Thermodynamics in Chip Processing II Terry A. Ring.

31
Thermodynamics in Chip Processing II Terry A. Ring

Transcript of Thermodynamics in Chip Processing II Terry A. Ring.

Thermodynamics in Chip Processing II

Terry A. Ring

CVD

Materials Deposited

• Dielectrics– SiO2, BSG

• Metals– W, Cu, Al

• Semiconductors– Poly silicon (doped)

• Barrier Layers– Nitrides (TaN, TiN), Silicides (WSi2, TaSi2, CoSi,

MoSi2)

Deposition Methods

• Growth of an oxidation layer• Spin on Layer• Chemical Vapor Deposition (CVD)

– Heat = decomposition T of gasses– Plasma enhanced CVD (lower T process)

• Physical Deposition– Vapor Deposition– Sputtering

Critical Issues

• Adherence of the layer• Chemical Compatibility

– Electro Migration– Inter diffusion during subsequent processing

• Strong function of Processing

• Even Deposition at all wafer locations

CVD of Si3N4 - Implantation mask

• 3 SiH2Cl2 + 4 NH3Si3N4 + 6 HCl + 6 H2

– 780C, vacuum

– Carrier gas with NH3 / SiH2Cl2 >>1

• Stack of wafer into furnace– Higher temperature at exit to compensate for gas

conversion losses

• Add gases• Stop after layer is thick enough

CVD of Poly Si – Gate conductor• SiH4 Si + 2 H2

– 620C, vacuum

– N2 Carrier gas with SiH4 and dopant precursor

• Stack of wafer into furnace– Higher temperature at exit to compensate for gas

conversion losses

• Add gases• Stop after layer is thick enough

CVD of SiO2 – Dielectric• Si0C2H5 +O2SiO2 + 2 H2

– 400C, vacuum– He carrier gas with vaporized(or atomized) Si0C2H5

and O2 and B(CH3)3 and/or P(CH3)3 dopants for BSG and BPSG

• Stack of wafer into furnace– Higher temperature at exit to compensate for gas

conversion losses

• Add gases• Stop after layer is thick enough

CVD of W – Metal plugs

• 3H2+WF6 W + 6HF– T>800C, vacuum– He carrier gas with WF6

– Side Reactions at lower temperatures• Oxide etching reactions• 2H2+2WF6+3SiO2 3SiF4 + 2WO2 + 2H2O• SiO2 + 4HF 2H2O +SiF4

• Stack of wafer into furnace– Higher temperature at exit to compensate for gas conversion

losses

• Add gases• Stop after layer is thick enough

Chemical Equilibrium

CVD Reactor

• Wafers in Carriage (Quartz)

• Gasses enter

• Pumped out via vacuum system

• Plug Flow Reactor

Vacuum

CVD Reactor

• Macroscopic Analysis– Plug flow reactor

• Microscopic Analysis– Surface Reaction

• Film Growth Rate

Macroscopic Analysis

• Plug Flow Reactor (PFR)– Like a Catalytic PFR Reactor– FAo= Reactant Molar Flow

Rate– X = conversion– rA=Reaction rate = f(CA)=kCA

– Ci=Concentration of Species, i.– Θi= Initial molar ratio for species i to

reactant, A.– νi= stoichiometeric coefficient– ε = change in number of moles

TR

PC

T

T

P

P

X

XCC

V

AXr

dXFV

g

AoAo

o

o

iiioi

X

reactor

waferA

Aoreactor

1

)(0

'

Combined Effects

Contours = Concentration

Reactor Length Effects

SiH2Cl2(g) + 2 N2O(g) SiO2(s)+ 2 N2(g)+2 HCl(g)

nwafer VReactorPerWafer a

FAo0

X

X1

r'A X( )

d n X( )FAo

VReactorPerWafer a 0

X

X1

r'A X( )

d

rate X( )

r'A X( )4

Dwafer2

SiO2

MwSiO2Awafer

0 50 100 1500

2000

4000

6000

Wafer Number

Th

ick

ness

(nm

)

rate X'( ) 10 minnm

n X'( )0 0.5 10

200

400

600

Conversion

Dep

osi

tio

n R

ate

, W

afe

r N

um

ber

rate X( )

nm

min

n X( )

X

How to solve? Higher T at exit!

