Department of Physics, SUNY at Binghamton N.D. Mermin...

70
1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton Binghamton, NY (Date: November 27, 2014) N.D. Mermin, Quantum Computer Science An Introduction (Cambridge, 2007). 1. Definition of the operator n ˆ We define the operator n ˆ from the eigenvalue problem x x x n ˆ , with 0 0 0 0 ˆ n , 1 1 1 1 ˆ n where x = 0 and 1. n ˆ is the projection operator and is defined by 1 1 ˆ n . The matrix of n ˆ under the basis of { 0 , 1 } is given by 1 0 0 0 ˆ n The operator n ˆ is the projection operator on the state . 1 2. Definition of the operator n m ˆ 1 ˆ ˆ We define the operator m ˆ as n m ˆ 1 ˆ ˆ where 1 ˆ is the identity matrix of 2x2, 1 0 0 1 1 ˆ For simplicity, here, we use m ˆ instead of n ~ . We note that

Transcript of Department of Physics, SUNY at Binghamton N.D. Mermin...

Page 1: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

1

Operator method in Quantum Computing Masatsugu Sei Suzuki

Department of Physics, SUNY at Binghamton Binghamton, NY

(Date: November 27, 2014) N.D. Mermin, Quantum Computer Science An Introduction (Cambridge, 2007). 1. Definition of the operator n

We define the operator n from the eigenvalue problem

xxxn ˆ ,

with

0000ˆ n , 1111ˆ n

where x = 0 and 1. n is the projection operator and is defined by

11ˆ n .

The matrix of n under the basis of { 0 , 1 } is given by

10

00n

The operator n is the projection operator on the state . 1

2. Definition of the operator nm ˆ1ˆ We define the operator m as

nm ˆ1ˆ

where 1 is the identity matrix of 2x2,

10

011

For simplicity, here, we use m instead of n~ . We note that

Page 2: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

2

xxxxxxnxm )1()ˆ1(ˆ

Thus we have

00ˆ m , 0101ˆ m

The matrix of m under the basis of { 0 , 1 } is given by

00

01m

The operator n is the projection operator on the state . 0

00ˆ m .

3. Properties of n and m

nn ˆˆ2

mm ˆˆ 2

0ˆˆˆˆ nmmn

1ˆˆ nm 4. Pauli matrix

01

10ˆˆ

xX ,

0

0ˆˆ

i

iY y ,

10

01ˆˆ

zZ

mXXn ˆˆˆˆ , nXXm ˆˆˆˆ

1ˆˆˆ 222 ZYX

XZZX ˆˆˆˆ

Page 3: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

3

)ˆ1(2

1ˆ Zn , )ˆ1(

2

1ˆ Zm , mnZ ˆˆˆ

XZiZXiY ˆˆˆˆˆ , YXiXYiZ ˆˆˆˆˆ , ZYiYZiX ˆˆˆˆˆ 5. Hadamard operator

)ˆˆ(2

1

11

11

2

1ˆ ZXH

1)ˆˆˆˆˆˆ(2

1)ˆˆ)(ˆˆ(

2

1ˆ 222 ZXZZXXZXZXH

ZHXH ˆˆˆˆ , XHZH ˆˆˆˆ . Note that

Z

XZZXZX

ZXZZXZX

ZXZX

ZXXZXHXH

ˆ

)ˆˆˆˆˆˆ(2

1

)ˆˆˆˆˆˆ(2

1

)ˆˆ1)(ˆˆ(2

1

)ˆˆ(ˆ)ˆˆ(2

1ˆˆˆ

22

2

X

XZZX

XZZXZX

XZZX

ZXZZXHZH

ˆ

)ˆˆˆˆ(2

1

)ˆˆˆˆˆˆ(2

1

)ˆˆ1)(ˆˆ(2

1

)ˆˆ(ˆ)ˆˆ(2

1ˆˆˆ

22

)ˆˆˆˆˆˆˆˆ(2

1)ˆˆ()ˆˆ(

2

1ˆˆ ZZXZZXXXZXZXHH

6. Calculation of matrices by using Mathematica

Page 4: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

4

Clear "Global` " ; I2 IdentityMatrix 2 ;

n0 00 1

; m I2 n; X PauliMatrix 1 ;

Y PauliMatrix 2 ; Z PauliMatrix 3 ; 010

;

101

;

m MatrixForm

1 00 0

n MatrixForm

0 00 1

n.n n MatrixForm

0 00 0

m.m m MatrixForm

0 00 0

Page 5: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

5

n.X X.m MatrixForm

0 00 0

m.X X.n MatrixForm

0 00 0

m n MatrixForm

1 00 1

Z.X X.Z MatrixForm

0 00 0

12

I2 Z MatrixForm

0 00 1

12

X Z MatrixForm

12

12

12

12

Page 6: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

6

H11

2X Z ; H1 MatrixForm

12

12

12

12

X.X MatrixForm

1 00 1

Z.Z MatrixForm

1 00 1

X.Z Z.X MatrixForm

0 00 0

H1.H1 MatrixForm

1 00 1

H1.X.H1 Z MatrixForm

0 00 0

Page 7: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

7

H1.Z.H1 X MatrixForm

0 00 0

H1. 0 MatrixForm

12

12

H1. 1 MatrixForm

1212

f11 KroneckerProduct m, I2

KroneckerProduct n, X ;

f11 MatrixForm

1 0 0 00 1 0 00 0 0 10 0 1 0

Page 8: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

8

f1212

KroneckerProduct I2, I2 X

KroneckerProduct Z, I2 X ;

f12 MatrixForm

1 0 0 00 1 0 00 0 0 10 0 1 0

f1312

KroneckerProduct I2 Z, I2

KroneckerProduct I2 Z, X ;

f13 MatrixForm

1 0 0 00 1 0 00 0 0 10 0 1 0

S11 KroneckerProduct n, n

KroneckerProduct m, m

KroneckerProduct X.n, X.m

KroneckerProduct X.m, X.n ;

S11 MatrixForm

Page 9: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

9

1 0 0 00 0 1 00 1 0 00 0 0 1

C11 KroneckerProduct m, I2

KroneckerProduct n, X ;

C11 MatrixForm

1 0 0 00 1 0 00 0 0 10 0 1 0

Z X .Y MatrixForm

0 00 0

Y Z.X MatrixForm

0 00 0

X Y.Z MatrixForm

0 00 0

Page 10: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

10

7. The CNOT gate with CNOTU

The CNOT gate is defined by

KroneckerProduct H1, H1 MatrixForm

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

U1u11 u12u21 u22

;

KroneckerProduct I2, U1 MatrixForm

u11 u12 0 0u21 u22 0 0

0 0 u11 u120 0 u21 u22

h1

KroneckerProduct H1, H1 .KroneckerProduct X, X

MatrixForm

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

Page 11: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

11

)ˆˆˆ11ˆ11(2

1

ˆ)ˆ1(2

11)ˆ1(

2

1

ˆˆ1ˆˆ

XZXZ

XZZ

XnmUCNOT

with

1ˆ 2 CNOTU

)1ˆˆ1ˆ111ˆ111(2

1

1ˆ)21(ˆ12

XZXZ

CUCNOT

)ˆ1ˆˆ1111ˆ111(2

1)31(ˆ XZXZUCNOT

((Mathematica))

