation [Dyson series].

t

t

t

t

II

t

t

I

t

t

t

t

IIII

tVtVdtdti

dttVi

dtdtttUtVi

tVi

ttU

0 00

0 0

'2

'

00

...)''(ˆ)'(ˆ"')(')'(ˆ)(1

']"),"(ˆ)''(ˆ1)['(ˆ1),(ˆ

21 Transition probability

Once ˆ U I (t, t0 ) is given we have

)(),(ˆ)( 00 tttUt III ,

where

)()(0

ˆ

tet I

tHi

s

, or )()(0

ˆ

tet s

tHi

I ,

and

)(),(ˆ)( 00 tttUt ss ,

)(),(ˆ

)(),(ˆ)(

0

ˆ

0

ˆ

00

ˆ

000

0

tettUe

tttUet

I

tHi

s

tHi

ss

tHi

I

Then we have

ˆ U I (t, t0 ) e

i

H 0t ˆ U s (t, t0 )e

i

H 0t 0

. Let us now look at the matrix element of ˆ U I (t, t0 )

nEnH n0ˆ ,

Time evolution of system 38 12/28/2014

mttUnemttUn s

tEtEi

I

mn

),(ˆ),(ˆ0

)(

0

0 ,

2

0

2

0 ),(ˆ),(ˆ mttUnmttUn sI .

((Remark)) When

0]ˆ,ˆ[ 0 AH and 0]ˆ,ˆ[ 0 BH ,

'''ˆ aaaA and '''ˆ bbbB ,

in general,

2

0

2

0 '),(ˆ''),(ˆ' attUbattUb sI .

Because

mns

tEtEi

mn

tHi

s

tHi

I

ammttUnnbe

aettUnnebattUb

mn

,0

)(

,

ˆ

0

ˆ

0

'),(ˆ'

'),(ˆ''),(ˆ'

0

000

_______________________________________________________________________ 22. Application of Schrödinger and Heisenberg pictures to simple harmonics

tHi

eUˆ

ˆ

. The operator in the Heisenberg picture is defined by

tHi

s

tHi

sH eAeUAUAˆˆ

ˆˆˆˆˆ ,

where H is the Hamiltonian

2202 ˆ

2

1ˆ xm

pm

H

.

Using the equation of Heisenberg picture, we obtain

Time evolution of system 39 12/28/2014

tpm

txxH

sinˆ1

cosˆˆ ,

and

txmtppH sinˆcosˆˆ . The matrix of x and p are given by

04000

40300

03020

00201

00010

2

x ,

and

04000

40300

03020

00201

00010

2ˆ 0

i

mp ,

((Discussion)) What are the expectation values )(ˆ)( txt and )(ˆ)( tpt ?

tpm

tx

tpm

tx

xtxt H

sin)0(ˆ)0(1

cos)0(ˆ)0(

)0(sinˆ1

cosˆ)0(

)0(ˆ)0()(ˆ)(

Time evolution of system 40 12/28/2014

txmtp

txmtp

ptpt H

sin)0(ˆ)0(cos)0(ˆ)0(

)0(sinˆcosˆ)0(

)0(ˆ)0()(ˆ)(

Suppose that

(1) 21206

1)0( .

we can calculate the matrix elements )0(ˆ)0( x and )0(ˆ)0( p as follows.

)21(3

2

2

1

6

16

26

1

020

201

010

2

1

6

1

6

2

6

1)0(ˆ)0(

x

0

6

16

26

1

020

201

010

26

1

6

2

6

1)0(ˆ)0( 0

i

mp

,

(2) 102

1)0( ,

2

1

2

12

1

01

10

2

1

2

1

2

1)0(ˆ)0(

x ,

0

2

12

1

01

10

2

1

2

1

2

1)0(ˆ)0(

p ,

Time evolution of system 41 12/28/2014

ttxt

cos2

1)(ˆ)( ,

and

tm

tpt sin

2)(ˆ)( .

((Another method, Schrödinger picture))

/

/

//

1

0

10

2

1

102

1

102

1)(

tiE

tiE

tiEtiE

tHi

e

e

ee

et

// 10

2

1)( tiEtiEet ,

tee

e

ee

e

eetxt

titi

tiE

tiEtiEtiE

tiE

tiEtiEtiE

0

/

///

/

///

2

cos2

1)(

2

1

2

1

2

1

2

1

01

10

2

1

2

1)(ˆ)(

00

0

1

10

1

0

10

________________________________________________________________________ 23. Example-1

A spin 1/2 particles in a eigenstate of Sx, with eigenvalue 2/ at time t = 0. At that time it is placed in a magnetic field of magnitude B pointing in the z direction, in which it is allowed to precess for a time T. At that instant, the magnetic field is rotated very rapidly, so that it is now points in the y direction. After another time interval T, a measurement of Sx is carried. What is the probability that the value 2/ will be found? ((Solution)) The spin has a spin magnetic moment.

