This research is also supported by Shell Global Solutions, Houston, TX.

2
Molecular Basis for Petroleum Distillation Gregory S. Boebinger, Florida State University, DMR 0654118 Ion Cyclotron Resonance User Program Petroleum crude oil refining produces various distillation products: naphtha, gasoline, jet fuel, kerosene, lube oil, etc. “Petroleomics”, the complete and detailed chemical analysis of petroleum, has been enabled by applying the highest magnetic field to Fourier transform ion cyclotron resonance (FT- ICR) mass spectrometry. FT-ICR can sort the components of distillation products according to the number of Hydrogen, Carbon, Nitrogen, Oxygen and Sulfur atoms in each molecule. Or, as in the figure here, they can be sorted by the number of carbon atoms and “double bond equivalents (DBE = number of carbon rings plus double bonds). Note that the higher molecular weight components distill at higher temperature. Number of molecules containing only carbon and hydrogen in a given petroleum distillation product, plotted versus number of carbon atoms and double bond equivalents (see text) McKenna, A. M.; Blakney, G. T.; Xian, F.; Glaser, P. B.; Rodgers, R. P.; Marshall, A. G. Energy & Fuels 2010, 24, 2939-2946. McKenna, A. M.; Purcell, J. M.; Rodgers, R. P.; Marshall, A. G. Energy & Fuels 2010, 24, 2929-2938. This research is also supported by Shell Global Solutions, Houston, TX. C arbon N um ber DBE 60 40 20 0 60 40 20 0 H ydrocarbon C lass 20 40 60 80 100 20 40 60 80 100 371 -510 °C 510 – 538 °C 538 -593 °C 593 + °C C 36 DBE 10 C 42 DBE 12 C 63 DBE 16 C 52 DBE 12 DBE C arbon N um ber DBE 60 40 20 0 60 40 20 0 H ydrocarbon C lass 20 40 60 80 100 20 40 60 80 100 371 -510 °C 510 – 538 °C 538 -593 °C 593 + °C C 36 DBE 10 C 42 DBE 12 C 63 DBE 16 C 52 DBE 12 DBE Carbon Number DBE 60 40 20 0 60 40 20 0 Hydrocarbon Class 20 40 60 80 100 20 40 60 80 100 371 -510 °C 510 –538 °C 538 -593 °C 593 + °C C 36 D B E 10 C 42 D B E 12 C 63 D B E 16 C 52 D B E 12 DBE Carbon Number DBE 60 40 20 0 60 40 20 0 Hydrocarbon Class 20 40 60 80 100 20 40 60 80 100 371 -510 °C 510 –538 °C 538 -593 °C 593 + °C C 36 D B E 10 C 42 D B E 12 C 63 D B E 16 C 52 D B E 12 DBE Carbon Number DBE 60 40 20 0 60 40 20 0 Hydrocarbon Class 20 40 60 80 100 20 40 60 80 100 371 -510 °C 510 –538 °C 538 -593 °C 593 + °C C 36 D B E 10 C 42 D B E 12 C 63 D B E 16 C 52 D B E 12 DBE Carbon Number DBE 60 40 20 0 60 40 20 0 Hydrocarbon Class 20 40 60 80 100 20 40 60 80 100 371 -510 °C 510 –538 °C 538 -593 °C 593 + °C C 36 D B E 10 C 42 D B E 12 C 63 D B E 16 C 52 D B E 12 DBE

description

Molecular Basis for Petroleum Distillation Gregory S. Boebinger , Florida State University, DMR 0654118 Ion Cyclotron Resonance User Program. - PowerPoint PPT Presentation

Transcript of This research is also supported by Shell Global Solutions, Houston, TX.

Page 1: This research is also supported by Shell Global Solutions, Houston, TX.

Molecular Basis for Petroleum DistillationGregory S. Boebinger, Florida State University, DMR 0654118

Ion Cyclotron Resonance User Program

Petroleum crude oil refining produces various distillation products: naphtha, gasoline, jet fuel, kerosene, lube oil, etc. “Petroleomics”, the complete and detailed chemical analysis of petroleum, has been enabled by applying the highest magnetic field to Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry.