Clear "Global` " ;

I2 IdentityMatrix 2 ;

X PauliMatrix 1 ; Y PauliMatrix 2 ;

Z PauliMatrix 3 ;

UCNOT12

KroneckerProduct I2, I2

KroneckerProduct Z, I2

KroneckerProduct I2, X

KroneckerProduct Z, X ;

UCNOT MatrixForm

1 0 0 00 1 0 00 0 0 10 0 1 0

Page 12: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

12

8. Swap (exchange) operator

UCNOT1212

KroneckerProduct I2, I2, I2

KroneckerProduct Z, I2, I2

KroneckerProduct I2, X, I2

KroneckerProduct Z, X, I2 ;

UCNOT12 MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 10 0 0 0 1 0 0 00 0 0 0 0 1 0 0

UCNOT1312

KroneckerProduct I2, I2, I2

KroneckerProduct Z, I2, I2

KroneckerProduct I2, I2, X

KroneckerProduct Z, I2, X

MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 0 1 0 00 0 0 0 1 0 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 0

Page 13: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

swapG

and 2.

G

Then the ________9. T

Only if a

a

p is called a

1(2

1

1(2

1

1(2

1

ˆ[4

1

1(4

1

ˆˆˆ

X

nnGSWAP

swap opera

__________Toffoli gate

1ba

aa ' ,

swap (excha

ˆ1

)ˆˆ1

)ˆˆ1

[)]ˆ1(ˆ

ˆ1()ˆ

ˆˆˆ

XX

ZZ

ZZ

XZX

ZZ

mmn

ator becomes

___________

bb '

ange) operato

ˆˆˆ

ˆˆ(4

1)

ˆˆ(4

1)

)]ˆ1(

)ˆ1(4

1)ˆ

ˆˆ()ˆˆ(

ZYYX

YiX

ZXX

ZX

ZZ

mXnX

s equivalent t

__________

13

or, which sim

)ˆˆ

)ˆ()ˆ

ˆ()ˆ

)ˆ1()

()ˆˆ()

ZZ

YiXY

XXZ

Z

mX

to the Dirac

___________

mply interch

ˆˆ(4

1)

ˆ(4

1)ˆˆ

)]ˆ1(ˆ[4

1

)ˆˆ(

YiX

XZX

ZX

nX

exchange sp

__________

hanges the st

ˆ()ˆ

()ˆˆ

ˆ1([]

YiXY

XZX

ZX

pin operator

___________

tates of qubi

)ˆˆ

)]

Y

ZX

Z

_________

ts 1

Page 14: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

14

cUc ˆ'

Other wise

aa ' , bb '

cc '

Truth table

a b c a’ b’ c’ 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1

1 1 0 1 1 100ˆ2111 uuU

1 1 1 1 1 101ˆ2212 uuU

U

I

I

I

000

000

000

000

000000

000000

00100000

00010000

00001000

00000100

00000010

00000001

)](ˆ

2221

2211

uu

uu

UGToffli

10. Example: equivalent quantum circuits

We show that a two-qubit controlled gate canted using a combination of one qubit controlled gate as

1323ˆ)1ˆ])([ˆ1)(1ˆ(ˆ][ˆ

VCNOTCNOTVToffoli GGVGGGUG .

Page 15: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

This can

G

which me

The left h

G

where

be also desc

ˆ][ˆToffoli GUG

eans that GT

hand-side is

][ˆ UGToffoli

cribed by

13ˆ(ˆ

CNOTV GG

][UToffoli is a

the Toffoli g

0000

0000

0000

0000

1000

0100

0010

0001

(ˆ1)[1 VG

universal ga

gate with the

2

1

00

00

010

001

000

000

000

000

U

U

15

ˆ)]( CNOTG

ate (reversibl

e matrix U ,

221

121

0

0

0

0

0

0

U

U

23ˆ)1 VG

le).

,

Page 16: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

16

2221

1211ˆUU

UUU

Suppose that the matrix U is expressed by 2ˆˆ VU , where V is the unitary operator. The CNOT operator is given by

X

I

0

0

0100

1000

0010

0001

ˆCNOTG ,

1ˆ CNOTG is obtained as

0ˆ00

ˆ000

00ˆ0

000ˆ

10

01ˆ

2

2

2

2

I

I

I

I

GCNOT X

I

The control V gate is given by

V

I

0

0][ˆ VG ,.

V

I

0

0][ˆ VG

Then we have

V

I

V

I

000

000

000

000

000000

000000

00100000

00010000

000000

000000

00000010

00000001

][ˆ1ˆ

2221

1211

2221

1211

23

VV

VV

VV

VV

VUGV

13ˆ

VC is the matrix obtained from the matrix ][ˆ1 VG by the appropriate interchange of row and

column,

Page 17: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

17

V

V

I

I

000

000

000

000

000000

000000

000000

000000

00001000

00000100

00000010

00000001

][ˆ

2221

1211

2221

121113

VV

VV

VV

VVVGV

((Mathematica))

Page 18: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

18

Clear "Global` " ; I2 IdentityMatrix 2 ; CV

1 0 0 00 1 0 00 0 v11 v120 0 v21 v22

;

CVP

1 0 0 00 1 0 00 0 v11c v21c0 0 v12c v22c

;

V1v11 v12v21 v22

;

CUV13 A : Module A1, U, U1, U11, U12 , A1 A;

U KroneckerProduct I2, A1 ;

U1 U All, 1 , U All, 2 , U All, 5 , U All, 6 ,

U All, 3 , U All, 4 , U All, 7 , U All, 8 ;

U11 Transpose U1 ;

U12 U11 1 , U11 2 , U11 5 , U11 6 , U11 3 ,

U11 4 , U11 7 , U11 8 ;

CV13 CUV13 CV ; CV13 MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 v11 v12 0 00 0 0 0 v21 v22 0 00 0 0 0 0 0 v11 v120 0 0 0 0 0 v21 v22

Page 19: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

19

UCNOT

1 0 0 00 1 0 00 0 0 10 0 1 0

; UCNOTI2 KroneckerProduct UCNOT, I2 ;

UCNOTI2 MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 10 0 0 0 1 0 0 00 0 0 0 0 1 0 0

CV23 KroneckerProduct I2, CV ;

CV23 MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 v11 v12 0 0 0 00 0 v21 v22 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 v11 v120 0 0 0 0 0 v21 v22

Page 20: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

20

CVP23 KroneckerProduct I2, CVP ; CVP23 MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 v11c v21c 0 0 0 00 0 v12c v22c 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 v11c v21c0 0 0 0 0 0 v12c v22c

K1 CV23.UCNOTI2.CVP23.UCNOTI2.CV13 FullSimplify;

vvcv11 v12v21 v22

.v11c v21cv12c v22c

;

vcvv11c v21cv12c v22c

.v11 v12v21 v22

;

U1 V1.V1 Simplify;

rule1 vvc 1, 1 1, vvc 1, 2 0, vvc 2, 1 0,

vvc 2, 2 1, vcv 1, 1 1, vcv 1, 2 0, vcv 2, 1 0,

vcv 2, 2 1 ;

rule2 U1 1, 1 U11, U1 1, 2 U12, U1 2, 1 U21,

U1 2, 2 U22 ;

K11 K1 . rule1; K12 K11 . rule2; K12 MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 U11 U120 0 0 0 0 0 U21 U22

Page 21: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

________

________10. E

We s

ˆ1( GCNO

where

L1 C

L11

1 00 10 00 00 00 00 00 0

__________

__________Equivalent c

how the equ

ˆ)(GCNOTOT

CV13.UC

L1 .