Time evolution of system 42 12/28/2014

σσSμ ˆˆ2

2ˆ2ˆ B

BB

.

The spin Hamiltonian in the presence of the magnetic field B,

nσnσnσBσBμ

ˆ

2

2

2ˆˆˆ

0

mc

eB

mc

BeH B ,

where n is the unit vector along the direction of B, and 0 is the Larmor angular

frequency. Note that the period 0T is expressed by 0

0

2

T

At t = 0, we have xt 0( .

For 0≤t≤T, the magnetic field is applied along the z direction.

zH ˆ2

1ˆ0

we have

)0()ˆ2

exp()0()ˆ

exp()( 0 tti

tHit

t z

,

and

xT

TRx

T

Tit

TiTt zzz )2(ˆ)ˆexp()0()ˆ

2exp()(

00

0 .

where )(ˆ zR is the rotation operator around the z axis by the angle . For T≤t≤2T, the magnetic field is applied along the y direction.

yH ˆ2

1ˆ0

we have

)()ˆ2

)(exp(

)()ˆ)(

exp()(

0 TtTti

TtHTti

t

y

Time evolution of system 43 12/28/2014

xT

TR

T

TR

TtT

Ti

TtTi

Tt

zy

y

y

)2(ˆ)2(ˆ

)()ˆexp(

)()ˆ2

exp()2(

00

0

0

Now we calculate

xRRx

xT

TR

T

TRxTtx

zy

zy

)(ˆ)(ˆ

)2(ˆ)2(ˆ)2(00

where

0

2T

T .

Using the formula

)2

sin()ˆ(1)2

cos()ˆ2

exp()(ˆ nnn iiR ,

2

2

0

0)2

sin(ˆ1)2

cos()(ˆ

i

i

zz

e

eiR ,

2cos

2sin

2sin

2cos

)2

sin(ˆ1)2

cos()(ˆ

yy iR .

Note that

1

1

2

1x

Time evolution of system 44 12/28/2014

2

12

1

0

0

2cos

2sin

2sin

2cos

2

1

2

1)2(

2

2

i

i

e

eTtx

or

)2cos2(4

1)2( i

iTtx

Then the probability is given by

)]2(cos1[2

1]cos1[

2

1)2cos2(

4

1)2(

0

222

0 T

Ti

i

T

TP

24. Example-2

A particle with intrinsic spin one is placed in a constant external magnetic field B0 in

the x direction. The initial spin state of the particle is 1,11,1)0( ml , that is,

a state with Sz . Take the spin Hamiltonian to be

ˆ H 0ˆ J x ,

and determine the probability P(t) that the particle is in the state 1,1 at time t. Make a

plot of P(t) as a function of time t (0≤0t≤2π). Hint: x

1,1 , x

0,1 , and x

1,1 are the

eigenket of ˆ H . ((Solution))

zxJt

itHi

t 1,1)ˆexp()0()ˆexp()( 0

For simplicity, hereaftre we use

.1,11,1 z

Noting that

xxx1,1

2

10,1

2

11,1

2

11,1

we get

Time evolution of system 45 12/28/2014

xxx

xxxx

x

titi

Jt

i

Jt

it

1,1)exp(2

10,1

2

11,1)exp(

2

1

]1,12

10,1

2

11,1

2

1)[ˆexp(

1,1)ˆexp()(

00

0

0

The probability P(t) is given by

2

00

21,11,1)exp(

2

10,11,1

2

11,11,1)exp(

2

1)(1,1)(

xxxtitittP

Then we have

2sin)cos1(

4

1

)exp(4

1

2

1)exp(

4

1

)(1,1)(

0420

2

00

2

tt

titi

ttP

0 p4

p2

3 p4

p5 p4

3 p2

7 p4

2 p

w0t

0.2

0.4

0.6

0.8

1.0

Pt

((Note))