FT-ICR can sort the components of distillation products according to the number of Hydrogen, Carbon, Nitrogen, Oxygen and Sulfur atoms in each molecule. Or, as in the figure here, they can be sorted by the number of carbon atoms and “double bond equivalents (DBE = number of carbon rings plus double bonds). Note that the higher molecular weight components distill at higher temperature.

Number of molecules containing only carbon and hydrogen in a given petroleum distillation product, plotted versus number of carbon atoms and double bond equivalents (see text)

McKenna, A. M.; Blakney, G. T.; Xian, F.; Glaser, P. B.; Rodgers, R. P.; Marshall, A. G. Energy & Fuels 2010, 24, 2939-2946.

McKenna, A. M.; Purcell, J. M.; Rodgers, R. P.; Marshall, A. G. Energy & Fuels 2010, 24, 2929-2938.

This research is also supported by Shell Global Solutions, Houston, TX.

Carbon Number

DBE

60

40

20

060

40

20

0

Hydrocarbon Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °C

C36

DBE 10C42

DBE 12

C63

DBE 16C52

DBE 12

DBE

Carbon Number

DBE

60

40

20

060

40

20

0

Hydrocarbon Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °C

C36

DBE 10C42

DBE 12

C63

DBE 16C52

DBE 12

DBE

Carbon Number

DBE

60

40

20

060

40

20

0

Hydrocarbon Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °C

C36

DBE 10C42

DBE 12

C63

DBE 16C52

DBE 12

DBE

Carbon Number

DBE

60

40

20

060

40

20

0

Hydrocarbon Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °C

C36

DBE 10C42

DBE 12

C63

DBE 16C52

DBE 12

DBE

Carbon Number

DBE

60

40

20

060

40

20

0

Hydrocarbon Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °C

C36

DBE 10C42

DBE 12

C63

DBE 16C52

DBE 12

DBE

Carbon Number

DBE

60

40

20

060

40

20

0

Hydrocarbon Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °C

C36

DBE 10C42

DBE 12

C63

DBE 16C52

DBE 12

DBE

Page 2: This research is also supported by Shell Global Solutions, Houston, TX.

Molecular Basis for Petroleum Distillation Gregory S. Boebinger, Florida State University, DMR 0654118

Ion Cyclotron Resonance User Program

Petroleomics at high magnetic field reveals that the addition of each Nitrogen, Oxygen or Sulfur atom to a hydrocarbon molecule in petroleum requires removal of two or three carbons to produce the same boiling point: compare the red arrows for molecules with only carbon and hydrogen (top panels) to those for molecules with carbons, hydrogens and two sulfurs (bottom panels).

Thus, one can predict the (economically important) distillation profile for a crude oil, based on its detailed chemical composition--one of the first uses of "petroleomics" to predict the properties and behavior of crude oil. We are applying the same approach to predict deposits, corrosion, and formation of oil/water emulsions, and to monitor oil spills.

Carbon Number

DBE

60

40

20

060

40

20

0

S2 Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °CC56

DBE 16C47

DBE 13

C39DBE 12

C35DBE 9

DBE

Carbon Number

DBE

60

40

20

060

40

20

0

S2 Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °CC56

DBE 16C47

DBE 13

C39DBE 12

C35DBE 9

DBE

Molecules with Two-Sulfur Atoms

Carbon Number

DBE

60

40

20

060

40

20

0

Hydrocarbon Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °C

C36DBE 10

C42DBE 12

C63DBE 16

C52DBE 12

DBE

Carbon Number

DBE

60

40

20

060

40

20

0

Hydrocarbon Class

20 40 60 80 100 20 40 60 80 100

371 - 510 °C 510 – 538 °C

538 - 593 °C 593+ °C

C36DBE 10

C42DBE 12

C63DBE 16

C52DBE 12

DBE

Molecules without any Sulfur Atoms