0 0 00 0 01 0 00 1 00 0 10 0 00 0 00 0 0

___________

___________circuits uivalence bet

ˆ1)(1 GCNOT

NOTI2.C

rule1;

0 00 00 00 00 01 00 U110 U21

_______

__________

tween two qu

00

00

00

00

00

00

10

01

ˆ() GCNOTT

CVP23.U

L12 L1

000000

U12U22

21

_________

uantum circu

0100

1000

0000

0000

0010

0001

0000

0000

(ˆ)1 13 CNOC

UCNOTI2.

11 . r

uits as show

000

00

010

100

000

000

000

000

)OT

.CV23

rule2; L

wn below,

FullS

L12 M

Simplify

MatrixFo

y;

orm

Page 22: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

22

00100000

00010000

10000000

01000000

00001000

00000100

00000010

00000001

1ˆCNOTG

01000000

10000000

00100000

00010000

00000100

00001000

00000010

00000001

ˆ1 CNOTG

01000000

10000000

00010000

00100000

00001000

00000100

00000010

00000001

ˆ13CNOTG

)ˆˆˆ11ˆ11(2

1

ˆ)ˆ1(2

11)ˆ1(

2

1

ˆˆ1ˆ][ˆ

VZVZ

VZZ

VnmVG

Page 23: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

23

2221

2221

1211

121112

000000

000000

000000

000000

00001000

00000100

00000010

00000001

1][ˆ

VV

VV

VV

VVVG

V

I

V

I

000

000

000

000

000000

000000

00100000

00010000

000000

000000

00000010

00000001

][ˆ1][ˆ

2

2

2221

1211

2221

1211

23

VV

VV

VV

VV

VGVG

V

V

I

I

000

000

000

000

000000

000000

000000

000000

00001000

00000100

00000010

00000001

)ˆ1ˆˆ1111ˆ111(2

1][ˆ

2

2

2221

1211

2221

1211

13

VV

VV

VV

VV

VZVZVG

((Mathematica))

Page 24: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

24

Clear "Global` " ; I2 IdentityMatrix 2 ;

X PauliMatrix 1 ; Y PauliMatrix 2 ;

Z PauliMatrix 3 ;

VV11 V12V21 V22

;

UV12

KroneckerProduct I2, I2

KroneckerProduct Z, I2

KroneckerProduct I2, V

KroneckerProduct Z, V ;

UV MatrixForm

1 0 0 00 1 0 00 0 V11 V120 0 V21 V22

C12V KroneckerProduct UV, I2 ;

C12V MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 V11 0 V12 00 0 0 0 0 V11 0 V120 0 0 0 V21 0 V22 00 0 0 0 0 V21 0 V22

Page 25: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

25

_____________________________________________________________________________ 11 Toffoli gate:

The Toffoli gate is given by

C23V KroneckerProduct I2, UV ;

C23V MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 V11 V12 0 0 0 00 0 V21 V22 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 V11 V120 0 0 0 0 0 V21 V22

C13V12

KroneckerProduct I2, I2, I2

KroneckerProduct Z, I2, I2

KroneckerProduct I2, I2, V

KroneckerProduct Z, I2, V ;

C13V MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 V11 V12 0 00 0 0 0 V21 V22 0 00 0 0 0 0 0 V11 V120 0 0 0 0 0 V21 V22

Page 26: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

26

X

I

I

I

000

000

000

000

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

ˆˆˆ1ˆˆ11ˆ

)ˆˆ1ˆ(ˆ11ˆ

ˆˆ11ˆˆ

Xnnmnm

Xnmnm

GnmG CNOTtoffoli

where

XnmGCNOTˆˆ1ˆˆ

((Mathematica))

Page 27: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

27

12. Fredkin gate

The Fredkin gate is given by

Clear "Global` " ; I2 IdentityMatrix 2 ; X PauliMatrix 1 ;

Y PauliMatrix 2 ; Z PauliMatrix 3 ; n0 00 1

;

m1 00 0

;

UCNOT

1 0 0 00 1 0 00 0 0 10 0 1 0

;

TOF1 KroneckerProduct m, I2, I2

KroneckerProduct n, UCNOT ;

TOF1 MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 0 10 0 0 0 0 0 1 0

Page 28: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

28

10000000

01000000

00001000

00010000

00100000

00000100

00000010

00000001

ˆ)ˆˆˆˆˆ11(2

1ˆ11

ˆˆˆ11ˆ

nZZYYXXm

nUmG SWAPFredkin

where SWAPG is the SWAP operator,

1000

0010

0100

0001

)ˆˆˆˆˆ11(2

1ˆ ZZYYXXGSWAP

((Mathematica))

Page 29: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

29

13. Controlled V gate

Clear "Global` " ; X PauliMatrix 1 ; Y PauliMatrix 2 ;

Z PauliMatrix 3 ; n0 00 1

; m1 00 0

;

I2 IdentityMatrix 2 ;

SWAP

1 0 0 00 0 1 00 1 0 00 0 0 1

;

Fredkin

KroneckerProduct I2, I2, m

KroneckerProduct SWAP, n Simplify;

Fredkin MatrixForm

1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 1 0 0 00 0 0 1 0 0 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1

SWAP12

KroneckerProduct I2, I2 KroneckerProduct X, X

KroneckerProduct Y, Y KroneckerProduct Z, Z ;

SWAP MatrixForm

1 0 0 00 0 1 00 1 0 00 0 0 1

Page 30: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

30

2221

1211

00

00

0010

0001

)ˆˆˆ11ˆ11(2

1][ˆ

VV

VVVZVZVC

2221

1211

00

0100

00

0001

)ˆˆ1ˆˆ111(2

1][ˆ

VV

VVZVVZVR

Page 31: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

31

____________________________________________________________________________ 14. Controlled-U gate

U

I

0

0

00

00

0010

0001

)ˆˆˆ11ˆ11(2

1][ˆ

2221

1211

UU

UU

UZUZUC

Clear "Global` " ; I2 IdentityMatrix 2 ;

X PauliMatrix 1 ; Y PauliMatrix 2 ; Z PauliMatrix 3 ;