Time evolution of system 46 12/28/2014

xxxxU 1,1

2

10,1

2

11,1

2

1

2

12

12

1

0

0

1

2

1

2

1

2

12

10

2

12

1

2

1

2

1

1,1ˆ1,1

0

0

1

1,1z

,

0

1

0

0,1z

,

1

0

0

1,1z

1

2

1

2

11,1

x,

1

0

1

2

10,1

x,

1

2

1

2

11,1

x

with the unitary operator,

2

1

2

1

2

12

10

2

12

1

2

1

2

1

ˆxU ,

2

1

2

1

2

12

10

2

12

1

2

1

2

1

ˆxU

25. Example-3

Let |1> and |2> be eigenstates of a Hermitian operator ˆ A with eigenvalues a1 and a2, respectively (a1 ≠ a2). The Hamiltonian operator is given by

H = |1><2| + |2><1| or

xH

ˆ

0

where is just a real number.

Time evolution of system 47 12/28/2014

(a) Clearly, |1> and |2> are not eigenstate of the Hamiltonian. Write down the eigenstates of the Hamiltonian. What are their energy eigenvalues?

(b) Suppose that the system is known to be in the state |2> at t = 0. Write down the state vector at t>0.

(c) What is the probability for finding the system in |1> for t>0 if the system is known to be in state |2> at t = 0?

((Solution)) (a) Eigenvalue problem

xxxH

xxxH

x

x

ˆˆ

ˆˆ

under the basis of { 1 , 2 }, where

]21[2

1

1

1

2

1

x , for E1 = ,

]21[2

1

1

1

2

1

x , for E2 = -,

(b)

][2

1

])[ˆexp(2

1

2)ˆexp()(

21

xexe

xxtHi

tHi

t

tEi

tEi

or

)]21(2

1()21(

2

1[

2

1)(

21

tE

itE

i

eet ,

or

Time evolution of system 48 12/28/2014

2)(2

11)(

2

1

)]21()21([2

1)(

2121

21

tEi

tEi

tEi

tEi

tEi

tEi

eeee

eet

(c)

]2[4

1

))((4

1)(1)(

)()(

2

1212

2121

tEEi

tEEi

tEi

tEi

tEi

tEi

ee

eeeettP

or

tEEtEEtP )(

2

1sin]})(

1cos[22{

4

1)( 12

212

.

26. Example-4

Consider a simple harmonic oscillator in the superposition state. Given that at t = 0 the particle is in a state given by

102

1)0( ,

where n is the eigenket of a one-dimensional harmonic oscillator with a mass m and an

angular frequency 0: nEnH nˆ with 0)2

1( nEn .

0 m

(a) Calculate

)0()ˆexp()( ttHi

t

.

(b) Calculate the expectation value defined by

)0(ˆ)0()(ˆ)( Hxtxt ,

)0(ˆ)0()(ˆ)( 22 Hxtxt .

Hx is the operator in the Heisenberg picture

Time evolution of system 49 12/28/2014

tpm

txxH 00

0 sinˆ1

cosˆˆ

.

04000

40300

03020

00201

00010

2

x ,

04000

40300

03020

00201

00010

2ˆ 0

i

mp

((Heisenberg picture)) Simple harmonics

tHi

eUˆ

ˆ

. The operator in the Heisenberg picture is defined by

tHi

s

tHi

sH eAeUAUAˆˆ

ˆˆˆˆˆ ,

where H is the Hamiltonian

2202 ˆ

2

1ˆ xm

pm

H

.

Using the equation of Heisenberg picture, we obtain

tpm

txxH 00 sinˆ1

cosˆˆ

,

and

txmtppH 00 sinˆcosˆˆ .

Time evolution of system 50 12/28/2014

What are the expectation values )(ˆ)( txt and )(ˆ)( tpt ?

tpm

tx

tpm

tx

xtxt H

00

0

00

0

sin)0(ˆ)0(1

cos)0(ˆ)0(

)0(sinˆ1

cosˆ)0(

)0(ˆ)0()(ˆ)(

txmtp

txmtp

ptpt H

000

000

sin)0(ˆ)0(cos)0(ˆ)0(

)0(sinˆcosˆ)0(

)0(ˆ)0()(ˆ)(

At t = 0,

102

1)0( .

The average values of x and p at t = 0 is obtained as

2

1

2

12

1

01

10

2

1

2

1

2

1)0(ˆ)0(

x ,

and

0

2

12

1

01

10

2

1

2

1

2

1)0(ˆ)0(

p .

The average values of x and p at the time t is obtained as

ttxt 0cos2

1)(ˆ)(

.

and

tm

tpt 00 sin

2)(ˆ)(

.