Deposition Rate over the Radius

r

wAsA

A

pABe

wA

Ae

RrCC

rfiniteC

ConditionsBoundary

DD

V

Ar

dr

CdrD

dr

d

r

,

0,

1 "

CAs

Thiele Modulus Φ1=(2kRw/DABx)1/2

Radial Effects

This is bad!!!

Pseudo First Order Results

CA 1

sinh 1 sinh 1

00.510.97

0.98

0.99

1

r/R.wafer

Con

cent

rati

on

CA

00.51

4900

4950

5000

5050

r/R.wafer

Thi

ckne

ss(n

m)

rate 1 CA 10 min

nm

x 0.5

Combined Length and Radial Effects

00.512400

2600

2800

3000

3200

3400

3600

r/R.wafer

Th

ick

ness

Rate 10 10 minnm

Rate 20 10 minnm

Wafer 20

Wafer 10

CVD Reactor

• External Convective Diffusion– Either reactants or products

• Internal Diffusion in Wafer Stack– Either reactants or products

• Adsorption

• Surface Reaction

• Desorption

Microscopic Analysis -Reaction Steps

• Adsorption – A(g)+SA*S– rAD=kAD (PACv-CA*S/KAD)

• Surface Reaction-1 – A*S+SS*S + C*S

– rS=kS(CvCA*S - Cv CC*S/KS)

• Surface Reaction-2– A*S+B*SS*S+C*S+P(g)– rS=kS(CA*SCB*S - Cv CC*SPP/KS)

• Desorption: C*S<----> C(g) +S– rD=kD(CC*S-PCCv/KD)

• Any can be rate determining! Others in Equilib.• Write in terms of gas pressures, total site conc.

CMP

What is CMP?

• Polishing of Layer to Remove a Specific Material, e.g. Metal, dielectric

• Planarization of IC Surface Topology

Scratching Cases

• Rolling Indenter• Line Scratches

– Copper Only– Copper & ILD

• Chatter Scratches• Uncovery of Pores

120 microns

CMP Tooling

• Rotating Multi-head Wafer Carriage

• Rotating Pad• Wafer Rests on Film of

Slurry • Velocity= -

(WtRcc)–[Rh(Wh –Wt)] • when Wh=Wt

Velocity = const.

Slurry

• Aqueous Chemical Mixture– Material to be removed is soluble in liquid– Material to be removed reacts to form an oxide layer

which is abraded by abrasive

• Abrasive– 5-20% wgt of ~200±50nm particles

• Narrow PSD, high purity(<100ppm)• Fumed particle = fractal aggregates of spherical primary

particles (15-30nm)

Pad Properties

• Rodel Suba IV• Polyurethane

– tough polymer• Hardness = 55

– Fiber Pile• Specific Gravity = 0.3

• Compressibility=16%

• rms Roughness = 30μm

– Conditioned

Heuristic Understanding of CMP

• Preston Equation(Preston, F., J. Soc. Glass Technol., 11,247,(1927).

– Removal Rate = Kp*V*P• V = Velocity, P = pressure and Kp is the proportionality constant.

CMP Pad Modeling• Pad Mechanical Model - Planar Pad

• Warnock,J.,J. Electrochemical Soc.138(8)2398-402(1991).

• Does not account for Pad Microstructure

CMP Modeling

• Numerical Model of Flow under Wafer– 3D-Runnels, S.R. and Eyman, L.M., J. Electrochemical Soc.

141,1698(1994).

– 2-D-Sundararajan, S., Thakurta, D.G., Schwendeman, D.W., Muraraka, S.P. and Gill, W.N., J. Electrochemical Soc. 146(2),761-766(1999).

PadU

Pappliedy

x

h(x)

Wafer

Slurry

D

Copper Dissolution

• Solution Chemistry– Must Dissolve Surface

Slowly without Pitting

• Supersaturation

Oxidation of Metal Causes Stress

• Stress, i = E i (P-B i – 1)/(1 - i)• P-Bi is the Pilling-Bedworth ratio for the oxide