VV11 V12V21 V22

;

UV12

KroneckerProduct I2, I2 KroneckerProduct Z, I2

KroneckerProduct I2, V KroneckerProduct Z, V ;

RUV12

KroneckerProduct I2, I2 KroneckerProduct I2, Z

KroneckerProduct V, I2 KroneckerProduct V, Z ;

UV MatrixForm

1 0 0 00 1 0 00 0 V11 V120 0 V21 V22

RUV MatrixForm

1 0 0 00 V11 0 V120 0 1 00 V21 0 V22

Page 32: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

32

2221

1211

00

0100

00

0001

)ˆˆ1ˆˆ111(2

1][ˆ

UU

UUZUUZUR

)(ˆ HR

0010

0100

1000

0001

ˆCNOTR

15. Controlled-CNOT

X

I

0

0

0100

1000

0010

0001

ˆˆ1ˆˆ XnmGCNOT

16. Fredkin gate

10000000

01000000

00001000

00010000

00100000

00000100

00000010

00000001

ˆ)ˆˆˆˆˆ11(2

1ˆ11

ˆˆˆ11ˆ

nZZYYXXm

nGmG SWAPFredkin

17. Toffoli gate

Page 33: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

33

X

I

I

I

000

000

000

000

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

ˆˆˆ1ˆˆ11ˆ

)ˆˆ1ˆ(ˆ11ˆ

ˆˆ11ˆˆ

Xnnmnm

Xnmnm

GnmG CNOTtoffoli

18. R-CNOT

0010

0100

1000

0001

ˆˆˆ1ˆ nXmRCNOT .

19. Swap gate

1000

0010

0100

0001

)ˆˆˆˆˆ11(2

1

ˆˆˆˆˆˆˆˆˆˆˆˆ

ZZYYXX

mXnXnXmXnnmmGSWAP

_________________________________________________________________________

10

011 ,

01

10X ,

0

0ˆi

iY ,

10

01Z

Page 34: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

34

20. Hadamard gate:

11

11

2

1H

i

i

e

eP

0

ie

T0

01ˆ

ie

S0

01ˆ

_____________________________________________________________________________

2221

2221

1211

121112

000000

000000

000000

000000

00001000

00000100

00000010

00000001

1][ˆ][ˆ

VV

VV

VV

VVVGVGV

V

I

V

I

000

000

000

000

000000

000000

000000

000000

00001000

00000100

00000010

00000001

][ˆ1ˆ

2

2

2221

2221

1211

1211

23

VV

VV

VV

VV

VGGV

Page 35: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

35

V

V

I

I

000

000

000

000

000000

000000

000000

000000

00001000

00000100

00000010

00000001

)ˆ1ˆˆ1111ˆ111(2

2

2

2221

1211

2221

1211

13

VV

VV

VV

VV

VZVZGV

______________________________________________________________________________

10. Expression for CNOTG in terms of Pauli operators X and Z

We know that the controlled-CNOT gate can be expressed by

XnmGCNOTˆˆ1ˆˆ .

Here we consider another expressions for the controlled-CNOT gate. We start with

)10(2

1 , )10(

2

1

The projection operators are defined by

11

11

2

111

1

1

2

1P ,

11

11

2

111

1

1

2

1P

We note that

1ˆˆ PP .

The operator X can be described as

Page 36: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

36

PPX ˆˆ

01

10ˆ .

The operator Z can be expressed by

nmZ ˆˆ10

01ˆ

Note that

)ˆ1(2

1ˆ Zm , )ˆ1(

2

1ˆ Zn

since 1ˆˆ nm .

We now introduce the operator (controlled-CNOT gate), which can be generated from

0100

1000

0010

0001

ˆˆ1ˆˆ XnmGCNOT

CNOTG is equivalent to the controlled-X gate

X

I

0

0][ˆˆ XCGCNOT .

This can be derived using the Kronecker product. Since

1ˆˆ PP , XPP ˆˆˆ

we get

)ˆ1(2

1ˆ XP , )ˆ1(2

1ˆ XP

Then the controlled-CNOT operator can be rewritten as

Page 37: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

37

PZP

PnmPnm

PnPnPmPm

PPnPPmGCNOT

ˆˆˆ1

ˆ)ˆˆ(ˆ)ˆˆ(

ˆˆˆˆˆˆˆˆ

)ˆˆ(ˆ)ˆˆ(ˆˆ

or

)]ˆ1(ˆ)ˆ1(1[2

1ˆ XZXGCNOT

11. The expression of CNOTG in terms of Hadamard gate H

The Hadamard gate is defined by

)ˆˆ(2

1

11

11

2

1ˆ XZH

.

Then we get

00

11

2

1

11

11

00

01

2

1ˆˆHm .

)ˆ1(2

1ˆ11

11

2

1

00

11

11

11

2

1ˆˆˆ XPHmH

Noting that 1112 and using the property of the Kronecker product, we get

)ˆ1)(ˆ1)(ˆ1()ˆˆ1)(ˆ1()ˆˆˆ(1ˆ1 HmHHmHHmHP (1)

Similarly, we have

11

00

2

1

11

11

10

00

2

1ˆˆHn .

)ˆ1(2

1ˆ11

11

2

1

11

00

11

11

2

1ˆˆˆ XPHnH

.

Page 38: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

38

Noting that ZZ ˆ1ˆ and using the property of the Kronecker product, we get

)ˆ1)(ˆˆ)(ˆ1()ˆˆ1)(ˆˆ()ˆˆˆ(ˆˆˆ HnZHHnHZHnHZPZ (2)

From Eqs.(1) and (2), thus we have

)ˆ1)(ˆˆˆ1)(ˆ1(

)ˆ1)(ˆˆ)(ˆ1()ˆ1)(ˆ1)(ˆ1(

ˆˆˆ1ˆ

HnZmH

HnZHHmH

PZPGCNOT

which can be rewritten as

)ˆ1(ˆ)ˆ1()ˆ1(ˆ)ˆ1(ˆˆ HGHHRHGG ZZXCNOT .

since

ZZ GR ˆˆ .

12. Matrix representation of Kronecker product for two qubits

00

01m ,

10

00n , 1ˆˆ nm .