Time evolution of system 51 12/28/2014

((Schrödinger picture))

In this picture )(t is obtained as

/

////ˆ

1

0

10

2

110

2

110

2

1)(

tiE

tiEtiEtiEtHi

e

eeeet .

Since

// 10

2

1)( tiEtiEet ,

we have

tee

e

ee

e

eetxt

titi

tiE

tiEtiEtiE

tiE

tiEtiEtiE

0

/

///

/

///

2

cos2

1)(

2

1

2

1

2

1

2

1

01

10

2

1

2

1)(ˆ)(

00

0

1

10

1

0

10

tm

eei

m

e

ee

i

m

e

ee

i

mtpt

titi

tiE

tiEtiEtiE

tiE

tiEtiEtiE

00

0

/

///0

/

///0

2

sin2

)(22

1

22

1

01

10

22

1)(ˆ)(

00

0

1

10

1

0

10

________________________________________________________________________ 27. Example-5: Cohen-Tannoudji (4-2) Consider a spin 1/2 particle. a. At time t = 0, we measure Sy and find 2/ . What is the state vector )0(

immediately after the measurement? b. Immediately after this measurement, we apply a uniform time-dependent field

parallel to the z axis. The Hamiltonian operator of the spin )(ˆ tH is then written:

Time evolution of system 52 12/28/2014

zSttH ˆ)()(ˆ0 .

Assume that )(0 t is zero for t<0 and t>T and increases linearly from 0 to 0

when Tt 0 (T is a given parameter whose dimensions are those of time). Show that at time t the state vector can be written as

][2

1)( )()( ziezet titi ,

where )(t is a real function of t.

c. At a time t = >T. we measure Sy. What results can we find, and with what probabilities? Determine the relation which must exist between 0 and T in order for us to be sure of the result. Give the physical interpretation.

((Solution)) (a)

][2

1)0( zizyt .

(b)

zSttH ˆ)()(ˆ0 .

Schrodinger equation

)(ˆ)()()(ˆ)( 0 tStttHtt

i z

.

Suppose that

)0()(ˆ)( ttUt .

)(ˆ tU satisfies the differential equation

)(ˆˆ)()(ˆ)(ˆ)(ˆ tUSttUtHtUt

i z

.

The solution is

)')'(ˆexp()(ˆ0t

dttHi

tU

.

Time evolution of system 53 12/28/2014

)(ˆ tH is time-dependent but )(ˆ tH 's at different times commute.

]ˆ)(1

exp[]')'(1ˆexp[)(ˆ

0

0

0 z

t

z StidttSitU

,

where

t

dttt0

00 ')'()( .

Then we get

][2

1

][2

1

]][ˆ)(1

exp[2

1

]ˆ)(1

exp[

)0(]ˆ)(1

exp[)(

)()(

)(2

1)(

2

1

0

0

0

00

zieze

zieze

zizSti

ySti

tStit

titi

titi

z

z

z

where

t

dtttt0

00 ')'(2

1)(

2

1)( .

')'( 00 t

Tt

for Tt '0 ,

0)'(0 t . for t'<0 and t'>T.

(c) At Tt ,

TdttT

dtttTT

0

0

0

0

0 4

1''

2

1')'(

2

1)( .

Time evolution of system 54 12/28/2014

Now we measure yS at t.

)()(

)(

)(

2

1

2

1

2

2

1

12

1)( titi

ti

ti

eee

i

eity

.

The probability

))]2

cos(1[2

1))](2cos(1[

2

1)( 02 T

ttyP .

)]2

cos(1[2

1))](2cos(1[

2

1)( 02 T

ttyP .

When 20 T , 0P , 1P .

When 40 T , 1P , 0P .

_______________________________________________________________________ REFERENCES 1. J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics, second edition

(Addison-Wesley, New York, 2011). ISBN 978-0-8053-8291-4 2. John S. Townsend, A Modern Approach to Quantum Mechanics, second edition

(University Science Books, 2012). ISBN 978-1-891389-78-8 3. Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë, Quantum Mechanics

volume I and volume II (John Wiley & Sons, New York, 1977). 4. Ramamurti Shankar, Principles of Quantum Mechanics, second edition (Springer,

New York, 1994). ISBN 0-306-44790-8. 5. Schaum's Outline of Theory and Problems of Quantum Mechanics, Yoav Peleg,

Reuven, and Elyahu Zaarur (McGraw-Hill, New York, 1998). ISBN 0-07-054018-7

6. Nouredine Zettili, Quantum Mechanics, Concepts and Applications, 2nd edition (John Wiley & Sons, New York, 2009). ISBN 0-471 48943 3.