11

11

2

111

1

1

2

1P ,

11

11

2

111

1

1

2

1P

0000

0000

0010

0001

1m ,

1000

0100

0000

0000

1n ,

0000

0100

0000

0001

ˆ1 m ,

1000

0000

0010

0000

ˆ1 n ,

Page 39: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

39

0000

0000

0000

0001

ˆˆ mm ,

0000

0000

0010

0000

ˆˆ nm

0000

0100

0000

0000

ˆˆ mn ,

1000

0000

0000

0000

ˆˆ nn

0000

0000

0001

0010

ˆˆ Xm ,

0100

1000

0000

0000

ˆˆ Xn ,

0000

0001

0000

0100

ˆˆ mX ,

0010

0000

1000

0000

ˆˆ nX

0000

0000

00

00

ˆˆ 2221

1211

uu

uu

Um ,

2221

1211

00

00

0000

0000

ˆˆ

uu

uuUn

0000

00

0000

00

ˆˆ2221

1211

uu

uu

mU ,

2221

1211

00

0000

00

0000

ˆˆ

uu

uunU

0000

0010

0000

0000

ˆˆˆˆ nXmX ,

0000

0000

0100

0000

ˆˆˆˆ mXnX ,

Page 40: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

40

0000

0010

0100

0000

ˆˆˆˆˆˆˆˆ mXnXnXmX ,

0000

0000

0011

0011

2

1ˆˆ Pm ,

1100

1100

0000

0000

2

1ˆˆ Pn

0000

0000

0011

0011

2

1ˆˆ Pm ,

1100

1100

0000

0000

2

1ˆˆ Pn

13. Equivalence of quantum circuits between ZG and ZR

We show that the controlled-Z gate ZG is equivalent to the quantum circuit with ZR .

((Method-1)) The use of matrices

1000

0100

0010

0001

1000

0100

0000

0000

0000

0000

0010

0001

ˆˆ1ˆˆ ZnmGZ

Page 41: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

R

Fig. Q

((Method

G

R

00

00

10

01

00

00

00

01

ˆ1ˆ mRZ

Quantum gate

d-II) Opera

1

)ˆˆ(

1ˆ(ˆ

2

2

nm

m

m

mGZ

1

ˆ(1

ˆ1

ˆ1

ˆ1(ˆ

2

2

m

m

m

mRZ

10

01

00

00

0

0

0

0

00

01

00

00

ˆˆ nZ

es with ZG a

ation method

1)

ˆˆˆ

ˆ)(ˆˆ

n

Znm

mZn

ˆ1

ˆˆˆ

1)(ˆˆ

n

n

nmZ

nZ

100

000

001

000

and ZR .

d

ˆˆˆˆ

)ˆˆ12

nZmn

Zn

ˆˆˆˆ

)ˆˆˆ

ZmnZ

nZm

41

ˆ

)22 Z

ˆ

)22 n

Page 42: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

42

1

)ˆˆ()ˆˆ(

ˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆ

)ˆˆˆ1)(ˆˆ1ˆ(ˆˆ

nmnm

nnmnnmmm

nZZnmZnnZmmm

nZmZnmRG ZZ

1

)ˆˆ()ˆˆ(

ˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆ

)ˆˆ1ˆ)(ˆˆˆ1(ˆˆ

nmnm

nnmnnmmm

ZnnZnmZZmnmm

ZnmnZmGR ZZ

where

0ˆˆ nm , 1ˆˆ nm

mmZZm ˆˆˆˆˆ , nnZZn ˆˆˆˆ . Since

ZZZZ GRGG ˆ)ˆˆ(ˆ , RGRR ZZˆ)ˆˆ(ˆ ,

we get the relation

ZZ RG ˆˆ .

The two quantum circuits are equivalent. ______________________________________________________________________________ 14. Quantum circuits related to the controlled U-gate

(a) Quantum circuit with UnmGUˆˆ1ˆˆ .

Page 43: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig. C

(b) Q

Controlled-U

00

00

10

01

00

00

10

01

1ˆˆ mGU

Quantum cir

U gate with G

2221

1211

0

0

001

000

000

000

001

000

ˆˆ

uu

uu

Un

rcuit with R

mGU 1ˆˆ

21

11

00

00

000

000

u

u

mRU ˆ1ˆ

43

Un ˆˆ . U i

22

12

0

0

u

u

nU ˆˆ

is the 2x2 mmatrix.

Page 44: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig. Q

R

________15. Q

Fig. C

G

________

Quantum circ

21

11

0

00

0

01

ˆ1ˆ

u

u

mRU

__________Qauntum cir

Controlled-CN

0

0

0

1

0

0

0

1

ˆˆ mGCNOT

__________

cuit with RUˆ

22

12

0

01

0

00

ˆˆ

u

u

nU

___________rcuits relate

NOT with G

010

100

001

000

000

000

001

000

ˆˆ1 Xn

___________

Um ˆˆ1

__________ed to the con

mGCNOT ˆˆ

100

000

000

000

__________

44

nU ˆˆ . U is

___________ntrolled-CN

Xn ˆˆ1

0

1

0

0

___________

the 2x2 mat

__________NOT

__________

trix.

___________

___________

__________

__________

____

__

Page 45: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig. Q

G

G

________

Quantum ˆˆ

12 GG CNCNOT

0

0

0

0

0

0

0

1

ˆ

ˆˆ12

m

GG CNCNOT

__________

gate wit

ˆ1 mNOT

000

000

000

000

100

010

001

000

ˆ11

1

n

NOT

___________

th Contro

ˆ11 n

0010

0001

1000

0100

0000

0000

0000

0000

1X

__________

45

olled-CNOT

1ˆ X .

0

0

1

0

0

0

0

0

___________

T between

__________

n 1 an

___________

nd 2.

__________

with

__

Page 46: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig. Q

G

G

________

Quantum

GCNOT 1ˆ23

0

0

0

0

0

0

0

1

1

1ˆ23GCNOT

__________

gate wit

GCNOT 1ˆ

000

000

000

000

010

100

001

000

11ˆ

ˆ

m

GCNOT

___________

th Contro

m 11ˆ

0100

1000

0010

0001

0000

0000

0000

0000

ˆˆ Xn

__________

46

olled-CNOT

Xn ˆˆ .

0

1

0

0

0

0

0

0

___________

T between

__________

n 2 an

___________

nd 3.

__________

with

__

Page 47: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig. Q

G

G

________

16 R

Quantum

mGCNOT ˆˆ13

0

0

0

0

0

0

0

1

ˆˆ13 mGCNOT

__________

R-CNOT gat

gate wit

n11

000

000

000

000

100

010

001

000

ˆ11 n

___________

te with RCNOˆ

th Contro

X1 .

0100

1000

0001

0010

0000

0000

0000

0000

ˆ1 X

__________

mOT ˆ1

47

olled-CNOT

0

1

0

0

0

0

0

0

___________

nX ˆˆ

T between

__________

n 1 an

___

nd 3. with

Page 48: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig. Q

R

17. Q

(a) S

Fig. S

Quantum gate

0

0

0

1

0

0

0

1

ˆ1ˆ mRCNOT

Quantrum ci

wap gate w

wap gate wi

e with RCNOTˆ

001

010

100

000

000

010

000

000

ˆˆˆ nXm

ircuits relat

with GSWAPˆ

ith mGSWAPˆ

XmTˆˆ1

010

000

000

000

ted to the SW

nmm ˆˆˆ

nmm ˆˆˆ

48

nX ˆˆ

0

0

1

0

WAP gate

XmXn ˆˆˆˆ

nXmXn ˆˆˆˆ

mXnXnX ˆˆˆˆˆ

mXnXnX ˆˆˆˆˆ

m

m

Page 49: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

G

(b) Q

Fig. Q

0

0

0

1

0

0

0

1

ˆˆ mGSWAP

Quantum cir

Quantum circ

100

001

010

000

000

000

000

000

ˆˆˆ nnm

rcuit ˆ12SWAPG

cuit includin

000

000

000

000

ˆˆˆˆ XnXmX

1ˆ2 SWAPG

g Swap gate

49

00

10

00

00

1

0

0

0

ˆˆˆˆ mXnX

1

e between 1 a

0

0

0

0

00

00

00

00

and 2. ˆSWAPG

000

000

010

000

ˆ12 SWAPP G

1

Page 50: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

G

(c) Q

Fig. Q

0

0

0

0

0

0

0

1

ˆ

ˆˆ12

m

GG SWSWAP

Quantum cir

Quantum circ

000

000

100

010

000

000

001

000

ˆ1ˆ

1

nm

WAP

rcuit with G

cuit includin

1000

0100

0000

0000

0010

0001

0000

0000

ˆˆ1ˆ mXn

SWAPG 1ˆ23

g Swap gate

50

0

0

0

0

0

0

0

1ˆˆnXm

SWAPG

e between 2 a

ˆˆˆˆ mXnX

and 3. SWAPG

1

SWP G123 WAP

Page 51: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

G

(d) Q

Fig. Q

0

0

0

0

0

0

0

1

1

1ˆ23GSWAP

Quantum ga

Quantum circ

000

000

000

000

100

001

010

000

1ˆˆ

ˆ

mm

GSWAP

ate with ˆSWG

cuit includin

1000

0010

0100

0001

0000

0000

0000

0000

1ˆˆ nn

13WAP

g Swap gate

51

1

0

0

0

0

0

0

0

ˆˆˆˆ nXmX

e between 1 a

ˆˆˆ1 mXnX

and 3. ˆSWAPG

mX

13P

Page 52: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

52

10000000

00001000

00100000

00000010

01000000

00000100

00010000

00000001

ˆˆ1ˆˆˆˆ1ˆˆˆ1ˆˆ1ˆ

ˆ13

mXnXnXmXnnmm

GSWAP

18. Matrix representation of typical tri-qubits

10000000

01000000

00100000

00010000

00001000

00000100

00000010

00000001

111 ,

00000000

00000000

00000000

00000000

00001000

00000100

00000010

00000001

11m ,

00000000

00000000

00000000

00000000

00000000

00000000

00000010

00000001

1ˆˆ mm ,

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000001

ˆˆˆ mmm

Page 53: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

53

00000000

01000000

00000000

00010000

00000000

00000100

00000000

00000001

ˆ11 m ,

00000000

00000000

00000000

00010000

00000000

00000000

00000000

00000001

ˆˆ1 mm

00000000

00000000

00100000

00000000

00000000

00000000

00000010

00000000

ˆˆ1 nm

10000000

01000000

00100000

00010000

00000000

00000000

00000000

00000000

11n ,

10000000

01000000

00000000

00000000

00000000

00000000

00000000

00000000

1ˆˆ nn ,

10000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

ˆˆˆ nnn

Page 54: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

m

19 Q

(a) Q

Fig. T

1ˆˆ nm

Quantum ga

Quantum ga

Toffoli gate w

0000

0000

0000

0000

1000

0100

0000

0000

ates related t

ate toffoliG

with Gtoffoliˆ

0000

0000

0000

0000

0001

0000

0000

0000

to the Toffo

m 11ˆ

54

0

0

0

0

0

0

0

0

, n

oli gate

mn 1ˆˆ

0

0

0

0

0

0

0

0

1m

Xnn ˆˆˆ

000

000

000

000

000

000

000

000

X

0000

0000

0010

0001

0000

0000

0000

0000

Page 55: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

55

X

I

I

I

000

000

000

000

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

01000000

10000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00100000

00010000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00001000

00000100

00000010

00000001

ˆˆˆ1ˆˆ11ˆˆ XnnmnmGtoffoli

(b) Quantum gate with toffoliR

In the expression of

321321321ˆˆˆ1ˆˆ11ˆˆ XnnmnmGtoffoli

we change the number of subscript as 1→3, 2→2, 3→1,

123123123ˆˆˆ1ˆˆ11ˆ Xnnmnm

This can be rewrirren as

nnXnmm

nnXnmmRtoffoli

ˆˆˆˆˆ1ˆ11

ˆˆˆˆˆ1ˆ11ˆ321321321

Page 56: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig. Q

We note

R

20. Q

(a) Q

Quantum gate

that

11Rtoffoli

Quantum ga

Quantum ga

e Rtoffoli 1ˆ

ˆ1ˆ mm

ate related to

ate with FreG

m 1ˆ1

ˆˆˆ nXn

o the Fredk

edkin m 1ˆ

56

Xnm ˆˆˆ

0

0

0

0

0

0

0

1

ˆˆ nn

kin gate

SWGn ˆˆ1

nn ˆˆ

0100

0000

0000

1000

0000

0010

0001

0000

WAP

0000

0100

0010

0001

1000

0000

0000

0000

Page 57: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig. F

G

where

G

(b) Q

redkin gate w

0

0

0

0

0

0

0

1

ˆ

ˆ

ˆˆ

m

m

mGFredkin

0

0

0

1

ˆˆ mGSWAP

Quantum ga

with FredkinG

0000

0000

0000

1000

0100

0010

0001

0000

ˆ11

(ˆ11

ˆ11

mn

n

n

100

001

010

000

ˆˆˆ nnm

ate with FreR

m 11ˆ

1000

0010

0100

0001

0000

0000

0000

0000

ˆˆˆ

ˆˆˆ(

ˆ

nmm

nmm

GSWAP

ˆˆˆˆ XnXmX

edkin

57

SWAPGn ˆˆ ’