________________________________________________________________________ APPENDIX-I Calculation of exponential of matrix A.1 Example-1

Time evolution of system 55 12/28/2014

Calculate )2

ˆexp(

Ai,

where

02

0

20

2

02

0

ˆ

i

ii

i

A ,

in the basis of 3,2,1 .

We use the Mathematica to calculate the eigenvaluse and eigenvectors of A .

Eigensystem[ A ] The eigenvalues and eigenkets are obtained as

2

12

2

1

1ˆ1

iU for the eigenvalue = 1

2

102

1

2ˆ0 U for the eigenvalue = 0

2

12

2

1

3ˆ1

iU for the eigenvalue = -1

Time evolution of system 56 12/28/2014

2

1

2

1

2

12

02

2

1

2

1

2

1

ˆ iiU ,

2

1

22

12

10

2

12

1

22

1

ˆ

i

i

U .

The calculation is as follows.

2

1

2

1

2

12

10

2

12

1

2

1

2

1

ˆ

00

010

00ˆ

ˆ33)2

exp(22)02

exp(11)2

[exp(ˆ

)2

exp()02

exp()2

exp(

))(2

ˆexp()

2

ˆexp(

2/

2/

332211

110011

U

e

e

U

Uiii

U

iii

AiAi

i

i

since

11 1 A , 22 0 A , 33 )1( A .

The above result can be also obtained using the Mathematica. ((Mathematica))

Time evolution of system 57 12/28/2014

Calculate the exponent of the Matrix

Clear"Global`";

exp_ : exp . Complexre_, im_ Complexre, im;

A 1

20, , 0, , 0, , 0, , 0;

eq1 EigensystemA1, 1, 0, 1, 2 , 1, 1, 2 , 1, 1, 0, 1

a1 eq11, 2; a2 eq11, 3; a3 eq11, 1;

1 Normalizeeq12, 21

2,

2,

12

2 Normalizeeq12, 3 1

2, 0,

1

2

3 Normalizeeq12, 11

2,

2,

12

eq2 1. 2, 2. 3 , 3. 2 Simplify

0, 0, 0

UT 1, 2, 3; U TransposeUT; UH UT;

A1 UH.A.U

1, 0, 0, 0, 0, 0, 0, 0, 1

R Exp a1

2, 0, 0, 0, Exp a2

2, 0, 0, 0, Exp a3

2

Simplify

, 0, 0, 0, 1, 0, 0, 0,

Time evolution of system 58 12/28/2014

A1 U.R.UH Simplify; A1 MatrixForm

12

12

12

12

0 12

12

12

12

Direct calculation for comparison

A2 MatrixExp A

2 Simplify; A2 MatrixForm

12

12

12

12

0 12

12

12

12

________________________________________________________________________ A.2 Example-2

Calculate the matrix )ˆ2

exp( x

i

with

01

10ˆ x .

Eigensystem[ x ]

2

12

1

1 for the eigenvalue = 1

2

12

1

1 for the eigenvalue = -1

The unitary operator is

Time evolution of system 59 12/28/2014

2

1

2

12

1

2

1

U ,

2

1

2

12

1

2

1

U ,

2

2

0

0)ˆˆˆ2

exp(ˆ)ˆ2

exp(ˆ

i

i

xx

e

eUUi

Ui

U ,

or

)

2cos()

2sin(

)2

sin()2

cos(ˆ

0

0ˆ)ˆ2

exp(2

2

i

iU

e

eUi

i

i

x .

((Mathematica)) Example-2

Time evolution of system 60 12/28/2014

Clear"Global`";

exp_ : exp . Complexre_, im_ Complexre, im;

x 0, 1, 1, 0;

eq1 Eigensystemx1, 1, 1, 1, 1, 1

a1 eq11, 2; a2 eq11, 1; 1 Normalizeeq12, 2;

2 Normalizeeq12, 1;

1.2

0

UT 1, 2; U TransposeUT; UH UT;

W1 UH.x.U

1, 0, 0, 1A1 Expa1

2, 0, 0, Expa2

2 Simplify;

A1 MatrixForm

2 0

0

2

A2 U.A1.UH ExpToTrig Simplify; A2 MatrixForm

Cos 2 Sin

2

Sin 2 Cos

2

Direct cxalculation for comparison

A3 MatrixExp

2x Simplify; A3 MatrixForm

Cos 2 Sin

2

Sin 2 Cos

2