ˆˆˆ

ˆˆˆ

nnn

XmXn

ˆˆˆˆ mXnX

ˆˆˆˆ

ˆˆˆˆ

nXmX

XnXnX

ˆˆˆˆ

)ˆˆ

XnXn

mX

ˆˆmX

Page 58: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig. M

R

21. Q

Modified Fre

0

0

0

0

0

0

0

1

11

11RFredkin

Quantum cir

dkin gate wi

0000

0000

0100

1000

0000

0010

0001

0000

ˆˆ1

ˆˆ1

mm

Gm SWA

rcuit equiva

ith RFredkinˆ

1000

0100

0000

0001

0010

0000

0000

0000

ˆˆˆ

ˆ

nnm

nAP

alence to the

58

Gm11

ˆˆˆˆ mXnn

e Fredkin ga

nGSWAP ˆˆ

ˆˆˆ nnXm

ate

ˆˆˆˆ mXnX n

Page 59: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

59

nXmXnmXnXnnnnmmnm

XmnXnXnXnnXn

nmXmXnn

Xnmnnmmnmm

nXnXnXnmXnnXn

mnXmnnXmmnXmnXmXnn

mXmnnmmnnmXmmm

nXXnnmXnnnXmnmmn

nXmmmnXm

nXm

XnnmnmnXmRGR CNOTToffoliCNOT

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ11ˆ

ˆˆˆˆˆˆˆˆˆˆˆˆ

ˆ1ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆ1ˆ

)ˆˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆ1ˆ(

)ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆ1ˆ()ˆˆ1ˆ11(

)ˆˆ1ˆ11(

)ˆˆˆ1ˆˆ11ˆ()ˆˆ1ˆ11(ˆˆˆ

2

2

22

22

2323

where

0ˆˆ nm , 0ˆˆ mn , mm ˆˆ 2 , nn ˆˆ2 , 1ˆ 2 X ,

1ˆˆ nm ,

mXXn ˆˆˆˆ , nXXm ˆˆˆˆ , and

Page 60: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

60

00100000

01000000

10000000

00010000

00000010

00000100

00001000

00000001

ˆˆ1ˆ11

ˆ1ˆ23

nXm

RR CNOTCNOT

,

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

ˆˆˆ1ˆˆ11ˆˆ XnnmnmGtoffoli

Thus we have

FredkinCNOTToffoliCNOT GRGR ˆˆˆˆ2323

where

Page 61: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

G

22. Q

Fig.a Q

Fig.b S

0

0

0

0

0

0

0

1

ˆˆ mGFredkin

Quantum ci

Quantum circ

wap gate wi

0000

0000

0000

1000

0100

0010

0001

0000

ˆ11 mn

ircuit CNOTG

cuit with CNG

ith mGSWAPˆ

1000

0010

0100

0001

0000

0000

0000

0000

ˆˆˆ nmm

CNOTCNOTT GR ˆˆ

CNCNOTNOT GR ˆˆ

nmm ˆˆˆ

61

ˆˆˆ nnn

equivalent

NOT .

XmXn ˆˆˆˆ

ˆˆˆˆ nXmX

t to SWAPG

mXnXnX ˆˆˆˆˆ

ˆˆˆˆ XnXn

mX ˆ .

ˆˆmX

Page 62: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

We show

R

G

Then we

G

which is

G

23. E

We s

Fig.a Q

which is

w that this qu

mRCNOT ˆ1ˆ

mGCNOT ˆˆ

get

GRG CNOTCNOTˆˆˆ

the same as

mmGSWAP ˆˆ

Equivalent q

how that the

Quantum circ

equivalent t

uantum circu

nXm ˆˆˆ ,

Xn ˆˆ1 .

mm

mGCNOT

ˆ

ˆ(

Xnnm ˆˆˆ

quantum cir

ese two quan

cuit with ˆ(X

to a new type

uit is equival

Xnnm

Xn

ˆˆˆ

1)(ˆˆ1

XnXmX ˆˆˆˆˆ

rcuits: X(

ntum circuits

(ˆ)1 XGX CNOT

e of quantum

62

ent to the SW

XmXnX

Xm

ˆˆˆˆ

ˆˆ1

mXnX ˆˆˆˆ .

XGCNOTˆ(ˆ)1

s are equival

)1ˆ X

m gate

WAP gate. W

nXmX

nmn

ˆˆˆˆ

1ˆ)(ˆ

n 1ˆ)1

lent to each o

We note that

Xn )ˆˆ

Xm ˆˆ

other.

t

Page 63: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

63

Fig.b Quantum circuit with Xmn ˆˆ1ˆ . Controlled operation with a NOT gate being performed on the second qubit, conditional on the first qubit being set to zero.

We note that

XnmGCNOTˆˆ1ˆˆ ,

Then we have

Xmn

XXmXn

XXnXXmX

XXnXmX

XXnmXXGX CNOT

ˆˆ1ˆ

ˆˆˆ1ˆˆ

ˆˆˆˆ1ˆˆˆ

)ˆˆˆ1ˆˆ)(1ˆ(

)1ˆ)(ˆˆ1ˆ)(1ˆ()1ˆ(ˆ)1ˆ(

22

In fact we obtain

1000

0100

0001

0010

)1ˆ(ˆ)1ˆ( XGX CNOT .

24. Equivalence of two quantum circuits: XZ GHGH ˆ)ˆ1(ˆ)ˆ1(

We show that these two quantum circuits are equivalent to each other.

Page 64: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

Fig.a Q

Fig.b E

G

The quan

1(

Note that

H

Quantum circ

Equivalent qu

mGZ 1ˆˆ

ntum circuit

ZGH 1(ˆ)ˆ1

t

ˆ(2

1ˆ 2 XH

cuit with 1(

uantum circu

Zn ˆˆ ,

can be repre

XG

m

m

H

ˆ

ˆ

ˆ

1(

1()ˆ

)ˆˆ)(ˆ ZXZ

1(ˆ)ˆ GH Z

uit with XG

mGX ˆˆ

esented by

Xn

HnH

HmH

mH

ˆˆ1

ˆˆˆ

ˆˆ)(ˆ

1ˆ)(ˆ

2

ˆˆ(2

1 22 ZX

64

)H .

Xnm ˆˆ1ˆ

HZH

HZn

HZn

ˆˆˆ

)ˆˆˆ

1)(ˆˆ

ˆˆˆˆ2 XZZX

X .

H )ˆ

1) X

Page 65: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

H

where

X

25. E

We s

Fig.a Q

Fig.b E

X

Xi

X

X

XHZH

ˆ

ˆ(2

1

ˆ(2

1

ˆ(2

1

ˆ(2

1ˆˆˆ

XYYX ˆˆˆˆ

Equivalence

how that the

Quantum circ

Equivalent qu

YZiXYX

YiZ

ZXZZ

XZZ

ˆˆˆˆ

)1ˆ)(ˆ

ˆˆ)(ˆ

ˆ(ˆ)ˆ

Zi ˆ , ZY ˆˆ

of two quan

ese two quan

cuit with ˆ(H

uantum circu

ZY

Z

Z

)ˆˆ

)

2

XiYZZ ˆˆˆˆ

ntum circui

ntum circuits

ˆ)ˆ GHH CNOT

uit with RCNOˆ

65

X , XZ ˆˆ

its; HH ˆˆ(

s are equival

)ˆˆ( HH .

mOT ˆ1

YiZX ˆˆˆ

CNOT HGH ˆ(ˆ)

lent to each o

nX ˆˆ .

Y

CNOTRH ˆ)ˆ

other. T

Page 66: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

66

We note that

XnmGCNOTˆˆ1ˆˆ , nXmRCNOT ˆˆˆ1ˆ .

The quantum circuit (Fig.a) is expressed by

ZHnHHmH

HXHHnHHmH

HXHHnHHHmH

HXHnHHmHH

HHXnmHHHHGHH CNOT

ˆˆˆˆ1ˆˆˆ

ˆˆˆˆˆˆ1ˆˆˆ

ˆˆˆˆˆˆˆˆˆˆ

)ˆˆˆˆˆˆˆ)(ˆˆ(

)ˆˆ)(ˆˆ1ˆ)(ˆˆ()ˆˆ(ˆ)ˆˆ(

2

or

nXm

ZXZ

ZXZX

ZXXHHGHH CNOT

ˆˆˆ1

)ˆ1(2

1ˆ)ˆ1(2

11

)ˆˆˆ11ˆ11(2

1

ˆ)ˆ1(2

11)ˆ1(

2

1)ˆˆ(ˆ)ˆˆ(

This agrees with

nXmRCNOT ˆˆˆ1ˆ .

((Note))

ZHXH ˆˆˆˆ , XHZH ˆˆˆˆ ,

)ˆ1(2

1ˆ Zm , )ˆ1(

2

1ˆ Zn .

)ˆ1(2

1)ˆˆˆˆ(

2

1ˆ)ˆ1(ˆ2

1ˆˆˆ 2 XHZHHHZHHmH ,

)ˆ1(2

1)ˆˆˆˆ(

2

1ˆ)ˆ1(ˆ2

1ˆˆˆ 2 XHZHHHZHHnH .

Page 67: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

26. C

Entangle

G

where

G

H

m

The matr

G

Construction

d qubits

)1ˆ(ˆ HGCNOT

mGCNOT ˆˆ

ˆ(2

1ˆ XH

Hm 1(2

1ˆˆ

rix of GCNOT

)1ˆ(ˆ HGCNOT

n of the Bell

1[(2

1

1ˆˆ

1ˆ()

Z

Hm

m

Xn ˆˆ1 ,

)Z ,

HZ ˆ)ˆ ,

)1ˆ( H is g

01

0

0

01

2

1)

l's states

1(1ˆ)ˆ

ˆˆˆ

ˆ)(ˆˆ

HZ

XHn

HXn

iXZ ˆˆ

ˆˆnH

iven by

010

101

101

010

67

ˆˆ)ˆ1

)1

XHZ

Y ,

)ˆ1(ˆ2

1ZH

]X

Page 68: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

1

0

0

1

2

100

0

1

1

0

2

101

2

110

0(2

1

1

0

0

1

0(2

1

0

1

1

0

0(2

1

1

0

0

1

)110

)011

)1100

68

Page 69: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

________REFERE R.P. FeynG.J. MilbG.P. Ber

CJ. Stolze

VG. Benne

BD.C. Ma

InM. HayaM. Pavič

(SP. Kaye, M.L. BelN.D. MeL. Diosi,G. Benne

BG. JaegerD. McMaZ. MegliN.S. Yan

2S.M. Bar

2

111

__________ENCES

nman, Feynmburn, The Ferman, G.D.

Computers (Wand D. Sute

VCH, 2004). et, G. Casati

Basic Conceparinescu andnc., 2005). shi, Quantumčić, QuantumSpringer 200R. Laflamm

llac, A Shortrmin, Quant A Short Coet, G. Casati

Basic Tools ar, Quantum Iahon, Quantcki, Quantumnofsky and M008). rnett, Quantu

0(2

1

0

1

1

0

___________

man Lectureeynman Proc Doolen, R

World Scienter, Quantum

i, and G. Strpts (World Sd G.M. Mar

m Informatiom Computa06).

me, and M. Mt Introductiotum Computurse in Quan

i, and G. Striand Special TInformation tum Computm ComputinM.A. Mannu

um Informat

)0110

__________

es on Compucessor (PerseR. Mainieri,tific, 1998).Computing

rini, PrinciplScientific, 20rinescu, App

on An Introdation and Q

Mosca, An Inon to Quantuter Science Antum Informini, PrincipleTopics (WorAn Overvie

ting Explaineng without Mucci, Quantu

tion (Oxford

69

___________

utation (Addeus Books, 1 and V.I.

A Short Co

les of Quant005). proaching Q

duction (SpriQuantum Com

ntroduction tum InformatiAn Introduct

mation Theores of Quanturld Scientificew (Springered (Wiley-In

Magic Deviceum Computi

d University P

__________

dison-Wesley1998). Tsifrinovich

urse from T

tum Comput

Quantum Com

inger, 2006)mmunicatio

to Quantum ion (Oxford tion (Cambriry (Springer,um Computac, 2007). r, 2007). nterscience, es (MIT Presing for Com

Press, 2009)

___________

y, 1996).

h, Introducti

Theory to Exp

tation and In

mputing (Pe

). n: Theory a

Computing University Pidge, 2007) , 2007). ation and Inf

2008) ss, 2008).

mputer Scient

).

__________

ion to Qua

periment (W

nformation v

eason Educa

and Experim

(Oxford, 20Press, 2006)

formation vo

tists (Cambr

__

antum

Wiley-

vol. I:

ation,

ments

07). .

ol. II:

ridge,

Page 70: Department of Physics, SUNY at Binghamton N.D. Mermin ...bingweb.binghamton.edu/~suzuki/QM_Graduate/Quantum... · 1 Operator method in Quantum Computing Masatsugu Sei Suzuki Department

70

A.D. Vos Reversible Computing Fundamentals, Quantum Computing, and Applications (Wiley-VCH, 2010).

M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge, 2010).

D.C. Marinescu and G.M. Marinescu, Classical and Quantum Information (Elsevier, 2010). E. Rieffel and W. Polak, Quantum Computing A General Introduction (The MIT Press, 2011). M. Fayngold and V. Fayngold, Quantum Mechanics and Quantum Information (Wiley-VCH,

2013). S. Aaronson, Quantum Computing since Democritus (Cambridge University Press, 2013). _____________________________________________________________________________ Jacques Salomon Hadamard;(8 December 1865 – 17 October 1963) was a French mathematician who made major contributions in number theory, complex function theory, differential geometry and partial differential equations. _____________________________________________________________________________ Tommaso Toffoli is a professor of electrical and computer engineering at Boston University where he joined the faculty in 1995. He has worked on cellular automata and the theory of artificial life (with Edward Fredkin and others), and is known for the invention of the Toffoli gate. ______________________________________________________________________________ Edward Fredkin (born 1934) is a distinguished career professor at Carnegie Mellon University (CMU) and an early pioneer of digital physics. His primary contributions include his work on reversible computing and cellular automata. While Konrad Zuse's book, Calculating Space (1969), mentioned the importance of reversible computation, the Fredkin gate represented the essential breakthrough. In recent work, he uses the term digital philosophy (DP). During his career Fredkin also served on the faculties of MIT in Computer Science, was a Fairchild Distinguished Scholar at Caltech, and Research Professor of Physics at Boston University. ______________________________________________________________________________ David Elieser Deutsch, FRS (born 18 May 1953) is a British physicist at the University of Oxford. He is a non-stipendiary Visiting Professor in the Department of Atomic and Laser Physics at the Centre for Quantum Computation (CQC) in the Clarendon Laboratory of the University of Oxford. He pioneered the field of quantum computation by formulating a description for a quantum Turing machine, as well as specifying an algorithm designed to run on a quantum computer. He is a proponent of the many-worlds interpretation of quantum mechanics. ______________________________________________________________________________